Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Liuba, mały mamut odnaleziony w doskonałym stanie na terenie rosyjskiej Arktyki (w Jamalsko-Nienieckim Okręgu Autonomicznym), pozwolił uczonym zza naszej wschodniej granicy sporządzić najdokładniejszy w historii opis wnętrzności tych prehistorycznych zwierząt.

Maluchowi nadano imię żony myśliwego, który natrafił na niego w zeszłym roku. W lutym ciało przodka słonia powróciło do Rosji z Japonii, gdzie badano je za pomocą tomografu komputerowego.

Po raz pierwszy mogliśmy zobaczyć, jak narządy wewnętrzne były zlokalizowane w jamie ciała mamuta. To bardzo istotne z naukowego punktu widzenia – podkreśla Aleksiej Tichonow, szef projektu, a zarazem zastępca dyrektora Instytutu Zoologii Rosyjskiej Akademii Nauk.

Organy młodej samicy były do tego stopnia dobrze zachowane, że w sercu wyraźnie było widać wszystkie przedsionki i komory, a w wątrobie żyły. To najlepiej zachowany okaz nie tylko mamuta, ale także zwierzęcia prehistorycznego.

Badania Liuby wykazały, że była jeszcze oseskiem, a gdy zmarła 37 tysięcy lat temu, miała zaledwie 3-4 miesiące. Nie zachowała się co prawda jej okrywa włosowa, ale już skóra była zupełnie nietknięta zębem czasu, przez co nie doszło do skażenia narządów wewnętrznych współczesnymi drobnoustrojami.

Podczas tomografii nie znaleziono żadnych urazów ani złamań. Drogi oddechowe i pokarmowe mamuta były za to wypełnione szlamem, co doprowadziło biologów do uzasadnionego wniosku, że musiał utonąć.

Jeśli zrobimy biopsję tkanek Liuby bez odmrażania jej, istnieje duża szansa, że uzyskamy obiecujące rezultaty w zakresie genetyki i mikrobiologii. Wierzę, że mapa genetyczna mamuta zostanie ukończona w ciągu roku lub dwóch. Na potrzeby Liuby opracowaliśmy metodę dekodowania genomu właściwie każdego prehistorycznego zwierzęcia.

Tichonow spekuluje, że o ile nikt nie będzie raczej chciał ożywiać mamutów, o tyle zostaną zapewne podjęte próby reintrodukcji gatunków, które wyginęły stosunkowo niedawno, np. ptaka dodo.

Ciało Liuby jest przechowywane w skonstruowanym specjalnie do tego celu pojemniku. Utrzymywane są tam ujemne temperatury, by nie dopuścić do rozłożenia się tkanek ssaka. Wkrótce Liuba poleci do stolicy okręgu Salechardu. Latem będzie ją tam można podziwiać na wystawie. Już przygotowano dla niej szklaną gablotę, która zapewni odpowiednie warunki eksponowania.

Share this post


Link to post
Share on other sites
A co, w bagnie się nie da utonąć?

 

Po utonięciu nie oddychasz i nie przełykasz , a szlam był w jelitach i prawdopodobnie płucach. 8)

Share this post


Link to post
Share on other sites

A zanim utoniesz, wpadasz w panikę i możesz połknąć szlam.

Share this post


Link to post
Share on other sites
A co, w bagnie się nie da utonąć?

 

Po utonięciu nie oddychasz i nie przełykasz , a szlam był w jelitach i prawdopodobnie płucach. 8)

 

Tonący, gdy już nie jest w stanie wstrzymywać oddechu, wciąga w końcu - jeszcze za życia - to, co go otacza: wodę czy błoto. Do jelit zaś szlam dostał się później, gdy otwarły się zwieracze.

Share this post


Link to post
Share on other sites
Guest tymeknafali

No jaja sobie robią z martwego biednego mamuta, co utoną w błocie, zjadł je, zwieracze mu puściły i jeszcze krwotoku wewnętrznego odbytu dostał... ;D

Share this post


Link to post
Share on other sites
Guest tymeknafali

Z tą okrwawiona pupą, i brązowym gilem z nosa...

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W Nemo Science Museum w Amsterdamie zaprezentowano pierwszy w znanej nam historii... klops z mięsa mamuta. Jest on dziełem australijskiej firmy Vow, która pracuje nad mięsem z hodowli komórkowych, oraz międzynarodowej grupy ekspertów. Celem tego eksperymentu naukowego jest pokazanie, że mięso z hodowli komórkowych może zrewolucjonizować przemysł spożywczy. Hodowla mięsa z komórek może być realną alternatywą dla hodowli tradycyjnych.
      Klops z mamuta został stworzony dzięki pozyskaniu DNA mamuta włochatego, które zostało uzupełnione fragmentami DNA słonia afrykańskiego. Za pomocą technologii molekularnych można w ten sposób uzyskać prawdziwe mięso, które nie pochodzi jednak z hodowli zwierząt, jest więc pozbawione wad związanych z tą metodą produkcji żywności – od cierpienia miliardów zwierząt po gigantyczne zanieczyszczenie środowiska odchodami, gazami cieplarnianymi czy antybiotykami.
      Produkcja żywności odpowiada nawet za 20% emisji gazów cieplarnianych, a ilość ta rośnie wraz ze zwiększającą się liczbą ludności. Eksperci szacują, że w ciągu najbliższych 40 lat wyprodukujemy tyle żywności, ile w ciągu ostatnich 8000 lat. To olbrzymie zadanie i gigantyczne obciążenie dla środowiska. System produkcji żywności jest głównym odpowiedzialnym za utratę różnorodności. Tymczasem niektórzy oceniają, że mięso z kultur komórkowych może już w 2030 roku być konkurencyjne cenowo w porównaniu z mięsem tradycyjnym. Jednocześnie jego produkcja będzie wymagała od 63% (w przypadku drobiu) do 95% (dla wołowiny) mniej gruntów. Może przynieść też inne, mniej oczywiste korzyści, jak np. zmniejszenie ryzyka wybuchu pandemii. Eksperci od dawna bowiem uważają, że wielkie fermy zwierząt to poważne zagrożenie zoonozami, a wykorzystywanie antybiotyków w hodowli zwierząt powoduje pojawianie się kolejnych antybiotykoopornych patogenów.
      Australijska firma Vow powstała przed czterema laty. Pod koniec ubiegłego roku inwestorzy przeznaczyli na jej rozwój ponad 49 milionów dolarów. Przedsiębiorstwo zapowiada, że jeszcze w bieżącym roku jej produkty zadebiutują na rynku. Jako pierwsi żywności marki Forged by Vow spróbują mieszkańcy Singapuru.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Serce nie jest w stanie regenerować się po uszkodzeniu. Dlatego dla kardiologii i kardiochirurgii ważne są wysiłki specjalistów z dziedziny inżynierii tkankowej, którzy usiłują opracować techniki regeneracji mięśnia sercowego, a w przyszłości stworzyć od podstaw całe serce. To jednak trudne zadanie, gdyż trzeba odtworzyć unikatowe struktury, przede wszystkim zaś spiralne ułożenie komórek. Od dawna przypuszcza się, że to właśnie taki sposób organizacji komórek jest niezbędny do pompowania odpowiednio dużej ilości krwi.
      Bioinżynierom z Harvard John A. Paulson School of Engineering and Applied Sciences udało się stworzyć pierwszy biohybrydowy model komory ludzkiego serca ze spiralnie ułożonymi komórkami serca i wykazać przy tym, że przypuszczenia były prawdziwe. To właśnie takie spiralne ułożenie komórek znacząco zwiększa ilość krwi przepompowywanej przy każdym uderzeniu serca. To ważny krok, który przybliża nas do ostatecznego celu, jakim jest zbudowanie od podstaw serca zdatnego do transplantacji, mówi profesor Kit Parker, jeden z głównych autorów badań. Z ich wynikami możemy zapoznać się na łamach Science.
      Fundamenty dla obecnych osiągnięć amerykańskich naukowców położył 350 lat temu angielski Richard Lower. Lekarz, wśród którego pacjentów znajdował się król Karol II, jako pierwszy zauważył i opisał w Tractatus de Corde, że włókna mięśnia sercowego ułożone są w kształt spirali. Przez kolejne wieki naukowcy coraz więcej dowiadywali się o sercu, jednak badanie spiralnego ułożenia jego komórek było bardzo trudne. W 1969 roku Edward Sallin z Wydziału Medycyny University of Alabama wysunął hipotezę, że to właśnie spiralne ułożenie komórek pozwala sercu na tak wydajną pracę. Jednak zweryfikowanie tej hipotezy nie było łatwe, gdyż bardzo trudno jest zbudować serca o różnych geometriach i ułożeniu włókien.
      Naszym celem było zbudowanie modelu, na którym będziemy w stanie zweryfikować hipotezę Sallina i badać znaczenie spiralnej struktury włókien, stwierdza John Zimmerman z SEAS.
      Naukowcy opracowali metodę o nazwie Focused Rotary Jet Spinning (FRJS). Urządzenie działa podobnie do maszyny produkującej watę cukrową. Znajdujący się w zbiorniku płynny biopolimer wydobywa się z niego przez niewielki otwór, wypychany na zewnątrz przez siły odśrodkowe działające na obracający się zbiornik. Po opuszczeniu zbiornika, z biopolimeru odparowuje rozpuszczalnik i materiał utwardza się, tworząc włóka. Odpowiednią formę włóknom nadaje zaś precyzyjnie kontrolowany strumień powietrza. Dzięki manipulowaniu tym strumieniem, można nadać włóknom odpowiednią strukturę, naśladującą strukturę włókien mięśnia sercowego. Dzięki FRJS możemy precyzyjnie odtwarzać złożone struktury, tworząc jedno- a nawet czterokomorowe struktury, dodaje Hubin Chang.
      Gdy już w ten sposób odpowiednie struktury zostały utkane, na takie rusztowanie naukowcy nakładali na nie szczurze komórki mięśnia sercowego lub ludzkie komórki macierzyste uzyskane z kardiomiocytów. Tydzień później rusztowanie było pokryte wieloma warstwami kurczących się i rozkurczających komórek serca, których ułożenie naśladowało ułożenie włókien biopolimeru.
      Naukowcy stworzyli dwie architektury komór serca. Jedną o spiralnie ułożonych włóknach, drugą o włókach ułożonych okrężnie. Następnie porównali deformację komory, tempo przekazywania sygnałów elektrycznych oraz ilość krwi wyrzucanej podczas skurczu. Okazało się, że komora o promieniście ułożonych włókach pod każdym z badanych aspektów przewyższa tę o ułożeniu okrężnym.
      Co więcej, uczeni wykazali, że ich metoda może być skalowana nie tylko do rozmiarów ludzkiego serca, ale nawet do rozmiarów serca płetwala karłowatego. Z większymi modelami nie prowadzili testów, gdyż wymagałoby to zastosowania miliardów kardiomiocytów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zespół badawczy Liver4Life z Zurichu dokonał rzeczy, którą jeszcze niedawno moglibyśmy śmiało zaliczyć do kategorii fantastyki naukowej. Uszkodzona wątroba, która nie nadawała się do przeszczepu, została podłączona na 3 dni do maszyny, wyleczona, a następnie przeszczepiona pacjentowi, który swoją wątrobę stracił w wyniku nowotworu. Teraz, rok po operacji, pacjent czuje się świetnie.
      Zespół z Zurichu dysponuje wyjątkową zbudowaną przez siebie maszyną perfuzyjną. Naśladuje ona ludzkie ciało tak bardzo, jak to obecnie możliwe. Pompa zastępuje serce, a natleniacz płuca, jednostka do dializy pełni rolę nerek. Ponadto przez wątrobę przepuszczane są liczne hormony i składniki odżywcze, spełniające rolę jelit i trzustki. Sama maszyna porusza wątrobą tak, jak czyni to przepona w czasie oddychania.
      Już w styczniu 2020 roku informowaliśmy, że maszyna pozwala na utrzymanie ludzkiej wątroby przy życiu przez 7 dni, co był olbrzymim postępem. Już wówczas zauważono, że stan organów w maszynie może ulec poprawie.
      Teraz eksperci z Liver4Life dokonali kolejnego olbrzymiego postępu. Podłączyli do swojej maszyny wątrobę, która ze względu na zły stan, została zdyskwalifikowana jako organ nadający się do przeszczepu. Wątrobę leczono przez 3 dni. Tutaj warto przypomnieć, że obecnie zalecenia dla transplantologów mówią, że wątroba do przeszczepu może przebywać poza ludzkim organizmem do 12 godzin. Organy przechowuje się w lodzie lub w komercyjne dostępnych maszynach perfuzyjnych.
      Po 3 dniach stan wątroby poprawił się i zaproponowano ją jednemu z oczekujących na przeszczep pacjentów. Ten się zgodził i w maju 2021 roku otrzymał nową wątrobę. Opuścił szpital kilka dni po operacji i do dzisiaj czuje się świetnie. Jestem bardzo wdzięczny. Z powodu szybko rozrastającego się nowotworu miałem niewielką szansę na otrzymanie w odpowiednim czasie organu, komentuje pacjent.
      Nasz eksperyment dowiódł, że możliwe jest leczenie wątroby w maszynie perfuzyjnej i zwiększenie tym samym liczby organów dostępnych do przeszczepów, mówi profesor Pierre-Alain Clavien, dyrektor Wydziału Chirurgii Wewnętrznej i Transplantologii w Szpitalu Uniwersyteckim w Zurichu. A profesor Mark Tibbitt z Wydziału Inżynierii Makromolekularnej na ETH Zurich dodaje: Zastosowane przez nas multidyscyplinarne podejście do rozwiązywania złożonych problemów biomedycznych to przyszłość medycyny. Pozwoli to nam szybciej opracowywać nowe techniki leczenia.
      Teraz zespół Liver4Life planuje przeprowadzenia podobnych procedur na innych pacjentach. Chce w ten sposób wykazać, że procedura jest wiarygodna i bezpieczna. Dzięki ich pracy w przyszłości przeszczepy wątroby, które są obecnie procedurami pilnymi, wykonywanymi w miarę pojawiania się narządów, będą mogły być planowane z wyprzedzeniem. Jednocześnie specjaliści pracują nad udoskonaleniem swojej maszyny perfuzyjnej. Poszukiwane są też nowe metody leczenia wątroby poza organizmem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wątroba ma unikatowe możliwości regeneracji po uszkodzeniu. Jednak dotychczas nie było jasne, czy możliwości te nie zmniejszają się wraz z wiekiem. Doktor Olaf Bergmann z Uniwersytetu Technicznego w Dreźnie stanął na czele międzynarodowego zespołu naukowego, który miał zająć się tą kwestią. W trakcie badań naukowcy wykazali, że starzenie się nie wpływa na zdolności regeneracyjne wątroby i są one tak duże, że niezależnie od naszego wieku, wątroba przez całe życia ma średnio... 3 lata.
      Wątroba jest odpowiedzialna za oczyszczanie organizmu z toksyn. Jako że przez cały czas ma z nimi do czynienia, prawdopodobnie bez przerwy ulega uszkodzeniom. By zaradzić temu problemowi, organ ten ma unikatowe właściwości regeneracyjne. A jako że zdolności regeneracyjne całego naszego organizmu zmniejszają się wraz z wiekiem, naukowcy chcieli sprawdzić, czy to samo dotyczy wątroby.
      Zespół złożony z biologów, fizyków, matematyków i lekarzy przeanalizował wątroby wielu osób, które zmarły pomiędzy wiekiem 20 a 84 lat. Naukowcy ze zdumieniem zauważyli, że komórki wątroby wszystkich zmarłych były mniej więcej w tym samym wieku. Niezależnie od tego, czy masz 20 lat czy 84, twoja wątroba zawsze ma średnio nieco poniżej 3 lat, mówi doktor Bergmann.
      Naukowcy mówią tutaj o średnim wieku wątroby, gdyż nie wszystkie komórki są tak młode. Pewna grupa komórek może żyć nawet do 10 lat zanim się odnowi. Ta populacja zawiera więcej DNA niż inne komórki. Większość komórek w naszym organizmie zawiera 2 zestawy chromosomów. Istnieją jednak komórki, które z wiekiem akumulują więcej materiału genetycznego. W końcu zawierają one 4, 8 czy nawet więcej zestawów chromosomów.
      Gdy porównaliśmy typowe komórki wątroby z tymi, zawierającymi więcej DNA, odkryliśmy różnice w procesie ich odnowy. O ile typowe komórki odnawiają się raz w roku, komórki zawierające więcej materiału genetyczne mogą żyć nawet przez dekadę. Z wiekiem odsetek komórek bogatszych w materiał genetyczny rośnie. Sądzimy, że jest to mechanizm obronny chroniący nas przed akumulacją szkodliwych mutacji, mówi Bergmann. Uczony chciałby zbadać, czy podobny mechanizm istnieje u osób cierpiących na chroniczne choroby wątroby, które czasem prowadzą do nowotworów.
      Podczas określania wieku komórek naukowcy wykorzystali metodę radiowęglową. Jednak nie taką, jaka stosowana jest np. w archeologii, gdyż ze względu na długi czas połowicznego rozpadu nie nadaje się ona do określenia wieku komórek żywego, czy też niedawno zmarłego, organizmu. Z pomocą przyszły jednak testy broni jądrowej prowadzonej w latach 50. XX wieku. W ich wyniku do atmosfery trafiły olbrzymie ilości C14, które zostały zaabsorbowane przez organizmy żywe. W roku 1963 wprowadzono zakaz naziemnych testów broni jądrowej i od tego czasu ilość C14 w atmosferze spada. A ilość C14 w atmosferze bardzo dobrze koreluje z ilością C14 w naszych organizmach. Mimo że są to śladowe ilości, nieszkodliwe dla zdrowia, możemy je wykryć i zmierzyć w tkankach. Porównując zaś ilość radiowęgla w atmosferze i komórkach, możemy określić wiek komórek, wyjaśniają naukowcy.
      Grupa Bergmanna zajmuje się też problemem regeneracji innych organów, jak mózg i serce. Obecnie naukowcy badają, czy u osób z chronicznymi chorobami serca pojawiają się nowe komórki. Badanie procesu regeneracji komórek bezpośrednio na ludzkim organizmie jest bardzo trudne z technicznego punktu widzenia. Daje nam jednak unikatowy wgląd w komórkowe i molekularne mechanizmy regeneracji organów, podsumowuje doktor Bergmann.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu Harvarda i Emory University stworzyli pierwszą w pełni autonomiczną biohybrydową „rybę” zbudowaną z komórek ludzkiego mięśnia sercowego. Urządzenie pływa naśladując kurczenie się mięśni pracującego serca. To krok w kierunku zbudowania sztucznego serca z mięśni i stworzenia platformy do badania takich chorób, jak arytmia.
      Naszym ostatecznym celem jest zbudowanie sztucznego serca, które mogłoby zastąpić nieprawidłowo rozwinięte serce u dzieci, mówi profesor Kit Parker z Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS). Większość prac związanych ze stworzeniem tkanki mięśniowej lub serca, w tym część prac prowadzonych przez nas, skupia się na skopiowaniu pewnych funkcji anatomicznych lub uzyskaniu prostego rytmu serca w sztucznej tkance. Tutaj zaś zaczynamy inspirować się biofizyką serca, co jest znacznie trudniejsze. Za wzór nie bierzemy samej budowy serca, a biofizyczne podstawy jego funkcjonowania. To je wykorzystaliśmy jako punkt wyjścia naszej pracy.
      Naukowcy wykorzystali kardiomiocyty – komórki mięśnia sercowego odpowiadające za kurczenie się – i inspirowali się kształtem danio pręgowanego oraz ruchami, jakie wykonuje podczas pływania.
      W przeciwieństwie do innych urządzeń, ogon biohybrydy składa się z dwóch warstw komórek. Gdy te po jednej stronie się kurczą, po drugiej stronie rozciągają się. Rozciągnięci prowadzi do otwarcia kanału białkowego, który z kolei prowadzi do kurczenia się i proces się powtarza. W ten sposób powstał system napędzający „rybę” przez ponad 100 dni.
      Wykorzystując mechaniczno-elektryczne sygnały pomiędzy dwoma warstwami komórek, odtworzyliśmy cykl, w którym każdy skurcz automatycznie wywołuje reakcję w postaci rozciągania się strony przeciwnej. To pokazuje, jak ważne jest sprzężenie zwrotne w mechanizmie działania pomp mięśniowych, takich jak serce, stwierdza główny autor badań, doktor Keel Yong Lee z SEAS.
      Naukowcy zaprojektowali też autonomiczny moduł kontrolny, który na podobieństwo rozrusznika serca kontroluje częstotliwość i rytm spontanicznych ruchów komórek. Dzięki współpracy dwóch warstw komórek oraz modułu kontrolnego uzyskano ciągły, spontaniczny i skoordynowany ruch płetwy ogonowej w przód i w tył.
      Co więcej, działanie sztucznej ryby poprawia się z czasem. W ciągu pierwszego miesiąca, w miarę dojrzewania kardiomiocytów, poprawiła się amplituda ruchów, maksymalne tempo pływania oraz koordynacja mięśni. W końcu biohybryda pływała równie szybko i efektywnie jak prawdziwy danio pręgowany.
      Teraz naukowcy przymierzają się do zbudowania bardziej złożonych biohybryd z komórek ludzkiego serca. To, że potrafię zbudować z klocków model serca, nie oznacza, że potrafię zbudować serce. Można na szalce Petriego wyhodować komórki komórki nowotworowe aż utworzą tętniącą grudkę i nazwać to organoidem. Jednak nic z tego nie oddaje fizyki systemu, który w czasie naszego życia kurczy się ponad miliard razy, a jednocześnie w locie odbudowuje swoje komórki. To jest prawdziwe wyzwanie. I tam właśnie chcemy dojść, mówią uczeni.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...