Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Po 80 latach fizykom udało się stworzyć kryształ Wignera

Recommended Posts

Przez 80 lat fizycy próbowali zrealizować pomysł pioniera mechaniki kwantowej, Eugene'a Wignera, który w 1934 roku zaproponował stworzenie niezwykłego rodzaju materii – kryształu zbudowanego z elektronów. W ubiegłym miesiącu na łamach Nature poinformowano o pierwszych eksperymentalnych obserwacjach kryształów Wignera.

Pozornie może wydawać się, że zbudowanie kryształu z elektronów nie powinno być trudne. Odpychają się one od siebie, chłodzenie zmniejszyłoby ich poziom energetyczny, więc powinny tworząc odpowiedni kształt, tak jak zastyga schłodzona woda. Problem jednak w tym, że zimne elektrony podlegają zasadom mechaniki kwantowej i zachowują się jak fala. Nie zastygają w miejscu w uporządkowanej postaci, a poruszają się i zderzają ze sobą.

Zespół z Uniwersytetu Harvarda, na czele którego stał Hongkun Park, uzyskał kryształ Wignera niemal przypadkiem. Uczeni badali, jak zachowują się elektrony w bardzo cienkich warstwach półprzewodnika, oddzielonych od siebie warstwami materiału, przez który elektrony nie mogą się przedostać. Naukowcy schłodzili swój materiał poniżej -230 stopni Celsjusza i eksperymentowali z różną liczbą elektronów w każdej z warstw. W pewnym momencie zauważyli, że gdy w warstwie znajduje się określona liczba elektronów, przestają się one poruszać. Z jakiegoś powodu elektrony w półprzewodniku nie mogły się ruszyć. To nas zaskoczyło, mówi You Zhou.

Autorzy badań zwrócili się o pomoc w wyjaśnieniu tego fenomenu do teoretyków, a ci przypomnieli sobie, że Wigner obliczył, iż elektrony w cienkim dwuwymiarowym materiale powinny utworzyć trójkątny wzorzec, co uniemożliwi im poruszanie się.
W krysztale uzyskanym przez grupę Zhou siły elektrony ułożyły się w regularny krystaliczny wzór dzięki odpychaniu się zarówno w ramach jednej warstwy, jak i pomiędzy warstwami. Siła odpychania uniemożliwiła im poruszanie się. Jednak takie zachowanie elektronów miało miejsce jedynie wtedy, gdy liczba elektronów w warstwach do siebie dopasowana. Mniejsze trójkąty w jednej warstwie, musiały dokładnie wypełniać przestrzeń wewnątrz większych kryształów w innej warstwie.

Gdy naukowcy z Harvarda zdali sobie sprawę, że mają do czynienia z kryształem Wignera, doprowadzili do jego „rozpuszczenia się”, wymuszając przejście fazowe, jednak bez dodatkowego ogrzewania. Teoretycy już wcześniej opisywali warunki konieczne do zaistnienia takiego przejścia. Teraz udało się je uzyskać. To naprawdę ekscytujące, obserwować w praktyce to, o czym czytaliśmy w podręcznikach, mówi Park.

Naukowcy oświetlali warstwy półprzewodnika laserem, co doprowadziło do powstania ekscytonu. Następnie materiał albo odbijał albo emitował światło. Analiza tego światła pozwalała stwierdzić, czy ekscytony wchodziły w interakcje ze zwykłymi swobodnymi elektronami czy też elektronami zamrożonymi w kryształ Wignera. Zdobyliśmy bezpośrednie dowody na istnienie kryształu Wignera o trójkątnej strukturze, mówi Park.

Zespół z Uniwersytetu Harvarda chce wykorzystać swoje osiągnięcie do badań kryształów Wignera i silnie skorelowanych elektronów. Chcą m.in. odpowiedzieć na pytanie, co się dzieje, gdy kryształ Wignera rozpuszcza się. Ponadto już teraz udało im się zaobserwować kryształ w wyższych temperaturach i z większą liczbą elektronów, niż przewidywali to teoretycy. Zbadanie, dlaczego tak się stało może dać wiele odpowiedzi na pytania o zachowania silnie skorelowanych elektronów.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Intel ogłosił, że wybuduje w Polsce supernowoczesny zakład integracji i testowania półprzewodników. Stanie on w Miękini pod Wrocławiem, a koncern ma zamiar zainwestować w jego stworzenie do 4,6 miliarda dolarów. Inwestycja w Polsce to część obecnych i przyszłych planów Intela dotyczących Europy. Firma ma już fabrykę półprzewodników w Leixlip w Irlandii i planuje budowę drugiej w Magdeburgu w Niemczech. W sumie Intel chce zainwestować 33 miliardy euro w fabrykę w Niemczech, zakład badawczo-rozwojowo-projektowy we Francji oraz podobne przedsięwzięcia we Włoszech, Hiszpanii i Polsce.
      Zakład w Polsce ma rozpocząć pracę w 2027 roku. Zatrudnienie znajdzie w nim około 2000 osób, jednak inwestycja pomyślana została tak, by w razie potrzeby można było ją rozbudować. Koncern już przystąpił do realizacji fazy projektowania i planowania budowy, na jej rozpoczęcie będzie musiała wyrazić zgodę Unia Europejska.
      Intel już działa w Polsce i kraj ten jest dobrze przygotowany do współpracy z naszymi fabrykami w Irlandii i Niemczech. To jednocześnie kraj bardzo konkurencyjny pod względem kosztów, w którym istnieje solidna baza utalentowanych pracowników, stwierdził dyrektor wykonawczy Intela, Pat Gelsinger. Przedstawiciele koncernu stwierdzili, że Polskę wybrali między innymi ze względu na istniejącą infrastrukturę, odpowiednio przygotowaną siłę roboczą oraz świetne warunki do prowadzenia biznesu.
      Zakład w Miękini będzie ściśle współpracował z fabryką w Irlandii i planowaną fabryką w Niemczech. Będą do niego trafiały plastry krzemowe z naniesionymi elementami elektronicznymi układów scalonych. W polskim zakładzie będą one cięte na pojedyncze układy scalone, składane w gotowe chipy oraz testowane pod kątem wydajności i jakości. Stąd też będą trafiały do odbiorców. Przedsiębiorstwo będzie też w stanie pracować z indywidualnymi chipami otrzymanymi od zleceniodawcy i składać je w końcowy produkt. Będzie mogło pracować z plastrami i chipami Intela, Intel Foundry Services i innych fabryk.
      Intel nie ujawnił, jaką kwotę wsparcia z publicznych pieniędzy otrzyma od polskiego rządu. Wiemy na przykład, że koncern wciąż prowadzi negocjacje z rządem w Berlinie w sprawie dotacji do budowy fabryki w Magdeburgu. Ma być ona warta 17 miliardów euro, a Intel początkowo negocjował kwotę 6,8 miliarda euro wsparcia, ostatnio zaś niemieckie media doniosły, że firma jest bliska podpisania z Berlinem porozumienia o 9,9 miliardach euro dofinansowania. Pat Gelsinger przyznał, że Polska miała nieco więcej chęci na inwestycję Intela niż inne kraje.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy udało się zmierzyć spin elektronu w materiale. Osiągnięcie uczonych z Uniwersytetów w Bolonii, Wenecji, Mediolanie, Würzburgu oraz University of St. Andrews, Boston College i University of Santa Barbara może zrewolucjonizować sposób badania i wykorzystania kwantowych materiałów w takich dziedzinach jak biomedycyna, energia odnawialna czy komputery kwantowe. Pomiar spinu w kontekście topologii materiału, w którym był mierzony, był możliwy dzięki wykorzystaniu promieniowania synchrotronowego oraz nowoczesnym technikom modelowania zachowania materii.
      Profesor Domenico di Sante z Uniwersytetu w Bolonii wyjaśnia: Na zachowanie elektronów w materiałach mają wpływ pewne właściwości kwantowe, determinujące ich spin w materiale, w którym się znajdują. Tak jak na tor ruchu światła we wszechświecie ma wpływ obecność gwiazd, ciemnej materii czy czarnych dziur, które zaginają czasoprzestrzeń.
      Właściwości elektronu znamy od dawna, jednak dotychczas nikt nie bezpośrednio nie zmierzył „topologicznego spinu” elektronu. Uczeni z Włoch, Niemiec, Wielkiej Brytanii i USA wykorzystali efekt znany jako dichroizm kołowy. Zjawisko to polega na różnej absorpcji przez substancje światła spolaryzowanego kołowo prawo- i lewoskrętnie. W swoich badaniach skupili się na metalach kagome. To materiały, w których atomy tworzą – znany z tradycyjnego japońskiego koszykarstwa kagome – wzór składający się z sieci trójkątów o wspólnych wierzchołkach. Ta nietypowa geometria atomów powoduje, że elektrony zachowują się w takim materiale w sposób nietypowy, co pozwala badać niezwykłe zjawiska kwantowe. Metale kagome służą m.in. do badań nad nadprzewodnictwem wysokotemperaturowym. Pierwsze eksperymenty z nimi przeprowadzono w USA w 2018 roku.
      Teraz dwuwarstwowe metale kagome XV6Sn6 – gdzie X oznacza pierwiastek ziem rzadkich, tutaj były to terb, skand i holm – posłużyły do badania topologicznego spinu elektronu. Było to możliwe dzięki połączeniu eksperymentu z analizą teoretyczną. Teoretycy przeprowadzili najpierw złożone symulacje kwantowe na potężnych superkomputerach i poinstruowali eksperymentatorów, w którym miejscu materiału powinni mierzyć dichroizm kołowy, wyjaśnia Di Sante.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcom po raz pierwszy udało się zaprezentować przełącznik wykonany z pojedynczej molekuły fullerenu. Dzięki precyzyjnie dostrojonemu laserowi międzynarodowy zespół uczonych był w stanie wykorzystać molekułę fullerenu do zmiany drogi elektronu w przewidywalny sposób. Przełącznik, w zależności od impulsów lasera, działał od 3 do 6 rzędów wielkości szybciej niż przełączniki wykorzystywane obecnie w układach scalonych.
      Dzięki fullerenom mogą zatem powstać komputery znacznie szybsze niż to, co można osiągnąć za pomocą współczesnej elektroniki. Można je będzie wykorzystać też do obrazowania medycznego o niedostępnej obecnie rozdzielczości.
      Wiele dziesięcioleci temu fizycy odkryli, że w obecności pól elektrycznych oraz światła molekuły emitują elektrony. Współautor najnowszych badań, Hirofumi Yanagisawa w Uniwersytetu Tokijskiego wraz z zespołem, najpierw stworzył hipotezę dotyczącej emisji elektronów przez wzbudzone fullereny w zależności od rodzaju wzbudzającego je impulsu laserowego. Następnie międzynarodowa grupa naukowa dowiodła jej słuszności.
      Za pomocą krótkiego impulsu czerwonego lasera uzyskaliśmy kontrolę nad sposobem kierowania przez molekułę nadchodzącego elektronu. W zależności od impulsu, elektron może pozostać na swoim kursie, lub też zmienić trasę w przewidywalny sposób. [...] Sądzimy, że możemy osiągnąć tutaj milion razy krótszy czas przełączania niż za pomocą klasycznego tranzystora. To zaś może przełożyć się na zwiększenie wydajności komputerów. Jednak równie ważne byłoby dostrojenia lasera tak, by molekuła fullerenu mogła działać jednocześnie jak wiele przełączników. Uzyskalibyśmy w ten sposób odpowiednik wielu tranzystorów w pojedynczej molekule. To zwiększyłoby złożoność systemu bez zwiększania jego fizycznych rozmiarów, wyjaśnia Yanagisawa.
      Fullereny to cząsteczki składające się z parzystej liczby atomów węgla, tworzące zamkniętą, pustą w środku bryłę. O ich potencjalnym zastosowaniu w informatyce pisaliśmy już przed 15 laty. Jak się okazuje, możliwe jest precyzyjne manipulowanie orientacją fullerenów za pomocą precyzyjnych ultrakrótkich impulsów laserowych, decydując w ten sposób, jak dojdzie do emisji elektronu. To technika podobna do tego, jak w mikroskopii fotoelektronów (PEEM) uzyskuje się obrazy. Jednak rozdzielczość PEEM sięga maksymalnie około 10 nanometrów, czyli 10 miliardowych części metra. Fullerenowy przełącznik pozwoliłby na osiągnięcie rozdzielczości około 300 pikometrów, czyli 300 bilionowych części metra, dodaje Yanagisawa.
      Autorzy badań dodają, że jeśli udałoby się spowodować, by pojedyncza molekuła fullerenu działała jak wiele przełączników jednocześnie, to niewielka sieć takich molekuł przeprowadzałaby obliczenia znacznie szybciej niż dzisiejsze procesory. Jednak do pokonania jest wiele przeszkód, jak np. odpowiednie zminiaturyzowanie laserów. Tak czy inaczej mogą minąć lata, zanim fullerenowe przełączniki trafią do układów scalonych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Krzem, jeden z najbardziej rozpowszechnionych pierwiastków na Ziemi, stanowi podstawę nowoczesnego świata. Bez niego nie mielibyśmy ani paneli fotowoltaicznych ani układów scalonych. Jednak właściwości krzemu jako półprzewodnika są dalekie od ideału. Elektrony w krzemie mogą przemieszczać się z dużymi prędkościami, ale tego samego nie można już powiedzieć o dziurach, towarzyszkach elektronów. Ponadto krzem słabo przewodzi ciepło, przez co konieczne jest stosowanie kosztownych systemów chłodzenia.
      Badacze z MIT, Uniwersytetu w Houston i innych instytucji wykazali właśnie, że krystaliczny sześcienny arsenek boru jest pozbawiony tych wad. Zapewnia dużą mobilność elektronom i dziurom oraz charakteryzuje się świetnym przewodnictwem cieplnym. Badacze twierdzą, że to najlepszy ze znanych nam półprzewodników, a może i najlepszy z możliwych półprzewodników.
      Dotychczas jednak arsenek boru był wytwarzany i testowany w niewielkich ilościach wytwarzanych na potrzeby badań naukowych. Takie próbki były niejednorodne. Opracowanie metod ekonomicznej produkcji tego związku na skalę przemysłową będzie wymagało dużo pracy.
      Już w 2018 roku David Broido, który jest współautorem najnowszych badań, teoretycznie przewidział, że arsenek boru powinien charakteryzować się świetnym przewodnictwem cieplnym. Później przewidywania te zostały dowiedzione eksperymentalnie. Wykazano m.in., że chłodzi on układy scalone lepiej niż diament. Okazało się równie, że materiał ten ma bardzo dobre pasmo wzbronione, którego istnienie jest niezbędną cechą półprzewodnika. Obecne badania dodały zaś do tego obrazu możliwość szybkiego transportu elektronów i dziur, zatem arsenek boru wydaje się mieć wszystkie cechy półprzewodnika idealnego.
      To bardzo ważna cecha, gdyż w półprzewodnikach mamy jednocześnie ładunki dodatnie i ujemne. Jeśli więc budujemy z nich urządzenie elektroniczne, chcemy, by zarówno elektrony jak i dziury napotykały jak najmniejszy opór, mówi profesor Gang Chen z MIT.
      Krzem i inne półprzewodniki, jak np. używany do budowy laserów arsenek galu, charakteryzuje się dobrą mobilnością elektronów, ale nie dziur. Poważnym problemem jest też rozpraszanie ciepła. Ciepło to poważny problem w elektronice. W samochodach elektrycznych stosuje się z tego powodu węglik krzemu. Ma on co prawda mniejszą mobilność elektronów niż krzem, ale za to jego przewodnictwo cieplne jest 3-krotnie lepsze. Wyobraźmy sobie więc, co moglibyśmy osiągnąć stosując arsenek boru, który ma 10-krotnie lepsze przewodnictwo cieplne i większość mobilność dziur oraz elektronów niż krzem. To by wszystko zmieniło, dodaje doktor Jungwoo Shin z MIT.
      Wyzwaniem jest obecnie opracowanie metod produkcji arsenku boru w ilościach, które można by praktycznie wykorzystać. Obecne metody produkcyjne pozwalają na uzyskanie bardzo niejednorodnego materiału, z którego naukowcy wydzielają niewielkie jak najbardziej jednorodne fragmenty, by badać je w laboratoriach.
      Wiele wskazuje na to, że arsenek boru jest półprzewodnikiem (niemal) idealnym, ale nie wiemy, czy będziemy w stanie go wykorzystać, dodaje Chen. Krzem stanowi podstawę całego przemysłu półprzewodnikowego, zatem od opracowania metod masowej produkcji jednorodnego arsenku boru zależy, czy trafi on pod strzechy. Badania nad krzemem trwały całe dziesięciolecia, zanim dowiedzieliśmy się, jak uzyskiwać ten materiał o czystości dochodzącej do 99,99999999%. Arsenek boru ma jeszcze przed nami wiele tajemnic. Zanim wyprodukujemy z niego elektronikę musimy np. poznać jego długookresową stabilność.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Hybryda materii i antymaterii – atom helu, w którym elektron zastąpiono antyprotonem – wykazuje niespodziewaną reakcję na światło lasera, gdy zostaje zanurzony w nadciekłym helu, informują naukowcy z projektu ASACUSA na CERN. Uczeni zauważają, że ich odkrycie może stać się podstawą dla rozpoczęcia różnego rodzaju badań.
      Nasze eksperymenty sugerują, że hybrydowe atomy helu składające się z materii i antymaterii mogą zostać użyte do eksperymentów spoza fizyki cząstek, szczególnie zaś w badaniach fizyki materii skondensowanej, a może nawet w eksperymentach astrofizycznych, mówi rzecznik prasowy ASACUSA, Masaki Hori. Prawdopodobnie wykonaliśmy pierwszy krok w kierunku wykorzystania antyprotonów w badaniach materii skondensowanej.
      Naukowcy pracujący przy projekcie ASACUSA wykorzystują hybrydowe atomy helu do badania masy antyprotonu i porównywania jej z masą protonu. W takich hybrydowych atomach wokół jądra krąży antyproton i elektron, zamiast dwóch elektronów, wchodzących w skład zwykłego atomu helu. Atomy te uzyskuje się wprowadzając antyprotony do schłodzonego gazowego helu o niskiej gęstości.
      Dzięki niskiej temperaturze oraz gęstości możliwe jest łatwiejsze badanie reakcji hybrydowych atomów na światło lasera. Przy bardziej gęstym gazie i wyższych temperaturach linie spektralne przejścia antyprotonu lub elektronu pomiędzy poziomami energetycznymi są zbyt szerokie, przez co ich badanie jest bardzo trudne lub niemożliwe. A w ten właśnie sposób naukowcy próbują określić stosunek masy antyprotonu do elektronu.
      Dlatego też uczeni byli zaskoczeni, gdy okazało się, że w ciekłym helu, który ma znacznie większą gęstość niż hel w stanie gazowym, doszło do spadku szerokości linii spektralnych antyprotonu. Co więcej, gdy obniżyli temperaturę ciekłego helu do poziomu, poniżej której stał się on nadciekły, okazało się, że linie spektralne uległy dalszemu gwałtownemu zwężeniu.
      To było niespodziewane. Badana w paśmie optycznym reakcja hybrydowego atomu helu w nadciekłym helu jest wyraźnie różna od reakcji tego samego hybrydowego atomu w gazowym helu o wysokiej gęstości, mówi Anna Sótér ze Politechniki Federalnej w Zurichu (ETH Zurich).
      Uczeni sądzą, że zaskakujące zachowanie jest powiązane z promieniem orbitali, czyli odległością pomiędzy jądrem atomu a elektronami. W przeciwieństwie do wielu standardowych atomów, promień orbitali w hybrydowym atomie ulega jedynie niewielkim zmianom pod wpływem światła lasera. Dzięki temu laser nie wpływa na linie spektralne, nawet gdy atom jest zanurzony w ciekłym helu. To jednak, jak podkreślają autorzy badań, jedynie hipoteza, którą trzeba zweryfikować.
      Zaskakujące odkrycie niesie ze sobą liczne konsekwencje. Po pierwsze daje nadzieję na stworzenie innych hybrydowych atomów helu, jak np. pionowe (od cząstki pion) atomy helu zbudowane z różnych cząstek antymaterii i cząstek egzotycznych. Posłużyły by one do bardziej szczegółowych pomiarów masy cząstek. Po drugie, znaczące zwężenie linii spektralnych w nadciekłym helu sugeruje, że hybrydowe atomy helu mogą zostać użyte do badania materii nadciekłej i innych skondensowanych faz materii. W końcu zaś, tak wąskie linie spektralne mogą zostać wykorzystane do poszukiwania antyprotonów i antydeuteronów pochodzących z przestrzeni kosmicznej. Badania takie można by prowadzić na orbicie okołoziemskiej lub w laboratoriach umieszczonych w balonach latających na dużych wysokościach. Jednak zanim się one rozpoczną, konieczne będzie pokonanie licznych przeszkód technicznych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...