Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W Afryce Zachodniej pojawił się niezwykle śmiercionośny wirus Marburg

Rekomendowane odpowiedzi

Władze Gwinei poinformowały o pierwszym w Afryce Zachodniej przypadku infekcji wirusem Marburg. To kolejny już poważny problem w kraju, w którym przed dwoma miesiącami doszło do lokalnej epidemii Eboli, a który zmaga się z trzecią falą zachorowań na COVID-19.

Ministerstwo Zdrowia Gwinei poinofmrowało, że 25 lipca do szpitala w prefekturze Gueckedou przyjęto pacjenta z pogarszającymi się objawami – gorączką, bólem głowy, zmęczeniem, bólem brzucha i krwawieniem z dziąseł. Pacjent zmarł 2 sierpnia. Badania próbek zarówno na miejscu, jak i w gwinejskim laboratorium narodowym wykazały obecność niezwykle groźnego wirusa Marburg. Wyniki potwierdził Instytut Pasteura w Senegalu.

Marburg to wysoce zakaźny wirus powodujący gorączkę krwotoczną. Należy do dej samej rodziny co Ebola. Do ostatniej znanej epidemii doszło w 2017 roku w Ugandzie. Zarażeniu uległy trzy osoby i wszystkie trzy zmarły. Największa udokumentowana epidemia wywołana przez Marburg miała zaś miejsce w 2005 roku w Angoli. Infekcji uległy wówczas 374 osoby, z czego zmarło 329. Jak więc widać, Marburg jest niezwykle śmiercionośnym patogenem. Nie ma na niego żadnego lekarstwa, a jedynym sposobem leczenia jest dbanie o dobre nawodnienie pacjenta i leczenie konkretnych objawów.

Rząd Gwinei poinformował, że szybko prześledził kontakty chorego i ostrzegł lokalną społeczność. WHO ma na miejscu zespół specjalistów, ostrzeżono sąsiadujące kraje i zwiększono kontrole na granicach.

Na razie brak doniesień o kolejnych infekcjach Marburgiem. Gwinea ma duże doświadczenie w walce z Ebolą, która rozprzestrzenia się podobnie jak Marburg. Dlatego też eksperci wierzą, że epidemię uda się zdusić w zarodku. Mechanizmy kontrolne stosowane przez Gwineę i sąsiadujące kraje podczas walki z Ebolą są kluczowym elementem do powstrzymania Marburga, oświadczyło WHO.

Wirus Marburg został po raz pierwszy wykryty w 1967 roku, gdy jednocześnie wywołał zachorowania w Marburgu i Frankfurcie w Niemczech oraz w Belgradzie w Jugosławii. Przypadki zachorowań były powiązane z pracami laboratoryjnymi, podczas których wykorzystywano kotawce zielonosiwe z Ugandy. Od tamtej pory choroba pojawiła się w USA, Angoli, Demokratycznej Republice Konga, RPA i Ugandzie. W 2008 roku doszło do dwóch zachorowań wśród osób, które odwiedziły w Ugandzie jaskinie zamieszkane przez nietoperze. Teraz, po raz pierwszy, choroba dotarła do Afryki Zachodniej.

Rezerwuarami wirusa są nietoperze z rodziny rudawkowatych z plemienia Rousettini. Wiadomo, że Marburg rozprzestrzenia się za pomocą płynów ustrojowych (krew, ślina) w wyniku bezpośrednich kontaktów lub zanieczyszczenia powierzchni tymi płynami.

Okres inkubacji wirusa wynosi 2-21 dni. Zabija on do 88% zarażonych.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Amerykański Narodowy Instytut Alergii i Chorób Zakaźnych (NIAID) poinformował o pozytywnych wynikach I fazy testów klinicznych pierwszej szczepionki przeciwko wirusowi Marburg (MARV). To należący do tej samej rodziny co Ebola wirus powodujący gorączki krwotoczne. Marburg jest jednak znacznie bardziej śmiercionośny. Średnia odsetek zgonów u zarażonych tym wirusem wynosi 88%, podczas gdy w przypadku Eboli jest to około 50%.
      Wirus Marburg został po raz pierwszy zidentyfikowany po tym, jak choroba pojawiła się w 1967 roku jednocześnie w Marburgu i Frankfurcie w Niemczech oraz w Belgradzie w Jugosławii. Zachorowania powiązano wówczas z eksperymentami na kotawcach zielonosiwych sprowadzonych z Ugandy. Od tamtego czasu notowano sporadyczne przypadki zachorowań w Afryce.
      W sierpniu 2021 poinformowano o pierwszym w Afryce Zachodniej przypadku infekcji wirusem Marburg. Rezerwuarami tego wirusa są nietoperze z rodziny rudawkowatych z plemienia Rousettini. Infekcje pomiędzy ludźmi rozprzestrzeniają się za pomocą płynów ustrojowych, zarówno w bezpośrednim kontakcie, jak i pozostawionych na powierzchniach. Okres jego inkubacji wynosi od 2 do 21 dni. Największa udokumentowana epidemia wywołana przez Marburg miała miejsce w 2005 roku w Angoli. Zaraziły się wówczas 374 osoby, zmarło 329 z nich. Nie znamy żadnego lekarstwa przeciwko temu patogenowi. Dlatego tak ważne jest opracowanie szczepionki.
      Eksperymentalna szczepionka o nazwie cAd3-Marburg powstała w należącym do NIAID Centrum Badań nad Szczepionkami. Wykorzystuje ona szympansi adenowirus cAd3, który został zmodyfikowany tak, że nie może się replikować czy zarażać komórek. Na powierzchni adenowirusa prezentowana jest taka sama glikoproteina, jak znajdująca się na powierzchni wirusa MARV. Platforma wykorzystująca cAd3 dowiodła już swojego bezpieczeństwa podczas wcześniejszych badań nad szczepionkami na Ebolę i wirus Sudan.
      Pierwsze testy kliniczne cAd3-Marburg zostały przeprowadzone w Walter Reed Army Institute of Research Clinical Trials Center. Wzięli w nich udział 40 zdrowych ochotników w wieku 18–50 lat. Celem testu było sprawdzenie bezpieczeństwa szczepionki. Najpierw trzem ochotnikom podano niską dawkę szczepionki. Gdy po 7 dniach u żadnego z nich nie pojawiły się żadne poważne reakcje, niską dawkę szczepionki podano kolejnym 17 osobom. Identyczną procedurę zastosowano w grupie, która otrzymała wyższą dawkę.
      Ochotnicy przez 48 tygodni byli monitorowani zarówno pod kątem wystąpienia działań niepożądanych, jak i pod kątem reakcji ich układu odpornościowego. Wyniki testów bezpieczeństwa wypadły bardzo zachęcająco. U nikogo nie pojawiły się poważne skutki uboczne. Jedna z osób, która przyjęła wyższą dawkę, zaczęła gorączkować, ale gorączka minęła następnego dnia. Wydaje się też, że szczepionka wywołuje silną długotrwałą reakcję immunologiczną. Pojawiła się ona u 95% uczestników, a u 70% z nich była obecna po ponad 48 tygodniach od zaszczepienia.
      Obecnie planowane jest dalsze prowadzenie testów klinicznych w USA, Ghanie, Kenii i Ugandzie. Jeśli i one wypadną pomyślnie, być może cAd3-Marburg będzie stosowana w celu zabezpieczenia ludzi na obszarach, na których doszło do epidemii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Badania uczonych z The Australian National University mogą doprowadzić do pojawienia się lepszych metod walki z rzadkimi, ale niezwykle śmiertelnymi infekcjami bakteryjnymi. Mowa o bakteriach powodujących gangrenę, sepsę czy tężec. Na szczęście ta grupa bakterii rzadko powoduje infekcje. W USA jest mniej niż 1000 takich przypadków rocznie. My skupiliśmy się bakterii Clostridium septicum, która w ciągu 2 dni zabija 80% zakażonych. Jest niezwykle śmiercionośna, mówi profesor Si Ming Man.
      Australijczycy odkryli, że Clostridium septicum bardzo szybko zabija komórki naszego organizmu, gdyż uwalnia toksynę działającą jak młotek. Toksyna ta wybija dziury w komórkach. To, oczywiście, wzbudza alarm w naszym układzie odpornościowym. Jednak gdy ten przystępuje do działania, może wyrządzić więcej szkód niż korzyści. Układ odpornościowych ma dobre zamiary, próbuje zwalczać bakterię. Problem jednak w tym, że w tym procesie zarażone komórki dosłownie eksplodują i umierają. Gdy bakteria mocno się rozprzestrzeni i w całym ciele mamy wiele umierających komórek, dochodzi do sepsy i wstrząsu. Dlatego pacjenci bardzo szybko umierają, mówi uczony.
      Obecnie mamy niewiele sposób leczenia w takich przypadkach. Jednak analizy Mana i jego zespołu dają nadzieję, że opcji tych będzie więcej. Nasze badania pokazały, że możemy rozpocząć prace nad nowymi terapiami, na przykład nad wykorzystaniem leków do neutralizacji toksyny. Wykazaliśmy też, że już w tej chwili w testach klinicznych znajdują się leki, które mogą zablokować kluczowy, odpowiedzialny za rozpoznanie toksyny, receptor układu immunologicznego. Takie leki uniemożliwiłyby układowi odpornościowemu zbyt gwałtowną reakcję na toksynę. Łącząc tego typu leki moglibyśmy opracować terapię ratującą życie, dodaje Man.
      Dodatkową korzyść odniósłby przemysł, gdyż ta sama bakteria zabija owce i krowy, nowe leki można by więc stosować też w weterynarii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Połączenie łagodnej infekcji i szczepionki wydaje się najbardziej efektywnym czynnikiem chroniącym przed COVID-19, informują naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA). Główny wniosek z naszych badań jest taki, że jeśli ktoś zachorował na COVID, a następnie został zaszczepiony, to nie tylko znacząco zwiększa się u niego liczba przeciwciał, ale rośnie ich jakość. To zaś zwiększa szanse, że przeciwciała te poradzą sobie z kolejnymi odmianami koronawirusa, mówi profesor Otto Yang z wydziałul chorób zakaźnych, mikrobiologii, immunologii i genetyki molekularnej.
      Wydaje się, że kolejne wystawienia układu odpornościowego na kontakt z białkiem kolca (białkiem S) pozwala układowi odpornościowemu na udoskonalanie przeciwciał u osoby, która chorowała na COVID-19. Uczony dodaje, że nie jest pewne, czy takie same korzyści odnoszą osoby, które przyjmują kolejne dawki szczepionki, ale nie chorowały.
      Grupa Yanga porównała przeciwciała 15 osób, które były zaszczepione, ale nie zetknęły się wcześniej z wirusem SARS-CoV-2 z przeciwciałami 10 osób, które nie były jeszcze zaszczepione, ale niedawno zaraziły się koronawirusem. Kilkanaście miesięcy później 10 wspomnianych osób z drugiej grupy było w pełni zaszczepionych i naukowcy ponownie zbadali ich przeciwciała.
      Uczeni sprawdzili, jak przeciwciała reagują na białko S różnych mutacji wirusa. Odkryli, że zarówno w przypadku osób zaszczepionych, które nie chorowały oraz tych, które chorowały, ale nie były szczepione, możliwości zwalczania wirusa przez przeciwciała spadały w podobnym stopniu gdy pojawiła się nowa mutacja. Jednak gdy osoby, które wcześniej chorowały na COVID-19, były rok po chorobie już w pełni zaszczepione, ich przeciwciała były zdolne do rozpoznania wszystkich mutacji koronawirusa, na których je testowano.
      Nie można wykluczyć, że odporność SARS-CoV-2 na działanie przeciwciał może zostać przełamana poprzez ich dalsze dojrzewanie w wyniki powtarzanej wskutek szczepienia ekspozycji na antygen, nawet jeśli sama szczepionka nie jest skierowana przeciwko danemu wariantowi, stwierdzają naukowcy. Przypuszczają oni, że kolejne szczepienia mogą działać podobnie jak szczepienia po przechorowaniu, jednak jest to tylko przypuszczenie, które wymagają weryfikacji.
      Ze szczegółami badań można zapoznać się w artykule Previous Infection Combined with Vaccination Produces Neutralizing Antibodies with Potency against SARS-CoV-2 Variants.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Białka z rodziny inkorporatorów seryny (SERINC) są znane ze swojego działania jako inhibitory retrowirusów takich jak HIV. Szczególnie silnym inhibitorem jest SERINC5, które potrafi wniknąć do wnętrza wirusa HIV i obniżyć jego zdolność do infekowania komórek, a dodatkowo zwiększa jego podatność na działanie przeciwciał. Teraz odkryto, że białka SERINC są też skuteczne przeciwko wirusom Ebola i Zika. Obecnie naukowcy sprawdzają, jak sprawują się one w walce z SARS-CoV-2.
      Naukowcy z Ohio State University zauważyli podczas laboratoryjnych badań na kulturach komórkowych, że aktywność sygnałowa protein SERINC pomogła chronić komórki przed zarażeniem HIV, Ziką i Ebolą.
      Profesor wirusologii Shan-Lu Liu podkreśla, że jedną rzeczą jest opisane już wyżej działanie SERINC5 polegające na wniknięcie do wirusa, ale zupełnie czym innym jest obecne odkrycie, iż białko to wpływa wzmacniająco na antywirusowy szlak sygnałowy.
      Wirusy mogą wytworzyć sposoby ochrony przed bezpośrednio działającymi na nie niekorzystnymi czynnikami. Jeśli jednak ta proteina jest w stanie wpływać na kluczowy szlak sygnałowy, bez bezpośredniego wpływania na wirusa, to wirus ma ograniczone możliwości obrony przed takim działaniem, wyjaśnia Liu, który jest też dyrektorem w Centrum Badań nad Retrowirusami Ohio State University. Jeśli te molekuły będą w ten sposób działały u ludzi i zwierząt, to możemy zacząć myśleć o opracowaniu bardzo szerokiej terapii antywirusowej.
      Profesor Liu i jego zespół od lat badają wyścig ewolucyjny, jaki odbywa się pomiędzy wirusem HIV a ludzkim układem odpornościowym. W 2019 roku opisali oni w jaki sposób proteina Nef wirusa HIV pozbywa się z wirusa białek SERINC, by zapewnić wirusowi lepszą możliwość zarażania.
      Teraz uczeni bliżej przyjrzeli się, jak działa SERINC5 podczas kolejnych etapów infekcji HIV. Odkryli, że proteina ta nie tylko wzmacnia sygnały prowadzące do produkcji zwalczających patogeny interferonów typu 1, ale również działa podobnie na sygnały NF-kB, kompleksu białkowego odgrywającego kluczową rolę w reakcji na infekcję.
      SERINC5 nie moduluje wspomnianych sygnałów samodzielnie. Łączy siły z proteinami MAVS i TRAF6. Jednak profesor Liu przyznaje, że jeszcze nie do końca rozumie sposób działania SERINC5.
      Podczas badań laboratoryjnych naukowcy zauważyli, że gdy w kulturach komórkowych zostaje zainicjowana infekcja wirusowa, SERINC5 przenosi się z powierzchni komórki w pobliże mitochondrium, pozostając zaraz za otaczającą je błoną. Tam wraz z MAVS i TRAF6 tworzy jeden duży kompleks. Agregacja tych protein wskazuje, że potrzebują się nawzajem i to jest bardzo ekscytujące odkrycie. Tak wielki kompleks może bowiem przyłączać kolejne molekuły, zwiększając siłę swojego oddziaływania, cieszy się Liu.
      Molekuły te należą do części całego zestawu sygnałów, które prowadzą do pojawiania się interferonów typu I i NF-kB, kluczowych elementów w walce z infekcją wirusową na jej wczesnym etapie. Eksperymenty wykazały, że taki mechanizm działania SERINC5 oraz MAVS i TRAF6 znacznie ogranicza możliwości wirusów HIV, Zika i Ebola. Gdy zaś naukowcy zmodyfikowali komórki tak, by nie wytwarzały proteiny SERINC5, wirusy nie tylko z łatwością je zarażały, ale też łatwiej się w nich replikowały. To pokazuje, jak ważne jest białko SERINC5 oraz sugeruje, że może ono działać na szerokie spektrum wirusów.
      Naukowcy prowadzili swoje badania na proteinach SERINC5 i SERINC3, jednak nie można wykluczyć, że inne białka z tej rodziny działają podobnie. Autorzy badań mówią, że wiele muszą się jeszcze nauczyć. Chcieliby np. wiedzieć, co powoduje, że SERINC5 przenosi się z powierzchni komórki w pobliże mitochondrium oraz jaka jest rola tego białka, gdy nie ma infekcji wirusowej.
      Uczeni sądzą też, że SERINC5 może pomóc w walce z COVID-19. Myślę, że proteiny SERINC powinny blokować działanie SARS-CoV-2, gdyż wiemy, że interferony typu I odgrywają ważną rolę w kontrolowaniu infekcji tym wirusem na wczesnych jej etapach, a ta molekuła wzmacnia sygnały prowadzące do produkcji interferonów typu I. Odkrycie proteiny, która może wpływać na kluczowy szlak sygnałowy podczas infekcji tak różnymi wirusami daje podstawy, by wierzyć, że może ona mieć szerokie działanie antywirusowe, mówi Liu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uczeni z Yale University opisali, w jaki sposób białko APOL3 czyści organizm z bakterii. Podczas badań z wykorzystaniem m.in. salmonelli, wykazali, że białko rozpuszcza błonę komórkową bakterii. Już wcześniej było wiadomo, że komórki bronią się przed bakteriami atakując ich błony, jednak tutaj mamy do czynienia z pierwszym opisem antybakteryjnego działania podobnego do działania detergentu.
      To przykład, jak ludzki organizm produkuje własne antybiotyki w formie białka działającego jak detergent. Możemy się od niego uczyć, mówi główny autor badań, immunolog doktor John MacMicking.
      Jedną z linii obrony naszego organizmu są wyspecjalizowane komórki układu odpornościowego. Jednak w ciągłym wyścigu pomiędzy nimi, a patogenami, niejednokrotnie dochodzi do sytuacji, w której patogen przedrze się przez pozakomórkowe linie obrony i wniknie do komórki, gdzie może się namnażać. Dlatego też w drodze ewolucji pojawiły się wewnątrzkomórkowe mechanizmy obronne.
      U kręgowców mechanizmy te są uruchamiane przez interferon gamma (IFN-γ), który reguluje transkrypcję setek genów pomagających w walce z bakteriami, wirusami czy grzybami w wielu typach komórek. Wciąż jednak niewiele wiemy o białkach, których działanie jest zapoczątkowywane przez IFN-γ.
      Na potrzeby badań naukowcy zainfekowali ludzie komórki salmonellą. Poszukiwaliśmy nowych genów stymulowanych interferonem, wykorzystując przy tym bakterię salmonelli jako modelu infekcji, wyjaśniają badacze.
      Salmonella, podobnie jak inne bakterie gram-ujemne, posiada dwie błony komórkowe, co czyni ją szczególnie trudną do zabicia. Szczegółowo analizując reakcję komórki na obecność bakterii, uczeni wykorzystali technologię CRISPR-Cas9 do przeanalizowania ponad 19 000 genów i odkryli, że to białko APOL3 (apolipoprotein L3), kodowane przez gen APOL3, niszczy wewnętrzną błonę komórkową salmonelli. Ma przy tym pomocnika w postaci molekuły GBP1 i, prawdopodobnie, innych molekuł. Dzięki mikroskopii o wysokiej rozdzielczości naukowcy zauważyli, że GBP1 niszczy zewnętrzną błonę komórkową, dzięki czemu APOL3 może dostać się do wnętrza bakterii i zniszczyć błonę wewnętrzną, co zabija salmonellę.
      Okazało się przy tym, że APOL3 działa podobnie jak detergent. Ma bowiem elementy, które przyczepiają się do molekuł wody oraz inne, które łączą się z molekułami tłuszczów. Dzięki temu fragment po fragmencie usuwa lipidową błonę otaczającą bakterię.
      Widzimy tutaj efekt synergii pomiędzy APOL3 a innymi genami, które łączą siły i wspólnie przeprowadzają atak na podwójne błony komórkowe bakterii gram ujemnych. Błony te stanowią barierę, z którą nie radzi sobie wiele antybiotyków. Nasze badania pokazują, że w ludzkim organizmie istnieją mechanizmy, które są w stanie zniszczyć tę barierę. A są one uruchamiane przez IFN-γ, co tylko potwierdza, jak ważny jest ten mechanizm obronny, stwierdzają autorzy badań.
      MacMicking zwraca jednocześnie uwagę, że cały mechanizm jest wysoce selektywny, gdyż APOL3 nie atakuje przy tym błony komórkowej swojej komórki macierzystej. Uczeni zauważyli, że APOL3 unika cholesterolu, który jest jednym z głównych składników komórek naszego organizmu i skupia się na lipidach charakterystycznych dla błon komórkowych bakterii.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...