Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przywrócenie prawidłowego poziomu cholesterolu w mózgu pomoże leczyć choroby neurodegeneracyjne?

Recommended Posts

Naukowcy z Singapuru donoszą, że w warunkach niedoboru proteiny TDP-43 komórki mózgowe nie są w stanie utrzymać bogatej w cholesterol otoczki mielinowej, która chroni neurony. Autorzy badań sugerują, że odbudowanie odpowiedniego poziomu cholesterolu może pozwolić na leczenie chorób powiązanych z TDP-43.

Proteina TDP-43 pełni wiele ważnych zadań w komórkach, jednak w pewnych okolicznościach białko to może tworzyć toksyczne agregaty. Jest ono powiązane z wieloma chorobami neurodegeneracyjnymi, jak stwardnienie zanikowe boczne (ALS) czy otępienie czołowo-skroniowe (FTD).

Agragaty TDP-43 znajdowane są w mózgach większości osób chorujących na ALS i u ok. 45% cierpiących na FTD. Są one też obecne w niektórych postaciach choroby Alzheimera.

Shuo-Chien Ling i jego koledzy z Narodowego Uniwersytetu Singapuru już wcześniej zauważyli, że oligodendrocyty, komórki gleju formujące osłonki mielinowe, potrzebują proteiny TDP-43 do przeżycia i działania. Wykazaliśmy, że u myszy z oligodendrocytami, w których brakowało TDP-43 pojawiły się postępujące fenotypy neurologiczne, prowadzące do przedwczesnej śmierci. Fenotypom tym towarzyszyła śmierć oligodendrocytów i utrata mieliny, mówi Ling.

Teraz uczeni z Singapuru informują, że przyczyną, dla której oligodendrocyty nie działają bez TDP-43 jest ich niezdolność do syntetyzowania lub pobrania cholesterolu potrzebnego do utrzymania produkcji mieliny. W centralnym układzie nerwowym metabolizm cholesterolu przebiega w sposób autonomiczny, a większość cholesterolu znajduje się w mielinie. Wykazaliśmy, że TDP-43 wpływa na metabolizm cholesterolu w oligodendrocytach, napisali naukowcy.

Okazało się, że TDP-43 łączy się bezpośrednio z mRNA SREBF2, głównego regulatora transkrypcji metabolizmu cholesterolu i z wieloma innymi mRNA odpowiedzialnymi za syntezę cholesterolu. Dodatkowo wykazaliśmy, że suplementacja cholesterolem chroni przed demielinizacją powodowaną brakiem TDP-43, stwierdzają autorzy badań.

Cholesterol jest tak ważnym składnikiem mieliny, że aż 25% cholesterolu obecnego w naszych organizmach znajduje się właśnie w centralnym układzie nerwowym. Wiemy, że oligodendrocyty samodzielnie syntetyzują na swoje potrzeby olbrzymie ilości cholesterolu, mogą go też pobierać z astrocytów.

Tymczasem Ling i jego zespół wykazali, że w sytuacji braku TDP-43 oligodendrocytom brakuje wielu enzymów potrzebnych do syntezy cholesterolu. Jakby tego było mało, w takiej sytuacji mają tez mniej receptorów lipoproteinowych, które pozwalają na pobranie cholesterolu z zewnątrz. Okazało się, że dostarczenie tym komórkom TDP-43 odbudowuje ich zdolność do utrzymania otoczki mielinowej.

Singapurscy badacze uważają również, że problemy z metabolizmem cholesterolu mogą odgrywać rolę w ALS, FTD i innych chorobach neurodegeneracyjnych związanych z gromadzeniem się agregatów TDP-43. Dlatego też sugerują, że leki regulujące metabolizm cholesterolu mogą pomóc w leczeniu tego typu chorób.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W chorobach centralnego układu nerwowego, jak np. w chorobie Alzheimera, dochodzi do degeneracji synaps. Proces ten najprawdopodobniej zaczyna się na długo, przed pojawieniem się pierwszych objawów choroby i przyspiesza w miarę jej postępów. Przyczyny degeneracji synaps nie są dobrze rozumiane, między innymi dlatego, że nie do końca znamy mechanizmy powodujące, że synapsy trzymają się razem.
      Neurobiolodzy w Uniwersytetu Kalifornijskiego w San Diego (UCSD) odkryli właśnie mechanizm, który utrzymuje prawidłowe działanie synaps glutaminergicznych, głównego rodzaju synaps, których neurony używają do wzajemnego aktywowania się. Doktor Bo Feng, profesor Yimin Zou i ich koledzy zidentyfikowali przyczynę degeneracji synaps powiązanych z amyloidem beta, peptydem,który jest głównym składnikiem blaszek odkładających się w mózgach osób cierpiących na alzheimera.
      Dotychczas główne strategie walki z tą chorobą polegają na zmniejszeniu produkcji beta amyloidu lub oczyszczaniu organizmu z blaszek amyloidowych. Wyniki badań opublikowanych w Science Advances sugerują, że może istnieć inne rozwiązanie polegające na ochronie synaps poprzez bezpośrednie blokowanie toksycznego wpływu amyloidu beta.
      Synapsy glutaminergiczne to wysoce spolaryzowane struktury. Dzięki polaryzacji uzyskujemy przepływ sygnałów w odpowiednią stronę. Już podczas wcześniejszych badań w laboratorium Zhou zauważono, że za odpowiednią budowę synaps odpowiada szlak sygnałowy PCP (planar cell polarity). Dzięki mikroskopii o wysokiej rozdzielczości udało się określić precyzyjną lokalizację kluczowych komponentów PCP – Celsr3, Frizzled3 oraz Vangl2 w synapsach glutaminergicznych dorosłego mózgu. Naukowcy odkryli, że usunięcie tych komponentów, które są kluczowe dla wstępnego powstawania synaps w dorosłym mózgu, w olbrzymim stopniu wpływa na liczbę synaps. To zaś sugeruje, że stała liczba synaps zależy od równowago pomiędzy Celsr3, które synapsy stabilizuje, a Vangl2, które je rozkłada.
      Uczeni zaczęli się więc zastanawiać, czy komponenty te mają udział w degeneracji synaps. Sprawdzili więc, czy amyloid beta wpływa w jakiś sposób na ich funkcjonowanie. Okazało się, że oligomery amyloidu beta wiążą się z Celsr3, umożliwiając w ten sposób Vangl2 bardziej efektywne rozkładanie synaps.
      To długo poszukiwana pięta achillesowa amyloidu beta, mówi Zou. Gdy naukowcy usunęli z neuronów Vangl2 odkryli, że amyloid beta nie powodował degeneracji synaps ani w hodowlach komórkowych, ani na modelach zwierzęcych. Ryk, regulator szlaku sygnałowego PCP, który wchodzi w interakcje z Frizzled3 oraz Vangl2, również jest obecny z synapsach dorosłych osób i działa podobnie jak Vangl2. Zablokowanie Ryk chroniło synapsy przed ich niszczeniem przez amyloid beta.
      Naukowcy przeprowadzili więc eksperymenty na modelu mysim 5XFAD. To transgeniczne myszy wykorzystywane do badań nad chorobą Alzheimera. Posiadają on pięć ludzkich mutacji genetycznych występujących w alzheimerze. Okazało się, że zastosowanie knockoutu genów do usunięcia Ryk ochroniło synapsy i funkcje poznawcze myszy 5XFAD. Podobny efekt uzyskano poprzez wstrzyknięcie myszom przeciwciała blokującego Ryk. To zaś wskazuje, że przeciwciało takie może potencjalnie być lekiem na chorobę Alzheimera.
      Jako że patologiczne działanie amyloidu beta i utrata synaps ma miejsce we wczesnych stadiach choroby, nawet przed pojawieniem się pierwszych oznak spadku funkcji poznawczych, wczesne działanie, takie jak odtworzenie równowagi szlaku sygnałowego PCP, będzie prawdopodobnie korzystne dla osób cierpiących na tę chorobę, mówi Zou.
      To jednak nie wszystko. Stan zapalny, objawiający się aktywacją astrocytów i mikrogleju, jest jedną z cech charakterystycznych alzheimera. Może on być powodowany przez akumulację blaszek amyloidowych i przyspiesza utratę synaps. Okazało się jednak, że przeciwciało blokujące Ryk, blokuje również aktywację astrocytów i mikrogleju.
      Odkrycie to może mieć zastosowanie do degeneracji synaps w ogóle,gdyż komponenty szlaku PCP mogą stać się bezpośrednim celem zabiegów leczniczych w innych chorobach neurodegeneracyjnych, jak parkinsonizm czy choroba Lou Gehringa, podsumowuje Zou.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      HDL, zwany potocznie „dobrym” cholesterolem, zapobiega odkładaniu się cholesterolu LDL w naczyniach, chroni krwinki przed rozpadem, bierze udział w syntezie hormonów. Teraz okazuje się, że odgrywa jeszcze co najmniej jedną dodatkową dobroczynną rolę.
      Badania przeprowadzone na myszach oraz próbkach ludzkiej krwi wskazują, że HDL chroni wątrobę przed uszkodzeniem, blokując sygnał zapalny generowany przez bakterie w jelitach. Wyniki najnowszych badań zostały publikowane na łamach Science.
      Ich autorzy donoszą, że wytwarzany w jelitach HDL3 blokuje generowane przez bakterie sygnały prowadzące do zapalenia wątroby. Gdy nie są one blokowane, trafiają do wątroby, gdzie dochodzi do aktywacji komórek układu odpornościowego, pojawienia się stanu zapalnego w wątrobie i jej uszkodzenia.
      Nawet jeśli HDL nazywamy „dobrym cholesterolem”, to jednak lekarstwa, zwiększające jego poziom w organizmie nie zyskały na popularności, gdyż testy klinicznie nie wykazały, by pomagały one w chorobach układu krążenia. Jednak nasze badania wskazują, że zwiększenie poziomu konkretnego rodzaju HDL, a szczególnie zwiększenie jego poziomu w jelitach, może chronić przed chorobami wątroby, mówi profesor Gwendalyn J. Randolph z Wydziału Medycyny Washington University w St. Louis.
      Każdy problem pojawiający się w jelitach, może wpływać na to, w jaki sposób znajdujące się w nich bakterie Gram-ujemne oddziałują na organizm. Bakterie te wytwarzają lipopolisacharyd, endotoksynę, która może przedostać się z jelit do wątroby za pośrednictwem żyły wrotnej.
      Już wcześniejsze badania oraz dane z literatury specjalistycznej sugerowały, że HDL może wpływać na wykrywanie lipopolisacharydu przez komórki układu odpornościowego, a receptor lipopolisacharydu może być w jakiś sposób powiązany z chorobami wątroby pojawiającymi się po operacji pęcherza moczowego. To właśnie one zainspirowały Randolph do dalszych badań.
      Nikt nie przypuszczał, że HDL może bezpośrednio trafiać z jelit do wątroby, gdyż wymagałoby to podróży przez żyłę wrotną. Tymczasem HDL rozprzestrzenia się do innych tkanej za pomocą układu limfatycznego, który nie łączy wątroby z jelitami. W naszym laboratorium mamy narzędzie, które pozwala na śledzenie transportu HDL z różnych organów. Postanowiliśmy więc przyjrzeć się jelitom i zobaczyć, jaką drogą HDL je opuszcza i gdzie trafia. Dzięki temu zaobserwowaliśmy, że HDL3 przemieszcza się wyłącznie przez żyłę wrotną i wędruje bezpośrednio do wątroby.
      Okazało się, że podczas swej krótkiej podróży HDL3 łączy się z białkiem wiążącym lipopolisacharyd (LBP). Gdy do tego kompleksu zostanie przyłączony lipopolisacharyd, dochodzi do blokowania jego sygnałów, które w normalnych warunkach aktywują komórki Kupffera. To makrofagi obecne w wątrobie, które po aktywacji wywołują stan zapalny. Naukowcy zauważyli, że do blokowania sygnałów z lipopolisacharydów dochodzi wyłącznie wtedy, gdy do LBP przyłączony jest HDL3. Gdy cholesterolu nie ma, samo LBP nie jest w stanie zablokować sygnałów lipopolisacharydów. Wręcz przeciwnie, bez HDL3 LBP wywołuje silniejszy stan zapalny, mówi współautor badań Yong-Hyun Han.
      Naukowcy eksperymentalnie wykazali, że do większych uszkodzeń wątroby dochodzi, gdy poziom HDL3 z jelit jest obniżony. Do sytuacji takiej dochodzi np. po chirurgicznym usunięciu części jelit.
      Wydaje się, że chirurgiczne usunięcie części jelit powoduje dwa problemy. Po pierwsze, krótsze jelita wytwarzają mniej HDL3, po drugie, sama operacja uszkadza jelita, przez co do żyły wrotnej trafia więcej lipopolisacharydów. A jeśli usuniemy tę część jelit, która wytwarza najwięcej HDL3, dochodzi do najpoważniejszych uszkodzeń wątroby. Podobne wyniki uzyskaliśmy u myszy, która w ogóle nie wytwarzała HDL3, stwierdza Randolph.
      Naukowcy przyjrzeli się też mysim modelom alkoholowych chorób wątroby oraz schorzeń spowodowanych dietą wysokotłuszczową. We wszystkich tych modelach HDL3 odgrywał rolę ochronną. Jako, że w próbkach ludzkiej krwi znaleziono ten sam kompleks molekuł, który występował u myszy, naukowcy sugerują, że w przypadku ludzi działa podobny mechanizm. Dodatkowo stwierdzili, że podawanie myszom leków zwiększających poziom HDL3 w jelitach może dodatkowo chronić przed uszkodzeniami wątroby.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Czerwone buraki są pełne składników, których spożycie jest wiązane z wieloma prozdrowotnymi zjawiskami jak zwiększona produkcja białych krwinek czy obniżenie ciśnienia. Naukowcy z Uniwersytetu Wiedeńskiego poinformowali o wyizolowaniu z czerwonych buraków peptydu, który może być lekiem stosowanym w zwalczaniu stanów zapalnych.
      Przeanalizowaliśmy tysiące danych genetycznych, dzięki czemu byliśmy w stanie wychwycić liczne peptydy bogate w cysteiny i przypisać je do konkretnych roślin. Szczególnie interesowały nas te, które mogą potencjalnie działać jako inhibitory proteazy. Peptyd z buraków może blokować enzymy rozkładające białka, mówi główny autor badań, profesor Christian Gruber.
      Gruber i jego zespół zauważyli, że peptyd z buraka hamuje działanie oligopeptydazy prolilowej (POP). To proteaza serynowa, która jest zaangażowana w rozszczepienie wielu neuroaktywnych peptydów. Jest wiązana z procesami neurodegeneracyjnymi i regulowaniem stanu zapalnego.
      POP bierze udział w wielu procesach zachodzących w centralnym układzie nerwowym, w tym w uczeniu się, zapamiętywania i regulowaniu nastroju. Wiemy też, że kilka inhibitorów POP pomyślnie przeszło testy prekliniczne, dając nadzieję, że związki te mogą przydać się leczeniu utraty pamięci związanej z wiekiem czy chorobą Alzheimera.
      Zidentyfikowany przez grupę Gubera peptyd został nazwany bevuTI-I. To pierwszy znany inhibitor POP z rodziny proteaz serynowych trypsyny.
      Chociaż czerwone buraki to zdrowe warzywa, nie należy przypuszczać, że ich jedzenie będzie zapobiegało demencji. Odkryty przez nas peptyd występuje w burakach w bardzo małych ilościach i nie wiadomo, czy działa po przejściu przez układ pokarmowy, podkreśla Gruber. Przeszukujemy wielką bazę danych genetycznych roślin i zwierząt, poszukujemy nowych peptydów, badamy ich strukturę, a te najbardziej obiecujące chcemy przetestować na enzymach i receptorach komórkowych, a w końcu przeanalizować je na modelach chorób, dodaje uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wyniki badań na myszach wskazują, że istnieje możliwość stworzenia pigułki, która przyniesie mózgowi takie korzyści, jakie przynoszą ćwiczenia fizyczne. Naukowcy z Uniwersytetu Kalifornijskiego w San Francisco donoszą bowiem, że słabo poznany enzym wątrobowy Gpld1 może być czynnikiem odpowiedzialnym za korzystny wpływ ćwiczeń fizycznych na starzejący się mózg. Badania wykazały, że gdy starzejącej się myszy prowadzącej statyczny tryb życia podamy osocze pozyskane od myszy regularnie ćwiczącej, to jej mózg odniesie takie same korzyści jak mózg myszy aktywnej.
      Odkrycie może doprowadzić do opracowania terapii chroniących układ nerwowy przed związaną z wiekiem degeneracją. Można by je stosować u osób, które nie są w stanie zwiększyć aktywności fizycznej. Gdyby powstała pigułka, zapewniająca mózgowi te same korzyści co ćwiczenia fizyczne, to wszyscy by ją zażywali. Nasze badania sugerują, że co najmniej część z takich korzyści pojawi się pewnego dnia w formie pigułki, mówi profesor Saul Villeda. Jest on jednym z autorów opublikowanego w Science artykułu Blood factors transfer benefician effects of exercie on neurogenesis and cognition to the aged brain.
      Aktywność fizyczna to jeden z najlepszych sposobów ochrony mózgu przed związanymi z wiekiem degeneracją i spadkiem możliwości poznawczych. Aktywność fizyczna jest związana ze zmniejszonym ryzykiem obniżenia się funkji poznawczych w związanych z wiekiem chorobach neurodegeneracyjnych. Poprawia ona funkcjonowanie osób narażonych na rozwój choroby Alzheimera, nawet w przypadkach dziedzicznego występowania tej choroby, stwierdzili naukowcy. Niestety różnego typu ograniczenia fizyczne czy inne schorzenia uniemożliwiają wielu osobom wykonywanie ćwiczeń fizycznych.
      Zespół Villedy już wcześniej przeprowadzał eksperymenty pokazujące, że transfuzja krwi od młodej myszy do starej może tej drugiej przynieść korzyści w postaci lepszego funkcjonowania mózgu. Z kolei transfuzja w odwrotną stronę może zaszkodzić mózgowi młodej myszy. Zachęceni tymi wynikami studentka Alana Horowitz i doktor Xuelai Fan z laboratorium Villedy postanowili poszukać we krwi elementów, które zapewnią mózgowi takie korzyści jak ćwiczenia fizyczne.
      Horowitz i Fan pobrali krew od starzejących się myszy, które przez siedem tygodni regularnie ćwiczyły i przetoczyli ją starzejącym się myszom prowadzącym nieaktywny tryb życia. Okazało się, że po czterech tygodniach takiej terapii w drugiej z grup zwierząt doszło do znacznego poprawienia pamięci i zdolności do uczenia się. Poprawa była podobna do tej, jaka zaszła u myszy aktywnych fizycznie. Badania mózgów zwierząt wykazały, że doszło w nich do zwiększenia tempa powstawania nowych neuronów w hipokampie.
      Chcąc sprawdzić, który konkretnie czynnik odpowiada za tę poprawę, naukowcy porównali ilość różnych protein w krwi myszy aktywnych fizycznie i prowadzących siedzący tryb życia. Zidentyfikowali „podejrzanych” 30 protein, z których – ku ich zdumieniu – aż 19 pochodziło głównie z wątroby i które dotychczas wiązano z kontrolowaniem metabolizmu. Szczególnie ważne w tym kontekście wydały się proteiny Gpld1 i Pon1m. Naukowcy wybrali do badań pierwszą z nich, gdyż dotychczas rzadko się nią zajmowano. Stwierdziliśmy, że gdyby ją ktoś wcześniej porządnie przebadał, to z pewnością zauważyłby ten jej korzystny wpływ, mówi Villeda.
      Okazało się, że Gpld1 zwiększa przepływ krwi po ćwiczeniach fizycznych, a poziom tej proteiny jest ściśle skorelowany z rozwojem funkcji poznawczych u myszy. Gdy naukowcy przeanalizowali dane zbierane w ramach badań Hillblom Aging Network okazało się, że również zdrowi aktywni starsi ludzie mają wyższy poziom tej proteiny we krwi niż ich mniej aktywni rówieśnicy. Dane te wskazują, że Gpld1 jest u ludzi i myszy czynnikiem indukowanym przez ćwiczenia fizyczne i ma on u myszy potencjalny wpływ na funkcje poznawcze, czytamy w pracy opisującej badania.
      Naukowcy nie poprzestali jednak na obserwacjach. Postanowili sprawdzić, czy samo Gpld1 może przynieść takie korzyści jak ćwiczenia fizyczne. W tym celu zmodyfikowali genetycznie myszy tak, by w ich wątrobach dochodziło do nadmiernego wytwarzania tej proteiny i sprawdzali osiągnięcia zwierząt w różnych testach sprawdzających pamięć i funkcje poznawcze. Byli niezwykle zdumieni, gdy okazało się, że już trzy tygodnie nadmiernej ekspresji Gpld1 dawało taki skutek jak sześć tygodni regularnych ćwiczeń. Doszło też do dramatycznego wzrostu liczby neuronów w hipokampie. Dane te pokazują, że selektywne zwiększanie pochodzącego z wątroby Gpld1 wystarczy, by poprawić neurogenezę i funkcje poznawcze w starzejącym się hipokampie, podkreślają autorzy badań.
      Kolejne badania wykazały, że wytwarzana w wątrobie proteina Gpld1 nie przedostaje się przez barierę krew-mózg. Wydaje się, że wywiera ona dobroczynny wpływ poprzez redukcję stanu zapalnego i koagulacji krwi w całym organizmie. Wiadomo, że oba te czynniki intensyfikują się z wiekiem i są powiązane z demencją oraz spadkiem funkcji poznawczych.
      Uzyskane dotychczas dane mają znacznie szersze implikacje, niż tylko związane z Gpld1. Wskazują one bowiem, że być może korzystny dla naszego organizmu wpływ ćwiczeń fizycznych może być przenoszony do wszystkich tkanek za pomocą różnych składników krwi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Inżynierowie biomedyczni z Duke University opracowali metodę jednoczesnego pomiaru grubości i tekstury warstw siatkówki. Mają nadzieję, że będzie ją można wykorzystać do wykrywania biomarkerów choroby Alzheimera (ChA). Wyniki badań ukazały się w piśmie Scientific Reports.
      Wcześniejsze badanie wykazało pocienienie siatkówki u pacjentów z ChA. Dodając do pomiarów kolejną metodę, odkryliśmy, że warstwa włókien nerwowych siatkówki [ang. retinal nerve fiber layer, RNFL] jest też bardziej nierówna i zaburzona - opowiada prof. Adam Wax. Mamy nadzieję, że uda się wykorzystać tę wiedzę do stworzenia [...] taniego urządzenia skryningowego, które byłoby dostępne nie tylko w gabinecie lekarza, ale i w miejscowej aptece.
      Obecnie ChA diagnozuje się dopiero po wystąpieniu objawów - zaburzeń poznawczych. Gdyby dało się wdrożyć leczenie na wczesnych etapach choroby, znacznie poprawiłoby to jakość życia pacjentów. To dlatego naukowcy nie ustają w próbach wykrycia biomarkerów, które mogłyby pełnić rolę wczesnych sygnałów ostrzegawczych.
      Siatkówka zapewnia łatwy dostęp do mózgu i jej pocienienie może być wskazówką zmniejszenia ilości tkanki nerwowej, a więc występowania ChA - wyjaśnia Wax.
      Problemem jest jednak to, że inne choroby, np. parkinson czy jaskra, także powodują pocienienie siatkówki. Poza tym różnice między aparatami do optycznej tomografii koherencyjnej (OCT) prowadzą do niespójności uzyskiwanych rezultatów.
      Najnowsze badania Waxa i jego studentki Ge Song wykazały, że warstwa włókien nerwowych siatkówki w mysim modelu ChA jest cieńsza i wykazuje zmiany strukturalne. Złogi amyloidu w siatkówkach transgenicznych gryzoni występowały np. głównie w rejonach w obrębie RNFL i warstwy splotowatej zewnętrznej (ang. outer plexiform layer, OPL).
      Nasze nowe podejście może określić [...] teksturę NFL, zapewniając szybki i bezpośredni sposób pomiaru zmian strukturalnych powodowanych przez alzheimera [...].
      By uzyskać więcej danych, naukowcy połączyli OCT z kątoworozdzielczą interferometrią niskokoherentną (ang. angle-resolved low-coherence interferometry, a/LCI). Wiedza nt. kątów rozpraszania światła daje bowiem wgląd w strukturę tkanki.
      Podczas testów wykazano, że średnia grubość NFL w grupie myszy typu dzikiego wynosiła ok. 18µm, a w grupie z alzheimerem była obniżona do 16µm.
      Pomiary a/LCI uzupełniają pomiary grubości [...]. Za pomocą samego OCT nie uzyska się danych dot. struktury siatkówki. Potrzebne są więc obie modalności obrazowania - wyjaśnia Song.
      Obecnie naukowcy pracują nad dodaniem nowej opcji do taniego systemu OCT. Co ważne, zmniejszone waga i gabaryty sprzętu Waxa przekładają się na mniejsze rozmiary i niższą cenę.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...