Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Arsenek boru chłodzi układy scalone lepiej niż diament

Recommended Posts

Nowy półprzewodnik, arsenek boru (BAs), ma wysoką przewodność cieplną i może być zintegrowany ze współczesnymi chipami, by odprowadzić z nich ciepło i poprawić tym samym ich wydajność. Materiał ten lepiej rozprasza ciepło niż najlepsze dostępnie obecne systemy do chłodzenia podzespołów komputerowych – twierdzą twórcy arsenku boru.

Coraz większa miniaturyzacja, możliwość umieszczenia na tej samej powierzchni coraz większej liczby tranzystorów, oznacza, że procesory są coraz szybsze. Pojawiają się jednak problemy z odprowadzaniem ciepła, szczególnie w postaci lokalnych punktów znacznie wyższej temperatury. Ciepło to negatywnie wpływa na wydajność układów.

Yongjie Hu z Uniwersytetu Kalifornijskiego w Los Angeles stworzył niedawno wolny od wad arsenek boru. To materiał, który rozprasza ciepło znacznie lepiej niż inne metale i półprzewodniki, jak diament czy węglik krzemu. Hu i jego koledzy wykazali też, że można go zintegrować z układami scalonymi zawierającymi tranzystory z azotku galu. Następnie przeprowadzili badania, które wykazały, że w układzie scalonym ze zintegrowanym arsenkiem boru, pracującym z niemal maksymalną wydajnością, temperatura najcieplejszych punktów jest znacznie niższa niż w układach chłodzone za pomocą innych materiałów.

W czasie eksperymentów punktowa temperatura układów scalonych z arsenkiem boru wzrosła od temperatury pokojowej do nieco poniżej 87 stopni Celsjusza, podczas gdy chłodzonych diamentem wyniosła niemal 137 stopni, a chłodzonych węglikiem krzemu – zbliżyła się do 167 stopni Celsjusza.

Wykazaliśmy, że możemy przetwarzać strukturę BAs i integrować ją z chipem o wysokiej mobilności elektronów. To bardzo obiecujące rozwiązanie dla wysoko wydajnej elektroniki, mówi Hu.

Dodatkową zaletą arsenku boru jest jego bardzo niski opór cieplny na styku z innym materiałem. To zaś oznacza, że transport ciepła odbywa się szybciej niż w przypadku konkurencyjnych rozwiązań. To tak, jakby ciepło mogło przeskoczyć przez przeszkodę, jaką stanowi styk dwóch materiałów, w porównaniu z innymi rozwiązaniami, gdzie zwalnia, by ostrożnie przeszkodę przekroczyć, wyjaśnia Hu.

Naukowcy, zachęceni wynikami swoich eksperymentów, planują teraz zintegrować swój materiał z różnymi rodzajami obwodów i chipami o różnej architekturze.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Pan Yongjie Hu z Uniwersytetu Kalifornijskiego w Los Angeles postanowi odwiedzić rodzinę np.w Wuhan i dziwnie już tam zostanie razem ze swoją wiedzą. A blade twarze będą się mogły tylko poskrobać tu i tam ze zdziwienia.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Urządzenia elektroniczne pracują coraz szybciej i szybciej.Jednak w pewnym momencie dotrzemy do momentu, w którym prawa fizyki nie pozwolą na dalsze ich przyspieszanie. Naukowcy z Uniwersytetu Technologicznego w Wiedniu, Uniwersytetu Technologicznego w Grazu i Instytutu Optyki Kwantowej im. Maxa Plancka w Garching określili najkrótszą skalę czasową, w której mogą pracować urządzenia optoelektroniczne.
      Podzespoły elektroniczne pracują w określonych interwałach czasowych i z sygnałami o określonej długości. Procesy kwantowo-mechaniczne, które umożliwiają wygenerowanie sygnału, trwają przez pewien czas. I to właśnie ten czas ogranicza tempo generowania i transmisji sygnału. Jego właśnie udało się określić austriacko-niemieckiemu zespołowi.
      Naukowcy, chcąc dotrzeć do granic tempa konwersji pól elektrycznych w sygnał elektryczny, wykorzystali impulsy laserowe, czyli najbardziej precyzyjne i najszybsze dostępne nam pola elektromagnetyczne. O wynikach swoich badań poinformowali na łamach Nature Communications.
      Badaliśmy materiały, które początkowo w ogóle nie przewodzą prądu, mówi profesor Joachim Burgdörfer z Instytutu Fizyki Teoretycznej Uniwersytetu Technologicznego w Wiedniu. Materiały te oświetlaliśmy ultrakrótkimi impulsami lasera pracującego w ekstremalnym ultrafiolecie. Impulsy te przełączały wzbudzały elektrony, które wchodziły na wyższy poziom energetyczny i zaczynały się swobodnie przemieszczać. W ten sposób laser zamieniał na krótko nasz materiał w przewodnik. Gdy tylko w materiale pojawiały się takie swobodne elektrony, naukowcy z pomocą drugiego, nieco dłuższego impulsu laserowego, przesuwali je w konkretnym kierunku. W ten sposób dochodziło do przepływu prądu elektrycznego, który rejestrowano za pomocą elektrod po obu stronach materiału.
      Cały proces odbywał się w skali atto- i femtosekund. Przez długi czas uważano, że zjawiska te powstają natychmiast. Jednak obecnie dysponujemy narzędziami, które pozwalają nam je precyzyjnie badać, wyjaśnia profesor Christoph Lemell z Wiednia. Naukowcy mogli więc odpowiedzieć na pytanie, jak szybko materiał reaguje na impuls lasera, jak długo trwa generowanie sygnału i jak długo sygnał ten trwa.
      Eksperyment był jednak obarczony pewną dozą niepewności związaną ze zjawiskami kwantowymi. Żeby bowiem zwiększyć tempo, konieczne były ekstremalnie krótkie impulsy lasera, by maksymalnie często dochodziło do tworzenia się wolnych elektronów. Jednak wykorzystanie ultrakrótkich impulsów oznacza, że nie jesteśmy w stanie precyzyjnie zdefiniować ilości energii, jaka została przekazana elektronom. Możemy dokładnie powiedzieć, w którym momencie w czasie dochodziło do tworzenia się ładunków, ale nie mogliśmy jednocześnie określić, w jakim stanie energetycznym one były. Ciała stałe mają różne pasma przewodzenia i przy krótkich impulsach laserowych wiele z nich jest wypełnianych wolnymi ładunkami w tym samym czacie, dodaje Lemell.
      Elektrony reagują różnie na pole elektryczne, a reakcja ta zależy od tego, jak wiele energii przenoszą. Jeśli nie znamy dokładnie tej wartości, nie możemy precyzyjnie ich kontrolować i dochodzi do zaburzeń przepływu prądu. Szczególnie przy bardzo intensywnej pracy lasera.
      Okazuje się, że górna granica możliwości kontrolowania procesów optoelektronicznych wynosi około 1 petaherca, mówi Joachim Burgdörfer. To oczywiście nie oznacza, że będziemy kiedykolwiek w stanie wyprodukować układy komputerowe z zegarami pracującymi nieco poniżej petaherca. Realistyczne możliwości technologii są zwykle znacznie niższe niż granice fizyczne. Jednak mimo tego, że nie jesteśmy w stanie pokonać praw fizyki, badania nad limitami fizycznych możliwości pozwalają na ich analizowanie, lepsze zrozumienie i udoskonalanie technologii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po 266 latach udało się pokonać zjawisko Leidenfrosta, dzięki czemu naukowcy z City University of Hong Kong mogli pochwalić się stworzeniem efektywnego systemu chłodzenia cieczą, który sprawdza się w temperaturach nawet powyżej 1000 stopni Celsjusza. System taki można będzie zastosować w silnikach lotniczych, rakietowych oraz poprawić dzięki niemu stabilność i bezpieczeństwo pracy reaktorów atomowych przyszłej generacji.
      Zjawisko Leidenfrosta od wieków fascynuje naukowców, a niedawno informowaliśmy o odkryciu jego nowej odmiany. Zjawisko to zostało odkryte w 1756 roku. Powoduje ono, że krople cieczy spadając na bardzo gorącą powierzchnię nie odparowują od razu, ale poruszają się, lewitując nad nimi. Ich odparowanie może potrwać dłuższa chwilę. Pomiędzy kroplą a powierzchnią tworzy się bowiem warstwa pary, która znacząco obniża transfer energii z powierzchni. Przez to chłodzenie cieczą bardzo gorących powierzchni jest nieefektywne. Przez ponad 200 lat nie potrafiono poradzić sobie z tym problemem.
      Naukowcy z Hongkongu stworzyli powierzchnię o zróżnicowanej teksturze, której główne elementy mają różne właściwości termiczne i geometryczne. Nowatorska struktura złożona jest z trzech zasadniczych elementów. Pierwszy z nich to wystające ponad powierzchnię miniaturowe filary służące do transferu energii. Drugi, to termiczna warstwa izolująca umieszczona pomiędzy filarami, której zadaniem jest zassanie i odparowanie cieczy. Zaś element trzeci, to znajdujące się pod warstwą izolującą mikrokanaliki w kształcie litery U, służące do odprowadzenia pary. Eksperymenty wykazały, że taka architektura zapobiega powstawaniu zjawiska Leidenfrosta nawet w temperaturach dochodzących do 1150 stopni Celsjusza i pozwala na efektywne kontrolowane chłodzenie cieczą w zakresie od 100 do ponad 1150 stopni.
      Nasze multidyscyplinarne badania to prawdziwy przełom w nauce i inżynierii. Połączyliśmy tutaj naukę o powierzchniach, hydro- i aerodynamice, chłodzeniu, nauki materiałowe, fizykę, wiedzę z dziedziny energii i inżynierii. Poszukiwanie nowych strategii w dziedzinie chłodzenia cieczami to ważny obszar badawczy inżynierii materiałowej od 1756 roku. Udało nam się pozbyć zjawiska Leidenfrosta. W ten sposób dokonaliśmy zmiany paradygmatów dotyczących możliwości chłodzenia cieczą w bardzo wysokich temperaturach. Dotychczas nikomu nie udało się tego osiągnąć, cieszy się profesor Wang Zunkai.
      Uczony wyjaśnia, że pojawianie się zjawiska Leidenfrota powoduje, że tam, gdzie mamy do czynienia z bardzo wysokimi temperaturami wykorzystujemy chłodzenie powietrzem, zamiast potencjalnie bardziej efektywnego chłodzenia cieczą. Ma to miejsce szczególnie w silnikach samolotowych, rakietowych i reaktorach jądrowych. Dodaje, że nowatorską strukturę można produkować w formie elastycznej okładziny do mocowania na elementach, które mają być chłodzone. To szczególnie ważne tam, gdzie bezpośrednie stworzenie takiej struktury na etapie produkcji urządzenia byłoby trudne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Microsoft zatrudnił byłego projektanta układów scalonych Apple'a, , który wcześniej pracował też w firmach Arm i Intel,  trafił do grupy kierowanej przez Raniego Borkara, zajmującej się rozwojem chmury Azure. Zatrudnienie Filippo wskazuje, że Microsoft chce przyspieszyć prace nad własnymi układami scalonymi dla serwerów tworzących oferowaną przez firmę chmurę. Koncern idzie zatem w ślady swoich największych rywali – Google'a i Amazona.
      Obecnie procesory do serwerów dla Azure są dostarczane przez Intela i AMD. Zatrudnienie Filippo już odbiło się na akcjach tych firm. Papiery Intela straciły 2% wartości, a AMD potaniały o 1,1%.
      Filippo rozpoczął pracę w Apple'u w 2019 roku. Wcześniej przez 10 lat był głównym projektantem układów w firmie ARM. A jeszcze wcześniej przez 5 lat pracował dla Intela. To niezwykle doświadczony inżynier. Właśnie jemu przypisuje się wzmocnienie pozycji układów ARM na rynku telefonów i innych urządzeń.
      Od niemal 2 lat wiadomo, że Microsoft pracuje nad własnymi procesorami dla serwerów i, być może, urządzeń Surface.
      Giganci IT coraz częściej starają się projektować własne układy scalone dla swoich urządzeń, a związane z pandemią problemy z podzespołami tylko przyspieszyły ten trend.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Opracowany w Belgii nowy materiał do produkcji ubrań może nas ogrzewać lub chłodzić, wszystko zależy od tego, którą stroną go włożymy. Symulacje przeprowadzone przez Muluneha Abebe i jego kolegów z belgijskiego Uniwersytetu w Mons wykazały, że ubrania z tego materiału zapewniają komfort termiczny w temperaturach różniących się nawet o 13 stopni.
      Gdy znajdujemy się na zewnątrz około połowy ciepła tracimy przez zjawiska przewodnictwa i konwekcji. Ogrzewać możemy się nakładając kolejne warstwy ubrań. Jednak drugą część ciepła tracimy przez promieniowanie podczerwone, zarówno ze skóry jak i powierzchni okrywających nas ubrań. W tym wypadku możemy bronić się przed utratą ciepła blokując promieniowanie podczerwone, lub też chłodzić się – zwiększając je.
      Już podczas wcześniejszych badań belgijscy naukowcy wykazali, że niektóre materiały mogą efektywnie absorbować promieniowanie podczerwone z powierzchni naszej skóry, a następnie efektywnie je uwalnia do otoczenia. W ten sposób ułatwiają nam chłodzenie się.
      Dotychczas jednak tego typu materiały zawierały nieprzepuszczalne membrany, które więziły powietrze i wilgoć, więc ich noszenie byłoby niekomfortowe. Abebe i jego zespół zaprezentowali teoretyczny model materiału o grubości 20 mikrometrów, który składa się z dwóch różnych warstw. Jednej wytworzonej z włókien dielektrycznych, drugiej z włókien metalicznych. Włókna dielektryczne emitują duże ilości promieniowania podczerwonego, zaś włókna metaliczne charakteryzuje niska emisja.
      Po stworzeniu takiego modelu naukowcy obliczyli jego właściwości transmisji promieniowania podczerwonego, jego odbijania i absorpcji. Z obliczeń wynika, że jeśli materiał dotykałby skóry, zapobiegałby ucieczce ciepła i odczuwalibyśmy komfortowe ciepło w temperaturze nawet 11 stopni Celsjusza. Z kolei po odwróceniu na drugą stronę efektywnie by nas chłodził w temperaturze dochodzącej do 24 stopni Celsjusza.
      Nowy materiał byłby elastyczny i wygodny w używaniu, a przestrzenie między włóknami umożliwiałyby ucieczkę wilgoci. Abebe przyznaje, że ze względu na wysokie koszty wytworzenia takiego materiału, na pewno nie pojawi się on na rynku w najbliższym czasie. Jednak uczeni mają nadzieję, że ich badania zainspirują kolejne grupy naukowe i w końcu pojawią się wygodne tanie ubrania o właściwościach chłodzących i ogrzewających.
      Materiał został opisany na łamach Physical Review Applied.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Firma Taiwan Semiconductor Manufacturing Co. (TSMC), największy na świecie producent układów scalonych na zlecenie, poinformowała, że wybuduje fabrykę półprzewodników w Japonii. To już druga tego typu zapowiedź w ostatnim czasie. Przed kilkoma miesiącami TSMC ogłosiła, że zainwestuje 12 miliardów dolarów w budowę nowej fabryki w Arizonie.
      Prace budowlane w Japonii rozpoczną się  przyszłym roku, a masowa produkcja chipów ma rozpocząć się w roku 2024. Japoński zakład będzie wyposażony w linie do produkcji w technologii 22 i 28 nanometrów. Będzie więc mniej zaawansowany technologicznie niż fabryka w Arizonie, gdzie powstanie 7-nanometrowa linia technologiczna. W Kraju Kwitnącej Wiśni z taśm produkcyjnych TSMC będą zjeżdżały podzespoły dla produktów konsumenckich, przemysłu samochodowego oraz Internet of Things.
      Dyrektor wykonawczy TSMC, C.C. Wei, poinformował, że firma otrzymała pomoc od japońskiego rządu i swoich japońskich klientów. Nie ujawnił wartości inwestycji, ale zrobił to premier Japonii Fumi Kishida, który poinformował parlament, że budowa pochłonie 8,8 miliarda USD, a część kosztów weźmie na siebie rząd.
      Japońska prasa dowiedziała się, że fabryka powstanie w prefekturze Kumamoto na zachodzie kraju, na ternie należącym do Sony i w pobliżu fabryki Sony, w której powstają matryce światłoczułe. Taka lokalizacja ma spory sens, gdyż Sony jest największym japońskim klientem TSMC.
      Światowy przemysł wciąż ma poważny problem z dostępnością półprzewodników. Niedawno Apple poinformował że najprawdopodobniej będzie zmuszony zmniejszyć tegoroczną produkcję iPhone'ów 13 nawet o 10 milionów sztuk. Do zmniejszenia produkcji została zmuszona też Toyota.
      Pandemia z pełną mocą ujawniła, jak bardzo producenci elektroniki z Europy, USA i Japonii są uzależnieni od chińskich, tajwańskich i południowokoreańskich producentów półprzewodników. Rozpoczęto więc działania, które mają zapobiegać tego typu sytuacjom w przyszłości. Sekretarz Handlu USA zaproponowała przeznaczenie 52 miliardów dolarów na badania nad półprzewodnikami i ich produkcję, Europa chce zwiększyć swoje możliwości produkcyjne, podobnie robi też Japonia. Na Uniwersytecie Tokijskim powołano dwie specjalne organizacje – Research Association for Advanced Systems (RAAS) oraz d.lab – których celem będzie ułatwienie wymiany technologicznej. W ramach RAAS, do której wstęp jest ograniczony, firmy takie jak TSMC, Hitachi czy Toppan mogą wymieniać się swoim know-how oraz korzystać z wyników zaawansowanych badań materiałowych, fizycznych i chemicznych prowadzonych na Uniwersytecie Tokijskim.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...