Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Arsenek boru chłodzi układy scalone lepiej niż diament

Rekomendowane odpowiedzi

Nowy półprzewodnik, arsenek boru (BAs), ma wysoką przewodność cieplną i może być zintegrowany ze współczesnymi chipami, by odprowadzić z nich ciepło i poprawić tym samym ich wydajność. Materiał ten lepiej rozprasza ciepło niż najlepsze dostępnie obecne systemy do chłodzenia podzespołów komputerowych – twierdzą twórcy arsenku boru.

Coraz większa miniaturyzacja, możliwość umieszczenia na tej samej powierzchni coraz większej liczby tranzystorów, oznacza, że procesory są coraz szybsze. Pojawiają się jednak problemy z odprowadzaniem ciepła, szczególnie w postaci lokalnych punktów znacznie wyższej temperatury. Ciepło to negatywnie wpływa na wydajność układów.

Yongjie Hu z Uniwersytetu Kalifornijskiego w Los Angeles stworzył niedawno wolny od wad arsenek boru. To materiał, który rozprasza ciepło znacznie lepiej niż inne metale i półprzewodniki, jak diament czy węglik krzemu. Hu i jego koledzy wykazali też, że można go zintegrować z układami scalonymi zawierającymi tranzystory z azotku galu. Następnie przeprowadzili badania, które wykazały, że w układzie scalonym ze zintegrowanym arsenkiem boru, pracującym z niemal maksymalną wydajnością, temperatura najcieplejszych punktów jest znacznie niższa niż w układach chłodzone za pomocą innych materiałów.

W czasie eksperymentów punktowa temperatura układów scalonych z arsenkiem boru wzrosła od temperatury pokojowej do nieco poniżej 87 stopni Celsjusza, podczas gdy chłodzonych diamentem wyniosła niemal 137 stopni, a chłodzonych węglikiem krzemu – zbliżyła się do 167 stopni Celsjusza.

Wykazaliśmy, że możemy przetwarzać strukturę BAs i integrować ją z chipem o wysokiej mobilności elektronów. To bardzo obiecujące rozwiązanie dla wysoko wydajnej elektroniki, mówi Hu.

Dodatkową zaletą arsenku boru jest jego bardzo niski opór cieplny na styku z innym materiałem. To zaś oznacza, że transport ciepła odbywa się szybciej niż w przypadku konkurencyjnych rozwiązań. To tak, jakby ciepło mogło przeskoczyć przez przeszkodę, jaką stanowi styk dwóch materiałów, w porównaniu z innymi rozwiązaniami, gdzie zwalnia, by ostrożnie przeszkodę przekroczyć, wyjaśnia Hu.

Naukowcy, zachęceni wynikami swoich eksperymentów, planują teraz zintegrować swój materiał z różnymi rodzajami obwodów i chipami o różnej architekturze.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pan Yongjie Hu z Uniwersytetu Kalifornijskiego w Los Angeles postanowi odwiedzić rodzinę np.w Wuhan i dziwnie już tam zostanie razem ze swoją wiedzą. A blade twarze będą się mogły tylko poskrobać tu i tam ze zdziwienia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Krzem, jeden z najbardziej rozpowszechnionych pierwiastków na Ziemi, stanowi podstawę nowoczesnego świata. Bez niego nie mielibyśmy ani paneli fotowoltaicznych ani układów scalonych. Jednak właściwości krzemu jako półprzewodnika są dalekie od ideału. Elektrony w krzemie mogą przemieszczać się z dużymi prędkościami, ale tego samego nie można już powiedzieć o dziurach, towarzyszkach elektronów. Ponadto krzem słabo przewodzi ciepło, przez co konieczne jest stosowanie kosztownych systemów chłodzenia.
      Badacze z MIT, Uniwersytetu w Houston i innych instytucji wykazali właśnie, że krystaliczny sześcienny arsenek boru jest pozbawiony tych wad. Zapewnia dużą mobilność elektronom i dziurom oraz charakteryzuje się świetnym przewodnictwem cieplnym. Badacze twierdzą, że to najlepszy ze znanych nam półprzewodników, a może i najlepszy z możliwych półprzewodników.
      Dotychczas jednak arsenek boru był wytwarzany i testowany w niewielkich ilościach wytwarzanych na potrzeby badań naukowych. Takie próbki były niejednorodne. Opracowanie metod ekonomicznej produkcji tego związku na skalę przemysłową będzie wymagało dużo pracy.
      Już w 2018 roku David Broido, który jest współautorem najnowszych badań, teoretycznie przewidział, że arsenek boru powinien charakteryzować się świetnym przewodnictwem cieplnym. Później przewidywania te zostały dowiedzione eksperymentalnie. Wykazano m.in., że chłodzi on układy scalone lepiej niż diament. Okazało się równie, że materiał ten ma bardzo dobre pasmo wzbronione, którego istnienie jest niezbędną cechą półprzewodnika. Obecne badania dodały zaś do tego obrazu możliwość szybkiego transportu elektronów i dziur, zatem arsenek boru wydaje się mieć wszystkie cechy półprzewodnika idealnego.
      To bardzo ważna cecha, gdyż w półprzewodnikach mamy jednocześnie ładunki dodatnie i ujemne. Jeśli więc budujemy z nich urządzenie elektroniczne, chcemy, by zarówno elektrony jak i dziury napotykały jak najmniejszy opór, mówi profesor Gang Chen z MIT.
      Krzem i inne półprzewodniki, jak np. używany do budowy laserów arsenek galu, charakteryzuje się dobrą mobilnością elektronów, ale nie dziur. Poważnym problemem jest też rozpraszanie ciepła. Ciepło to poważny problem w elektronice. W samochodach elektrycznych stosuje się z tego powodu węglik krzemu. Ma on co prawda mniejszą mobilność elektronów niż krzem, ale za to jego przewodnictwo cieplne jest 3-krotnie lepsze. Wyobraźmy sobie więc, co moglibyśmy osiągnąć stosując arsenek boru, który ma 10-krotnie lepsze przewodnictwo cieplne i większość mobilność dziur oraz elektronów niż krzem. To by wszystko zmieniło, dodaje doktor Jungwoo Shin z MIT.
      Wyzwaniem jest obecnie opracowanie metod produkcji arsenku boru w ilościach, które można by praktycznie wykorzystać. Obecne metody produkcyjne pozwalają na uzyskanie bardzo niejednorodnego materiału, z którego naukowcy wydzielają niewielkie jak najbardziej jednorodne fragmenty, by badać je w laboratoriach.
      Wiele wskazuje na to, że arsenek boru jest półprzewodnikiem (niemal) idealnym, ale nie wiemy, czy będziemy w stanie go wykorzystać, dodaje Chen. Krzem stanowi podstawę całego przemysłu półprzewodnikowego, zatem od opracowania metod masowej produkcji jednorodnego arsenku boru zależy, czy trafi on pod strzechy. Badania nad krzemem trwały całe dziesięciolecia, zanim dowiedzieliśmy się, jak uzyskiwać ten materiał o czystości dochodzącej do 99,99999999%. Arsenek boru ma jeszcze przed nami wiele tajemnic. Zanim wyprodukujemy z niego elektronikę musimy np. poznać jego długookresową stabilność.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Światło posiada niezwykle interesującą cechę. Jego fale o różnej długości nie wchodzą ze sobą w interakcje. Dzięki temu można jednocześnie przesyłać wiele strumieni danych. Podobnie, światło o różnej polaryzacji również nie wchodzi w interakcje. Zatem każda z polaryzacji mogłaby zostać wykorzystana jako niezależny kanał przesyłania i przechowywania danych, znakomicie zwiększając gęstość informacji.
      Naukowcy z Uniwersytetu Oksfordzkiego poinformowali właśnie o opracowaniu metody wykorzystania polaryzacji światła do zmaksymalizowania gęstości danych. Wszyscy wiemy, że przewaga fotoniki nad elektronika polega na tym, że światło przemieszcza się szybciej i jest bardziej funkcjonalne w szerokich zakresach. Naszym celem było wykorzystanie wszystkich zalet fotoniki połączonych z odpowiednim materiałem, dzięki czemu chcieliśmy uzyskać szybsze i gęstsze przetwarzanie informacji, mówi główny autor badań, doktorant June Sang Lee.
      Jego zespół, we współpracy z profesorem C. Davidem Wrightem z University of Exeter, opracował nanowłókno HAD (hybrydyzowane-aktywne-dielektryczne). Każde z nanowłókien wyróżnia się selektywną reakcją na konkretny kierunek polaryzacji, zatem możliwe jest jednoczesne przetwarzanie danych przenoszonych za pomocą różnych polaryzacji. Stało się to bazą do stworzenia pierwszego fotonicznego procesora wykorzystującego polaryzację światła. Szybkość obliczeniowa takiego procesora jest większa od procesora elektronicznego, gdyż poszczególne nanowókna są modulowane za pomocą nanosekundowych impulsów optycznych. Nowy układ może być ponad 300-krotnie bardziej wydajny niż współczesne procesory.
      To dopiero początek tego, co możemy osiągnąć w przyszłości, gdy uda się nam wykorzystać wszystkie stopnie swobody oferowane przez światło, w tym polaryzację. Dzięki temu uzyskamy niezwykły poziom równoległego przetwarzania danych. Nasze prace wciąż znajdują się na bardzo wczesnym etapie, dlatego też szacunki dotyczące prędkości pracy takiego układu wciąż wymagają eksperymentalnego potwierdzenia. Mamy jednak niezwykle ekscytujące pomysły łączenia elektroniki, materiałów nieliniowych i komputerów, komentuje profesor Harish Bhakaran, który od ponad 10 lat prowadzi prace nad wykorzystaniem światła w technologiach obliczeniowych.
      Ze szczegółami pracy można zapoznać się w artykule Polarisation-selective reconfigurability in hybridized-active-dielectric nanowires opublikowanym na łamach Science Advances.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Urządzenia elektroniczne pracują coraz szybciej i szybciej.Jednak w pewnym momencie dotrzemy do momentu, w którym prawa fizyki nie pozwolą na dalsze ich przyspieszanie. Naukowcy z Uniwersytetu Technologicznego w Wiedniu, Uniwersytetu Technologicznego w Grazu i Instytutu Optyki Kwantowej im. Maxa Plancka w Garching określili najkrótszą skalę czasową, w której mogą pracować urządzenia optoelektroniczne.
      Podzespoły elektroniczne pracują w określonych interwałach czasowych i z sygnałami o określonej długości. Procesy kwantowo-mechaniczne, które umożliwiają wygenerowanie sygnału, trwają przez pewien czas. I to właśnie ten czas ogranicza tempo generowania i transmisji sygnału. Jego właśnie udało się określić austriacko-niemieckiemu zespołowi.
      Naukowcy, chcąc dotrzeć do granic tempa konwersji pól elektrycznych w sygnał elektryczny, wykorzystali impulsy laserowe, czyli najbardziej precyzyjne i najszybsze dostępne nam pola elektromagnetyczne. O wynikach swoich badań poinformowali na łamach Nature Communications.
      Badaliśmy materiały, które początkowo w ogóle nie przewodzą prądu, mówi profesor Joachim Burgdörfer z Instytutu Fizyki Teoretycznej Uniwersytetu Technologicznego w Wiedniu. Materiały te oświetlaliśmy ultrakrótkimi impulsami lasera pracującego w ekstremalnym ultrafiolecie. Impulsy te przełączały wzbudzały elektrony, które wchodziły na wyższy poziom energetyczny i zaczynały się swobodnie przemieszczać. W ten sposób laser zamieniał na krótko nasz materiał w przewodnik. Gdy tylko w materiale pojawiały się takie swobodne elektrony, naukowcy z pomocą drugiego, nieco dłuższego impulsu laserowego, przesuwali je w konkretnym kierunku. W ten sposób dochodziło do przepływu prądu elektrycznego, który rejestrowano za pomocą elektrod po obu stronach materiału.
      Cały proces odbywał się w skali atto- i femtosekund. Przez długi czas uważano, że zjawiska te powstają natychmiast. Jednak obecnie dysponujemy narzędziami, które pozwalają nam je precyzyjnie badać, wyjaśnia profesor Christoph Lemell z Wiednia. Naukowcy mogli więc odpowiedzieć na pytanie, jak szybko materiał reaguje na impuls lasera, jak długo trwa generowanie sygnału i jak długo sygnał ten trwa.
      Eksperyment był jednak obarczony pewną dozą niepewności związaną ze zjawiskami kwantowymi. Żeby bowiem zwiększyć tempo, konieczne były ekstremalnie krótkie impulsy lasera, by maksymalnie często dochodziło do tworzenia się wolnych elektronów. Jednak wykorzystanie ultrakrótkich impulsów oznacza, że nie jesteśmy w stanie precyzyjnie zdefiniować ilości energii, jaka została przekazana elektronom. Możemy dokładnie powiedzieć, w którym momencie w czasie dochodziło do tworzenia się ładunków, ale nie mogliśmy jednocześnie określić, w jakim stanie energetycznym one były. Ciała stałe mają różne pasma przewodzenia i przy krótkich impulsach laserowych wiele z nich jest wypełnianych wolnymi ładunkami w tym samym czacie, dodaje Lemell.
      Elektrony reagują różnie na pole elektryczne, a reakcja ta zależy od tego, jak wiele energii przenoszą. Jeśli nie znamy dokładnie tej wartości, nie możemy precyzyjnie ich kontrolować i dochodzi do zaburzeń przepływu prądu. Szczególnie przy bardzo intensywnej pracy lasera.
      Okazuje się, że górna granica możliwości kontrolowania procesów optoelektronicznych wynosi około 1 petaherca, mówi Joachim Burgdörfer. To oczywiście nie oznacza, że będziemy kiedykolwiek w stanie wyprodukować układy komputerowe z zegarami pracującymi nieco poniżej petaherca. Realistyczne możliwości technologii są zwykle znacznie niższe niż granice fizyczne. Jednak mimo tego, że nie jesteśmy w stanie pokonać praw fizyki, badania nad limitami fizycznych możliwości pozwalają na ich analizowanie, lepsze zrozumienie i udoskonalanie technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po 266 latach udało się pokonać zjawisko Leidenfrosta, dzięki czemu naukowcy z City University of Hong Kong mogli pochwalić się stworzeniem efektywnego systemu chłodzenia cieczą, który sprawdza się w temperaturach nawet powyżej 1000 stopni Celsjusza. System taki można będzie zastosować w silnikach lotniczych, rakietowych oraz poprawić dzięki niemu stabilność i bezpieczeństwo pracy reaktorów atomowych przyszłej generacji.
      Zjawisko Leidenfrosta od wieków fascynuje naukowców, a niedawno informowaliśmy o odkryciu jego nowej odmiany. Zjawisko to zostało odkryte w 1756 roku. Powoduje ono, że krople cieczy spadając na bardzo gorącą powierzchnię nie odparowują od razu, ale poruszają się, lewitując nad nimi. Ich odparowanie może potrwać dłuższa chwilę. Pomiędzy kroplą a powierzchnią tworzy się bowiem warstwa pary, która znacząco obniża transfer energii z powierzchni. Przez to chłodzenie cieczą bardzo gorących powierzchni jest nieefektywne. Przez ponad 200 lat nie potrafiono poradzić sobie z tym problemem.
      Naukowcy z Hongkongu stworzyli powierzchnię o zróżnicowanej teksturze, której główne elementy mają różne właściwości termiczne i geometryczne. Nowatorska struktura złożona jest z trzech zasadniczych elementów. Pierwszy z nich to wystające ponad powierzchnię miniaturowe filary służące do transferu energii. Drugi, to termiczna warstwa izolująca umieszczona pomiędzy filarami, której zadaniem jest zassanie i odparowanie cieczy. Zaś element trzeci, to znajdujące się pod warstwą izolującą mikrokanaliki w kształcie litery U, służące do odprowadzenia pary. Eksperymenty wykazały, że taka architektura zapobiega powstawaniu zjawiska Leidenfrosta nawet w temperaturach dochodzących do 1150 stopni Celsjusza i pozwala na efektywne kontrolowane chłodzenie cieczą w zakresie od 100 do ponad 1150 stopni.
      Nasze multidyscyplinarne badania to prawdziwy przełom w nauce i inżynierii. Połączyliśmy tutaj naukę o powierzchniach, hydro- i aerodynamice, chłodzeniu, nauki materiałowe, fizykę, wiedzę z dziedziny energii i inżynierii. Poszukiwanie nowych strategii w dziedzinie chłodzenia cieczami to ważny obszar badawczy inżynierii materiałowej od 1756 roku. Udało nam się pozbyć zjawiska Leidenfrosta. W ten sposób dokonaliśmy zmiany paradygmatów dotyczących możliwości chłodzenia cieczą w bardzo wysokich temperaturach. Dotychczas nikomu nie udało się tego osiągnąć, cieszy się profesor Wang Zunkai.
      Uczony wyjaśnia, że pojawianie się zjawiska Leidenfrota powoduje, że tam, gdzie mamy do czynienia z bardzo wysokimi temperaturami wykorzystujemy chłodzenie powietrzem, zamiast potencjalnie bardziej efektywnego chłodzenia cieczą. Ma to miejsce szczególnie w silnikach samolotowych, rakietowych i reaktorach jądrowych. Dodaje, że nowatorską strukturę można produkować w formie elastycznej okładziny do mocowania na elementach, które mają być chłodzone. To szczególnie ważne tam, gdzie bezpośrednie stworzenie takiej struktury na etapie produkcji urządzenia byłoby trudne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Microsoft zatrudnił byłego projektanta układów scalonych Apple'a, , który wcześniej pracował też w firmach Arm i Intel,  trafił do grupy kierowanej przez Raniego Borkara, zajmującej się rozwojem chmury Azure. Zatrudnienie Filippo wskazuje, że Microsoft chce przyspieszyć prace nad własnymi układami scalonymi dla serwerów tworzących oferowaną przez firmę chmurę. Koncern idzie zatem w ślady swoich największych rywali – Google'a i Amazona.
      Obecnie procesory do serwerów dla Azure są dostarczane przez Intela i AMD. Zatrudnienie Filippo już odbiło się na akcjach tych firm. Papiery Intela straciły 2% wartości, a AMD potaniały o 1,1%.
      Filippo rozpoczął pracę w Apple'u w 2019 roku. Wcześniej przez 10 lat był głównym projektantem układów w firmie ARM. A jeszcze wcześniej przez 5 lat pracował dla Intela. To niezwykle doświadczony inżynier. Właśnie jemu przypisuje się wzmocnienie pozycji układów ARM na rynku telefonów i innych urządzeń.
      Od niemal 2 lat wiadomo, że Microsoft pracuje nad własnymi procesorami dla serwerów i, być może, urządzeń Surface.
      Giganci IT coraz częściej starają się projektować własne układy scalone dla swoich urządzeń, a związane z pandemią problemy z podzespołami tylko przyspieszyły ten trend.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...