Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Promieniowanie kosmiczne poważnym problemem dla komputerów kwantowych

Rekomendowane odpowiedzi

Twórcy komputerów kwantowych będą musieli przeprojektować je tak, by maksymalnie chronić je przed promieniowaniem tła. Robert McDermott z University of Wisconsin-Madison, którego wcześniejsze badania wykazały, że promieniowanie kosmiczne może poważnie zakłócić pracę komputerów kwantowych, stwierdził teraz, że powszechnie używana metoda korekcji błędów nie poradzi sobie z tym problemem.

Prowadzony przez McDermotta międzynarodowy zespół specjalistów sugeruje, że do utrzymania akceptowalnego poziomu błędów konieczne będzie nie tylko zastosowanie fizycznych barier chroniących komputery kwantowe przed promieniowaniem, ale również zmiana w samych projektach układów scalonych.

Promieniowanie kosmiczne to znany problem, który trapi też klasyczne komputery, mogąc wywoływać w nich błędy. Jednak w przypadku komputerów kwantowych problem jest większy, gdyż promieniowanie może zmienić stan kubitu w dwóch kierunkach (reprezentowanych przez osie X i Z), a nie w jednym. Dlatego też stosuje się metodę korekcji błędów, w której informacje zapisywane są w jednowymiarowej macierzy kubitów, z których każdy jest połączony z sąsiadem. Przy niewielkiej liczbie błędów możliwe jest wykorzystanie kubitów sąsiednich do naprawienia stanu błędnego kubity. Pod warunkiem jednak, że w tym samym czasie nie przydarzy się błąd w kubitach ze sobą sąsiadujących.

Badania zespołu McDermotta wskazują jednak, że błędy powodowane przez promieniowanie kosmiczne i promieniowanie gamma nie spełniają drugiego z warunków. Odkryliśmy istnienie wielu mechanizmów występowania skorelowanych błędów, mówi Chris Wilen, jeden z badaczy.

Na potrzeby swoich badań zespół stworzył chip zawierający dwie pary kubitów. Odległość pomiędzy kubitami jednej z par wynosiła 340 µm, a między drugą parą – 640 µm. Podczas przeprowadzania operacji kwantowych na swoim systemie, naukowcy zaobserwowali liczne jednoczesne przeskoki ładunków w parach kubitów. Gdy przeprowadzili modelowanie tych przeskoków za pomocą standardowych narzędzi używanych w fizyce cząstek, odkryli, że ich źródłem są uderzenia promieni kosmicznych i promieni gamma w sam układ scalony.

Prawdopodobieństwo skorelowanych przeskoków ładunku było większe w parze o mniejsze odległości pomiędzy kubitami, co wskazuje, że odsunięcie kubitów od siebie pozwoli na zmniejszenie liczby błędów.

Odkryto jednak również inny poważny problem. Okazało się bowiem, że energia uderzeń promieni w chip była zamieniana z fonony, wibracje materiału, które mogą prowadzić do powstania kwazicząstek. Gdy fonony się rozprzestrzeniały w układzie, generowały kolejne skorelowane błędy, które pojawiały się w całym niewielkim układzie. I właśnie to „zatrucie kwazicząstkami” może być najpoważniejszym problemem dla systemów korekcji błędów.

Autorzy badań proponują dwa rozwiązania problemu. Jeden z nich to zastosowanie ołowianej obudowy wokół kwantowych układów scalonych i umieszczenie ich pod ziemią, tak jak się robi np. z wykrywaczami neutrin. Druga z metod to zmniejszenie wrażliwości kubitów, co można by osiągnąć np. poprzez domieszkowanie chipa materiałami wiążącymi kwazicząstki lub wyprowadzającymi je poza układ.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Najnowszy numer Nature przynosi przełomowe informacje na temat praktycznego wykorzystania komputerów kwantowych. Naukowcy z Uniwersytetu Nowej Południowej Walii (UNSW) wykazali, że możliwe jest stworzenie niemal wolnego od błędów krzemowego procesora kwantowego. Dzisiejsza publikacja pokazuje, że obliczenia przeprowadzane przez nasz procesor były w ponad 99% wolne od błędów. Gdy odsetek błędów jest tak mały, możliwym staje się ich wykrywanie i korygowanie w czasie rzeczywistym. A to oznacza, że można wybudować skalowalny komputer kwantowy wykonujący wiarygodne obliczenia, wyjaśnia profesor Andrea Morello z UNSW.
      Morello stoi na czele zespołu złożonego z naukowców z Australii, USA, Japonii i Egiptu. Ich celem jest zbudowanie uniwersalnego komputera kwantowego, czyli maszyny, której możliwości obliczeniowe nie będą ograniczone do jednego rodzaju zadań. Badania, których wyniki właśnie opublikowaliśmy, to bardzo ważny krok w tym kierunku, podkreśla uczony.
      Jednak, co niezwykle ważne, artykuł Morello i jego zespołu to jeden z trzech tekstów z Nature, których autorzy informują o niezależnym od siebie osiągnięciu niskiego odsetka błędów w opartych na krzemie procesorach kwantowych.
      Z najnowszego Nature, którego redakcja zdecydowała się na zilustrowanie kwantowego przełomu na okładce, dowiadujemy się, że wiarygodność operacji obliczeniowych na jednym kubicie osiągnięta przez Morello i jego zespół wyniosła 99,95%, a operacji na dwóch kubitach – 99,37%. Niezależnie od nich zespół z holenderskiego Uniwersytetu Technologicznego w Delft, prowadzony przez Lievena Vandersypena osiągnął wiarygodność rzędu 99,87% przy operacjach na jednym kubicie i 99,65% podczas operacji dwukubitowych. W trzecim z artykułów czytamy zaś o pracach naukowców z japońskiego RIKEN, w trakcie których grupa Seigo Taruchy mogła pochwalić się wiarygodnością 99,84% przy działaniach na jednym kubicie i 99,51% przy pracy z dwoma kubitami.
      Wydajność procesorów z UNSW i Delft została certyfikowana zaawansowaną metodą gate set tomography opracowaną przez amerykańskie Sandia National Laboratories, a wyniki certyfikacji zostały udostępnione innym grupom badawczym.
      Zespół profesora Morello już wcześniej wykazał, że jest w stanie utrzymać kwantową informację w krzemie przez 35 sekund. W świecie kwantowym 35 sekund to wieczność. Dla porównania, słynne nadprzewodzące komputery kwantowe Google'a i IBM-a są w stanie utrzymać taką informację przez około 100 mikrosekund, czyli niemal milion razy krócej, zauważa Morello. Osiągnięto to jednak izolując spiny (kubity) od otoczenia, co z kolei powodowało, że wydaje się niemożliwym, by kubity te mogły wejść ze sobą w interakcje, a więc nie mogły wykonywać obliczeń.
      Teraz z artykułu w Nature dowiadujemy się, że udało się pokonać problem izolacji wykorzystując elektron okrążający dwa jądra atomu fosforu.
      Gdy masz dwa jądra połączone z tym samym elektronem, może zmusić je do wykonywania operacji kwantowych, stwierdza doktor Mateusz Mądzik, jeden z głównych autorów eksperymentów. Gdy nie operujesz na elektronie, jądra te mogą bezpiecznie przechowywać kwantowe informacje. Teraz jednak mamy możliwość, by jądra wchodziły w interakcje za pośrednictwem elektronu i w ten sposób możemy wykonywać uniwersalne operacje kwantowe, które mogą rozwiązywać każdy rodzaj problemów obliczeniowych, wyjaśnia Mądzik.
      Gdy splączemy spiny z elektronem, a następnie możemy elektron ten przesunąć w inne miejsce i splątać go z kolejnymi kubitami, tworzymy w ten sposób duże macierze kubitów zdolnych do przeprowadzania solidnych użytecznych obliczeń, dodaje doktor Serwan Asaad.
      Jak podkreśla profesor David Jamieson z University of Melbourne, atomy fosforu zostały wprowadzone do krzemowego procesora za pomocą tej samej metody, jaka jest obecnie używana w przemyśle półprzewodnikowym. To pokazuje, że nasz kwantowy przełom jest kompatybilny z obecnie używanymi technologiami.
      Wszystkie obecnie używane komputery wykorzystują systemy korekcji błędów i redundancji danych. Jednak prawa mechaniki kwantowej narzucają ścisłe ograniczenia na sposób korekcji błędów w maszynach kwantowych. Konieczne jest osiągnięcie odsetka błędów poniżej 1%. Dopiero wtedy można zastosować kwantowe protokoły korekcji błędów. Teraz, gdy udało się ten cel osiągnąć, możemy zacząć projektować skalowalne krzemowe procesory kwantowe, zdolne do przeprowadzania użytecznych wiarygodnych obliczeń, wyjaśnia Morello.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Biały Dom ogłosił, że budżet federalny wraz z prywatnymi partnerami przeznaczy w ciągu najbliższych 5 lat ponad miliard dolarów na stworzenie i sfinansowanie 12 centrów badawczych zajmujących się sztuczną inteligencją i naukami informatycznymi. Celem inicjatywy jest utrzymanie pozycji USA jako światowego lidera w dziedzinie SI i technologii kwantowych. W najbliższym czasie powstanie siedem Artificial Intelligence Research Institutes oraz pięć Quantum Information Science Research Centers.
      W ogłoszonym przez Biały Dom programie udział wezmą zarówno giganci IT jak IBM czy Microsoft, czołowe uczelnie jak University of California czy Massachusetts Institute of Technology, jak i laboratoria narodowe, w tym Fermilab, Argonne oraz Lawrence Berkeley.
      Jednym z zadań nowo utworzonych jednostek badawczo-rozwojowych będzie inwestowanie we wczesne badania, w które prywatny biznes niechętnie inwestuje, a które są istotne z punktu widzenia utrzymania przez USA pozycji lidera na tym polu. Na przykład jeden z instytutów będzie pracował na narzędziami SI, które mogą przyspieszyć odkrywanie i produkcję nowych związków bioaktywnych. Instytuty będą służyły też do szkoleń przyszłych pokoleń ekspertów ds. SI.
      Ogłoszona przez Biały Dom inicjatywa zbiegła się z nową propozycją budżetową administracji prezydenckiej, która chce, by o 30% zwiększyć wydatki na niezwiązany z obronnością sektor badań nad SI oraz informatyką kwantową. Zgodnie z planem budżet federalny na sztuczną inteligencję ma do roku 2022 wzrosnąć do 2 miliardów USD, a na informatykę kwantową do 860 milionów dolarów.
      Tymczasem wpływowy waszyngtoński think-tank Center for a New American Security uważa, że z budżetu federalnego USA powinny do roku 2025 wydawać na badania nad SI – w tym na SI związane z obronnością – 25 miliardów USD rocznie.
      Warto przypomnieć, że obecnie amerykański sektor prywatny przeznacza na badania nad sztuczną inteligencją około 40 miliardów USD na rok.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tysiące czy miliony smartfonów mogłyby utworzyć największy detektor cząstek promieniowania kosmicznego, obejmujący całą planetę. Aby pomóc tworzyć taki detektor, wystarczy zainstalować na smartfonie bezpłatną aplikację CREDO Detector.
      Gdy z kosmosu nadlatuje cząstka promieniowania o energii rzędu największych z obserwowanych we Wszechświecie, inicjuje w ziemskiej atmosferze spektakularne zjawisko: gigantyczną kaskadę cząstek wtórnych, nazywaną wielkim pękiem atmosferycznym. Po dotarciu do Ziemi, wywołana pojedynczą cząstką kaskada może pokryć powierzchnię nawet dużej aglomeracji.
      Okazuje się, że takie cząstki może wykryć nawet zwykły smartfon... robiąc zdjęcie przy całkowicie zakrytym obiektywie. Wydaje się, że takie "nieudane" zdjęcie powinno być całkiem czarne. Jeśli jednak przez detektor kamery przejdzie cząstka (np. wtórnego promieniowania kosmicznego, ewentualnie cząstka promieniowania lokalnego), może pobudzić jego niektóre piksele. Na jednorodnie czarnym tle powinno się wtedy pojawić od kilku do kilkudziesięciu jaśniejszych pikseli, zlepionych w grupkę o mniej lub bardziej fantazyjnych kształtach. W ciągu doby można się spodziewać od jednej do nawet kilkuset detekcji. I właśnie takie nie do końca czarne zdjęcia zbierać będzie aplikacja CREDO Detector przygotowana przez polskich badaczy.
      O aplikacji poinformowali w przesłanym PAP komunikacie przedstawiciele Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN).
      Jeśli aplikację CREDO Detector zainstalowałyby tysiące czy miliony użytkowników na całym świecie, CREDO stałby się największym w historii detektorem cząstek. CREDO Detector nie jest wprawdzie jedyną aplikacją do detekcji cząstek promieniowania kosmicznego czy radioaktywności lokalnej, jest to jednak pierwszy program tego typu z otwartym, dostępnym dla każdego kodem.
      Co więcej, CREDO Detector jest częścią globalnego przedsięwzięcia naukowego - Cosmic-Ray Extremely Distributed Observatory (CREDO), zainicjowanego i koordynowanego przez zespół naukowców z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie.
      Użytkownik, który choć na chwilę uruchomi detekcję cząstek w CREDO Detector, ma prawo do członkostwa w międzynarodowej kolaboracji CREDO oraz do podpisywania jej publikacji swoim nazwiskiem.
      Badania w ramach programu pomogą odpowiedzieć na intrygujące pytania takie jak: czy za niektóre choroby odpowiadają zjawiska astrofizyczne zachodzące miliony, a nawet miliardy lat świetlnych od Ziemi? Czy ciemna materia rzeczywiście istnieje? Jaka jest prawdziwa natura naszej czasoprzestrzeni – ciągła czy cyfrowa? Czy egzotyczne efekty kwantowej grawitacji można badać eksperymentalnie?
      Jeśli CREDO zdobędzie choćby umiarkowaną popularność, dane ze smartfonów rozproszonych na wszystkich kontynentach mają szansę zrewolucjonizować nie tylko fizykę teoretyczną, ale także dziedziny znacznie bliższe naszej codzienności - zauważa dr hab. Piotr Homola z IFH PAN.
      Stworzyliśmy CREDO z myślą o naukowej potrzebie zorganizowania globalnej infrastruktury, za której pomocą będzie można realizować nie jeden, lecz wiele wyspecjalizowanych eksperymentów. Pierwszy z nich, Quantum Gravity Previewer – czyli Podglądacz Kwantowej Grawitacji – został uruchomiony 17 maja. Spodziewamy się, że już jesienią tego roku zbierzemy ilość danych wystarczającą do przedstawienia pierwszych poważnych raportów naukowych. Na tym właśnie polega prawdziwe piękno naszego projektu: badamy tak egzotyczne obszary naszej rzeczywistości, że możemy się spodziewać nawet... niespodziewanego - mówi dr Homola.
      Aplikacja dostępna jest na telefony z systemem operacyjnym Android.
      Oprogramowanie projektu CREDO, w tym aplikacja CREDO Detector, będzie udostępnione dla każdego na licencji MIT, co oznacza, że może być rozwijane i używane w innych projektach naukowych, szkolnych, a nawet komercyjnych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Trudno policzyć, ile ludzkich wynalazków i technologii jest kopiowaniem bądź naśladowaniem natury. Nic dziwnego, przecież pierwsi ludzie to właśnie na naturze się wzorowali. Ale okazuje się, że wielkie współczesne technologie, o których sądzimy, że są naszym oryginalnym wynalazkiem, również występują w naturze. Naszą dumę z z umiejętności przyspieszania cząstek elementarnych w akceleratorach chyba przyćmi fakt, że akceleratory w naturze występują od dawna. Do tego często tuż nad naszymi głowami.
      Naturalne akceleratory cząstek przebadał i opisał dr Martin Füllekrug z Wydziału Inżynierii Elektrycznej i Elektronicznej angielskiego Uniwersytetu w Bath. Odkrył on, że tworzą się one naturalnie 40 kilometrów nad ziemią podczas burz. Do swojego powstania potrzebują tylko jednego warunku: aby podczas wyładowania pioruna jednocześnie nad Ziemię dotarły wysokoenergetyczne cząstki promieniowania kosmicznego - ponad chmurami burzowymi tworzy się wówczas gigantyczny akcelerator. Jak powiedział - zdumiewające, że natura tworzy akceleratory cząstek zaledwie parę kilometrów nad naszymi głowami. Kiedy przebadamy je dokładniej, będziemy mieli znacznie lepsze pojęcie, jak dokładnie działają. W badaniach uczestniczył zespół europejskich naukowców z Danii, Francji, Hiszpanii, i Wielkiej Brytanii, a także współpracownik dra Füllekruga z amerykańskiego Narodowego Laboratorium w Los Alamos. Europejscy uczeni obserwowali obszary burzowe przy pomocy kamer, wyszukując wyładowania o mocy dostatecznie dużej, by wywołać zjawisko świecenia powietrza powyżej chmur burzowych, zwane duszkami. Niewielka część takich duszków zbiega się z przebiegiem wiązki przyspieszonych elektronów. 
      Jak to działa? Wysokoenergetyczne promieniowanie kosmiczne wybija z molekuł powietrza elektrony, które są następnie wybijane w górę i przyspieszane przez pole elektryczne, towarzyszące wyładowaniu pioruna. Przyspieszone wolne elektrony łączą się w skoncentrowany strumień cząstek - jak w akceleratorze - i rozchodzą z troposfery (czyli najniższej warstwy atmosfery) do jej górnych części, aż do obszaru bliskiego kosmosu. Tam są więzione i zakrzywiane przez pole radiacyjne Ziemi. Te trwające mgnienie oka zjawiska niosą ze sobą energię porównywalną z mocą małej elektrowni atomowej!
      Dr Füllekrug wyjaśnia też, w jaki sposób je badano - sztuka polegała na tym, jak określić wysokość takiego naturalnego akceleratora cząstek, było to możliwe dzięki falom radiowym emitowanym przez wiązkę przyspieszanych elektronów. Istnienie towarzyszących zjawisku fal radiowych przewidział dr Robert Roussel-Dupré z Los Alamos, który zajmuje się symulacjami komputerowymi zjawisk.
      Co ciekawe, zjawisko to przewidziano teoretycznie już dawno. Szkocki naukowiec, laureat Nagrody Nobla w dziedzinie fizyki, Charles Thomson Rees Wilson wspominał o możliwości przyspieszania cząstek ponad chmurami burzowymi w wyniku wyładowań już w roku 1925.
      W ciągu najbliższych kilku lat pięć planowanych misji kosmicznych (satelity TARANIS, ASIM, CHIBIS, IBUKI oraz FIREFLY) będzie miało wśród swoich zadań dokładne i bezpośrednie badania przyspieszanych tak wysokoenergetycznych strumieni cząstek. Badania będą mieć istotne znaczenie, ponieważ strumienie te stanowią potencjalne zagrożenie dla satelitów. Jak powiedział autor badań: to cudowny przykład współzależności Ziemi i szerokiego Kosmosu. Wyniki badań ogłoszono 14 kwietnia na Narodowym Spotkaniu Astronomicznym Królewskiego Towarzystwa Astronomicznego (Royal Astronomical Society National Astronomy Meeting) w Glasgow.
    • przez KopalniaWiedzy.pl
      Duńscy naukowcy potwierdzili stosunkowo słabo dotąd znaną teorię tworzenia się chmur. Wg nich, jądra kondensacji, które pomagają ustabilizować zarodniki kropelek, tłumaczą formowanie się chmur nad obszarami miejskimi, ale nie nad lasami deszczowymi, oceanami czy w czasach poprzedzających rewolucję przemysłową.
      Gdyby jednak uznać, że cząstki promieniowania kosmicznego – protony i neutrony – zderzają się w atmosferze ziemskiej z cząsteczkami wody, wybijając z nich elektrony, a powstające w ten sposób jony przyciągają nienaruszone cząsteczki, sprawa wyglądałaby już zupełnie inaczej.
      W 2006 r. członkowie zespołu fizyka Henrika Svensmarka z Duńskiego Uniwersytetu Technicznego w Kopenhadze sztucznie wytworzyli aerozol w komorze atmosferycznej. Zbombardowali wtedy dipole wody strumieniem cząstek. Większa liczba jonów oznaczała większą ilość aerozolu.
      W ramach najnowszego studium Svensmark skoncentrował się na spadkach natężenia promieniowania kosmicznego, tzw. spadkach Forbusha. Są one skutkiem burz na Słońcu i koronalnych wyrzutów masy. Do przestrzeni międzyplanetarnej trafiają głównie elektrony i protony oraz nieco jonów cięższych pierwiastków. Wiatr słoneczny i związane z nim pole magnetyczne odpychają cząstki promieniowania kosmicznego, tworząc coś w rodzaju okresowej tarczy. Gdyby rzeczywiście tworzenie się chmur miało coś wspólnego z promieniowaniem kosmicznym, w czasie spadku Forbusha okrywa powinna być cieńsza. By to sprawdzić, Duńczycy zebrali satelitarne dane pogodowe z ostatnich 22 lat i zestawili je z 26 spadkami Forbusha. W przypadku 5 najsilniej zaznaczonych zawartość kropli w chmurach zmalała średnio o 7%. Po kilku tygodniach wszystko wracało do normy. Teraz jesteśmy przekonani, że spadki Forbusha wpływają na aerozole.
      Svensmark sądzi, że jego odkrycia wskazują na związek między promieniowaniem kosmicznym a zmianą klimatu. Skoro z chmur pada i odbijają one światło słoneczne, to ich skurczenie oznacza ogrzanie Ziemi.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...