Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

W szwajcarskich Alpach szybko powstają nowe jeziora

Recommended Posts

Opublikowany właśnie spis szwajcarskich jezior ujawnił, że od czasu zakończenia w 1850 roku małej epoki lodowej w szwajcarskich Alpach pojawiło się niemal 1200 nowych jezior, z których około 1000 istnieje do dzisiaj. To znacznie więcej, niż spodziewali się przeprowadzający spis specjaliści ze Szwajcarskiego Federalnego Instytutu Hydrologii i Technologii.

Byliśmy zaskoczeni tak dużą liczbą nowych jezior, mówi Daniel Odermatt, który stał na czele zespołu dokonującego spisu. Uczony dodaje, że widoczny jest znaczne przyspieszenie tempa ich tworzenia się. Tylko w ciągu ostatniej dekady w szwajcarskich Alpach pojawiło się 180 nowych jezior.

Szwajcarska Akademia Nauk informuje, że alpejskie lodowce w Szwajcarii ciągle się kurczą. Tylko w ubiegłym roku straciły aż 2% objętości. Nawet gdyby udało się wypełnić zobowiązania Porozumienia Paryskiego i zatrzymać globalne ocieplenie zanim osiągnie ono poziom 2 stopni Celsjusza sprzed epoki przemysłowej, to i tak prawdopodobnie zniknie 2/3 alpejskich lodowców, wynika z badań przeprowadzonych w 2019 roku przez ETH Zurich.

Z przeprowadzonego spisu dowiadujemy się, że w latach 1946–1973 każdego roku średnio pojawiało się rocznie 8 nowych jezior. Następnie tempo ich tworzenia nieco spadło, by znowu zacząć rosnąć. W latach 2006–2016 tworzyło się już średnio 18 nowych jezior w ciągu roku. To wyraźny dowód na zmiany klimatu zachodzące w Alpach, stwierdzają autorzy raportu.

Przeprowadzenie najnowszych badań było możliwe dzięki olbrzymiej ilości danych na temat szwajcarskich lodowców, które były zbierane od połowy XIX wieku. Dzięki nim naukowcy byli w stanie szczegółowo opisać siedem okresów pomiędzy rokiem 1850–2016.

Dla każdego z 1200 jezior, jakie w tym czasie powstały, określono lokalizację, wysokość nad poziomem morza, kształt, wielkość jeziora w różnych okresach oraz rodzaj materiału, który zatrzymuje wodę czy sposób, a jaki jezioro się opróżnia. Dzięki tym danym specjaliści mogą szacować ryzyka związane z istnieniem tych jezior, takie jak np. nagłe pęknięcie brzegów i spłynięcie wody. Badacze ostrzegają, że rosnąca liczba jezior oznacza coraz większe ryzyko dla położonych poniżej miejscowości.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Teren dzisiejszej Szwajcarii nie zawsze był obszarem śródlądowym. Przed 20 milionami lat obecną Wyżynę Szwajcarską pokrywał ocean, w którym pływały delfiny. Naukowcy z Uniwersytetu w Zurichu odkryli właśnie nieznane gatunki delfina, spokrewnione ze współczesnymi kaszalotami spermacetowatymi i delfinami słonowodnymi. Identyfikacji dokonano na podstawie kości ucha.
      Gdy 20 milionów lat temu klimat zaczął się ocieplać, podnosił się poziom oceanów, które zalewały niżej położone obszary Europy. Dzisiejsza Szwajcaria była częścią oceanu pokrytego wyspami. Paleontolodzy z Zurichu przeanalizowali ponad 300 skamieniałości. Najbardziej interesujące z nich są kości ucha środkowego. Takie przedmioty są jednak rzadko znajdowane. Tym razem jednak się udało. Zdołaliśmy zidentyfikować dwa nieznane wcześniej gatunki delfinów, mówi paleontolog Gabriel Aguirre.
      Naukowcy, używając tomografii mikrokomputerowej, byli w stanie zrekonstruować wygląd tkanki miękkiej otaczającej skamieniałe kości. W ten sposób stworzyli trójwymiarowy model ucha. To pozwoliło nam na lepsze przeanalizowanie możliwości słyszenia tych zwierząt, wyjaśnia uczony. Zidentyfikowane zwierzęta należały do rodziny kentriodontidae oraz squalodelphinid.
      Ze szczegółami badań można zapoznać się na łamach PeerJ.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niejednokrotnie słyszeliśmy o plastiku trafiającym do oceanów oraz pomysłach na jego usunięcie. Musimy jednak pamiętać, że plastikiem zanieczyściliśmy nie tylko wody na całym świecie. Nowe badania pokazuje, że zagęszczenie nanoplastiku w powietrzu jest znacznie większe niż dotychczas sądzono.
      Dominik Brunner ze Szwajcarskich Federalnych Laboratoriów Wiedzy Materiałowej i Technologii (Empa) oraz badacze z Uniwersytetu w Utrechcie i Austriackiego Centralnego Instytutu Meteorologii i Geofizyki postanowili zbadać, jak wiele nanoplastiku opada na ziemię z atmosfery. Uzyskane wyniki zaskoczyły badaczy.
      Z ich pomiarów wynika bowiem, że niektóre fragmenty nanoplastiku mogą być niesione przez powietrze nawet na odległość 2000 kilometrów, na każdego roku na teren Szwajcarii opada około 43 bilionów (!) miniaturowych fragmentów plastiku. To zaś może oznaczać, że w powietrza na Szwajcarię, od centrów miast po odległe alpejskie doliny, każdego roku spada 3000 ton plastikowych odpadów.
      To bardzo wysokie szacunki, wyższe niż uzyskane przez innych naukowców, dlatego potrzebne są kolejne badania. Tym bardziej, że problem nanoplastiku rozprzestrzeniającego się w powietrzu jest w ogóle bardzo słabo rozpoznany. Tymczasem badania Brunnera, pomimo szokujących wyników, są najdokładniejszymi tego typu pracami na świecie. Szwajcarski uczony i jego holendersko-austriacki zespół opracowali nową metodę oceny zanieczyszczenia plastikiem, w której użyli spektrometru mas.
      Na miejsce badań naukowcy wybrali szczyt góry Hoher Sonnenblick w Parku Narodowym Hohe Tauern w Austrii. To niewielki obszar położony na wysokości 3106 metrów n.p.m. Od 1886 roku znajduje się tam obserwatorium Centralnego Instytutu Meteorologii i Geodynamiki. Od czasu rozpoczęcia tutaj badań naukowych obserwatorium było nieczynne jedynie przez 4 dni.
      Naukowcy codziennie o tej samej porze przez 38 dni pobierali próbki śniegu z tego samego obszaru. Zawartość próbek była następnie badana, a dzięki danym meteorologicznym można było określić, skąd wiatr przyniósł plastik. Naukowcy wykazali, że największa emisja nanoplastiku ma miejsce w gęsto zaludnionych obszarach miejskich. Około 30% zanieczyszczeń plastikiem trafiało na górski szczyt ze źródeł znajdujących się w promieniu 200 kilometrów, głównie z miast. Jednak wszystko wskazuje na to, że alpejskie szczyty są też zanieczyszczane plastikiem, który jest unoszony przez wiatr z powierzchni oceanu. Około 10% plastiku pochodziło z odległości ponad 2000 kilometrów, źródłem części był Atlantyk.
      Oprócz plastiku w śniegu zidentyfikowano wiele innych zanieczyszczeń, od saharyskiego piasku po fragmenty okładzin hamulcowych z samochodów. To zanieczyszczenia, którymi oddychamy, które trafiają do naszych organizmów. Obecnie nie jest jasne, czy zanieczyszczenie mikro- i nanoplastikiem jest szkodliwe dla zdrowia. Warto jednak podkreślić, że nanoplastik jest na tyle mały, że trafia głęboko do płuc, a jest na tyle mały, że może z nich przedostać się do krwi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Polarnicy z Uniwersytetu Śląskiego zakończyli właśnie kolejną – 56. – wyprawę na Spitsbergen. Na podstawie zebranych danych chcą wskazać różnice w mechanizmie odrywania się mas lodu z lodowców wspartych o dno morza oraz lodowców częściowo pływających.
      Do tych porównań wykorzystane zostaną wyniki badań Lodowca Paierla oraz Lodowca Hansa – z sierpnia br. oraz z wieloletniej serii obserwacyjnej – poinformował PAP kierownik pierwszego etapu wyprawy, glacjolog prof. Jacek Jania z Centrum Studiów Polarnych UŚ.
      Wieloletnie badania ekspedycji naukowych UŚ zmierzają do określenia prawidłowości w reakcji lodowców Svalbardu na przyśpieszone ocieplanie Arktyki i globu. Lodowce uchodzące do morza są bardzo wrażliwe na ocieplanie klimatu. Większe topnienie dostarcza wód roztopowych do ich podłoża, co ułatwia poślizg po dnie. Tym samym przyśpiesza ruch, a w konsekwencji +produkcję+ gór lodowych. Takie lodowce zmniejszają swój zasięg dramatyczne, unaoczniając silne ocieplanie Arktyki. Ponadto, lodowce cielące się dostarczają do morza znacznie więcej masy niż te lądowe (wody roztopowe + góry lodowe). A tym samym znacząco oddziałują na wzrost poziomu oceanu światowego – podkreślił.
      Prof. Jania wskazał, że badanie lodowców uchodzących do morza jest jednym z najtrudniejszych zagadnień glacjologicznych, ze względu na niebezpieczeństwa związane ze zbliżaniem się do „cielących się” klifowych czół lodowców, od których odrywają się góry lodowe – szczególnie w lecie. Z kolei wejście na lodowiec w pobliżu czoła jest równie niebezpieczne z powodu licznych, głębokich szczelin w lodzie.
      Jednak nasi badacze od kilku dekad specjalizują się w ilościowych studiach szybkości ruchu i utraty masy tych lodowców. Stosowane są coraz nowsze metody – obok obrazów satelitarnych konieczne są również pomiary bezpośrednie w terenie obejmujące m.in. naziemny skaning laserowy dalekiego zasięgu, dający obraz dynamiki niedostępnych czół lodowcowych z dokładnością kilku, kilkunastu cm. Niezbędne są także dane oceanograficzne sprzed czół lodowców kończących się w morzu. Ponadto dla obliczenia intensywności utraty masy lodu traconej na kontakcie z wodą morską istotne są dokładna głębokość i topografia dna fiordu – opowiadał prof. Jania.
      W tym roku podwodne dane badacze uzyskali dzięki współpracy z amerykańskim statkiem oceanograficznym r/v OceanXplorer 1, który wykonał precyzyjne kartowanie dna zatoki Vestre Burgerbukta przed czołem Lodowca Paierla oraz części podwodnej jego klifu. Wyniki potwierdziły, że ten lodowiec jest częściowo pływający, w najgłębszych partiach fiordu. Jest zatem podobny do bardzo trudnodostępnych lodowców Grenlandii – produkujących wielką ilość gór lodowych i oddziałując na wzrost poziomu oceanu światowego. Może więc stać się pewnym modelem dla nich – wskazał glacjolog.
      Od lodowców wspartych o dno odłamują się mniejsze góry lodowe. Najnowsze badania pracowników UŚ wykazały, że intensywność ich cielenia zależy od termiki sezonu letniego, ilości wód roztopowych i od temperatury wody morskiej na kontakcie z klifem lodowym. Natomiast lodowce pływające lub częściowo pływające nie są jeszcze dobrze zbadane pod tym względem. Co pewien czas pojawiają się epizody +masywnego cielenia+, kiedy szeroki na 80-100 m pas czoła lodowca odrywa się od jęzora i dostarcza armadę dużych gór lodowych i masę drobnych brył druzgotu lodowego; wtedy nie da się wpłynąć do zatoki przed lodowcem. Przyczyny tych epizodów wymagają zbadania – dodał prof. Jania.
      Tegoroczna wyprawa na Spitsbergen (a dokładniej – w rejon fiordu Hornsund na południowym Spitsbergenie) była już 56. ekspedycją polarników z Uniwersytetu Śląskiego.
      Jak wskazał prof. Jania, przez pandemię COVID-19 ciągłość ich długich, wieloletnich serii obserwacyjnych została zagrożona, ponieważ ani w tym, ani poprzednim roku nie udało się zorganizować wiosennej ekspedycji, przypadającej na koniec arktycznej zimy.
      Lodowce cielące się dostarczają do morza znacznie więcej masy niż te lądowe (wody roztopowe + góry lodowe). A tym samym znacząco oddziałują na wzrost poziomu oceanu światowego
      Wyprawy w sezonie letnim starają się zapełnić te luki. Jednakże niektóre instrumenty niedoglądane na koniec zimy przestały pracować lub uległy zniszczeniu. Aparaturą interesują się białe niedźwiedzie, a lisy polarne lubią izolację kabli zasilających instrumenty z akumulatorów i powodują zwarcia instalacji – wyjaśnił. Dodał, że tegoroczne prace były dodatkowo utrudnione przez często pojawiające się w rejonie Polskiej Stacji Polarnej niedźwiedzie polarne, stanowiące poważne zagrożenie podczas prac badawczych.
      Tegoroczna ekspedycja realizowana była w dwóch etapach. W sierpniu badacze prowadzili badania terenowe dla monitoringu ewolucji lodowców arktycznych pod wpływem zmian klimatu. W skład tego zespołu weszli: dr inż. Małgorzata Błaszczyk – geodeta i glacjolog, dr Michał Ciepły – glacjolog, prof. Jacek A. Jania - glacjolog, geomorfolog, kierownik wyprawy, mgr Kamil Kachniarz – glacjolog, doktorant, mgr Aleksandra Osika – geomorfolog, doktorantka, mgr Katarzyna Stachniak – hydrolog, doktorantka oraz lic. Dawid Saferna – magistrant geografii.
      W drugim etapie, czyli na początku września, kontynuowano badania klimatu i lodowców, poszerzając je o wstępne badania wkraczania roślinności na tereny opuszczone przez topniejący lodowiec. Drugi zespół tworzyli: mgr Tomasz Budzik – klimatolog, kierownik grupy, mgr Mariusz Wierzgoń – botanik, doktorant w Instytucie Biologii, Biotechnologii i Ochrony Środowiska UŚ oraz lic. Natalia Łatacz – magistrantka kierunku geografia.
      Kolejna wyprawa planowana jest na przyszły rok.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy, w skład którego weszli uczeni ze Szwajcarskiego Instytutu Technologicznego w Zurichu (ETH Zurich), wykazał, że niemal wszystkie ziemskie lodowce tracą masę, a tempo utraty lodu przyspiesza. To najszerzej zakrojone i najbardziej dokładne badania tego typu. To również pierwsze badania, w których uwzględniono wszystkie lodowce na Ziemi, z wyjątkiem tych znajdujących się na Grenlandii i Antarktydzie.
      Autorzy badań uwzględnili w swoich analizach niemal 220 000 lodowców. Stwierdzili, że w latach 2000–2019 średnio każdego roku traciły one 267 gigaton (miliardów ton) lodu. To ilość wystarczająca, by każdego roku całą powierzchnię Polski zalała warstwa wody o głębokości niemal 1 metra. Widoczne jest też wyraźne przyspieszenie tempa utraty lodu. O ile bowiem w latach 200–2004 średnie roczne tempo utraty lodu wynosiło 227 GT, to w latach 2015–2019 było to 298 gigaton.
      Topnienie lodowców jest odpowiedzialne za 21% wzrostu poziomu oceanów – czyli za 0,74 mm przyrostu rocznie. Za połowę tego przyrostu odpowiada zwiększenie objętości wody spowodowane jej wyższą temperaturą, a pozostała 1/3 przyrostu to wina lodowców Grenlandii, Antarktydy oraz zmian ilości wody przechowywanej na lądach.
      Najszybciej tracą masę lodowce Alaski, Islandii i Alp. Zmiany klimatu bardzo silnie wpływają tez na lodowce w Pamirze, Hindukuszu i Himalajach. Szczególnie niepokojące jest to, co dzieje się w Himalajach. W porze suchej woda z lodowców jest ważnym źródłem zasilającym wielkie rzeki: Ganges, Indus i Bramaputrę. Obecnie przyspieszone topnienie tych lodowców działa jak bufor, dostarczając wodę ludziom żyjącym w regionie. Jeśli jednak tempo topnienia himalajskich lodowców będzie nadal przyspieszało, to w ciągu najbliższych dekad ludzie w Indiach i Bangladeszu doświadczą niedoborów wody i żywność, ostrzega Romain Hugonnet, główny autor badań, pracownik ETH Zurich i Uniwersytetu w Tuluzie.
      Naukowcy ze zdziwieniem zauważyli, że istnieją obszary, na których w latach 2000–2019 utrata masy lodowców... spowolniła. Obszary te to wschodnie wybrzeże Grenlandii, część Islandii i Skandynawii. specjaliści uważają, że przyczyną takiego stanu rzeczy jest anomalia pogodowa na Północnym Atlantyku, która spowodowała, że w latach 2010–2019 pojawiły się tam niższe temperatury i niższe opady, co spowolniło utratę lodu. Jest to jednak prawdopodobnie zjawisko przejściowe. Zauważono bowiem, że w innym miejscu świata dochodzi do zaniku podobnej anomalii. Tak zwana anomalia Karakorum spowodowała, że do roku 2010 lodowce Karakorum pozostawały stabilne, a w niektórych przypadkach nawet się rozrastały. Obecnie jednak tracą one masę podobnie jak inne lodowce.
      Na potrzeby analizy wykorzystano zdjęcia wykonywane od 1999 roku przez satelitę Terra. Okrąża on Ziemię co 100 minut na wysokości niemal 700 kilometrów. Naukowcy wykorzystali wszystkie wykonane przez niego zdjęcia i analizowali je przez 18 miesięcy za pomocą superkomputera na University of Northern British Columbia. W pracach, obok naukowców z Zurichu i Tuluzy, brali udział specjaliści z Uniwersytetów w Oslo, Ulsterze, Northern British Columbia i Szwajcarskiego Federalnego Instytutu Badań nad Lasem, Śniegiem i Krajobrazem.
      Artykuł Accelerated global glacier mass loss in the early twenty-first century został opublikowany na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zakończono budowę jednego z największych na świecie teleskopów. Przed dwoma dniami grupa uczonych obserwowała, jak ostatnie elementy Baikal-GVD (Baikal Gigaton Volume Detector) są opuszczane w głąb jeziora Bajkał przez wycięty w lodzie przerębel. Urządzenie będzie obserwowało neutrina z głębokości 700–1300 metrów.
      Budowa teleskopu trwała od 2015 roku. Urządzenie składa się z lin, na których umieszczono szklane i stalowe moduły. W tej chwili całkowita objętość teleskopu wynosi 0,5 km3, a w przyszłości ma ono zostać rozbudowane do 1 km3. Dimitrii Naumow ze Zjednoczonego Instytutu Badań Jądrowych w Dubnej powiedział, że Baikal-GVD będzie rywalizował z amerykańskim Ice Cube, wielkim obserwatorium neutrin zatopionym w lodach Antarktydy w pobliżu Bieguna Południowego.
      Rosyjska instalacja jest największym wykrywaczem neutrin na półkuli północnej, a jezioro Bajkał, największy na Ziemi zbiornik słodkiej wody, to idealne miejsce na umieszczenie takiego urządzenia. Bajkał to jedyne jezioro, gdzie można taki teleskop zbudować. Jest bowiem odpowiednio głębokie, wyjaśnia Bair Szoibonow z Dubnej. Ważny jest też fakt, że to woda słodka, istotna jest również jej przejrzystość. Bardzo ważny jest też fakt, że przez 2–2,5 miesiąca w roku jest ono pokryte lodem, dodaje. Woda będzie bowiem pełniła rolę wielkiego filtra, który zablokuje inne cząstki, przepuszczając neutrina.
      W budowę Baikal-GVD zaangażowani są naukowcy z Rosji, Polski, Czech, Niemiec i Słowacji.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...