Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Czy pszczoły polecą z nami na Marsa? Wyjątkowa praca doktorantki AGH

Recommended Posts

Czy pszczoły będą mogły towarzyszyć nam na Marsie i czy będą mogły zapylać uprawy w szklarniach marsjańskich – to pytania na które stara się odpowiedzieć doktorantka AGH. Mgr inż. Dagmara Stasiowska w ramach pracy doktorskiej sprawdza wpływ stresu związanego z przeciążeniami generowanymi przez rakietę w trakcie podróży kosmicznej na poprawność rozmnażania się pszczół miodnych, a zwłaszcza na funkcjonowanie organizmów królowych.

W ramach prowadzonych badań Dagmara Stasiowska zbada łącznie osiem rodzin pszczelich. Cztery królowe wraz z niewielką świtą, zostały zbadane na wirówce przeciążeniowej należącej do Wojskowego Instytutu Medycyny Lotniczej. Symulator zwyczajowo wykorzystywany jest w trakcie szkolenia astronautów i pilotów wojskowych. Z nietypowymi pasażerami na pokładzie symulowano profil przeciążeniowy startującej rakiety. Celem eksperymentu jest sprawdzenie przydatności modelu biocybernetycznego rodziny pszczelej w kontekście poddawania matki pszczelej stresom związanym z lotem kosmicznym.

Zebrane dane, dotyczące zdolności reprodukcyjnych królowych tj. ilości składanych jaj i ich dystrybucji w czasie, posłużą następnie do stworzenia modelu komputerowego „kosmicznych pszczół”. Model będzie bazował na istniejącym i szeroko wykorzystywanym modelu BEEHAVE, uwzględniającym wiele czynników, zarówno środowiskowych jak i charakterystycznych dla dynamiki rozwoju rodzin pszczelich. Stworzony model będzie mógł zostać wykorzystany w przyszłości np. w trakcie projektowania odpowiednich transporterów, chroniących zapylacze przed przeciążeniami w trakcie lotu rakietą.

Autorka badań zaznacza: Potencjał naukowy prowadzonych eksperymentów będzie w pełni doceniony za wiele lat, kiedy to faktycznie uda się na Marsie stworzyć pierwsze plantacje. Mam jednak świadomość, że wszystko to co uda się wypracować teraz i sprawdzić w warunkach eksperymentalnych na Ziemi jest w stanie za 10, 20 czy 30 lat przynieść zaskakujące rezultaty. Staram się więc myśleć na tyle perspektywicznie, żeby horyzontem moich badań prowadzonych teraz, był sukces ludzi za kilkadziesiąt lat, miliony kilometrów stąd.

Dotychczasowe badania obejmują łącznie osiem rodzin, z czego cztery z królowymi, które odbyły lot symulowany na wirówce, a cztery pozostałe stanowią grupę kontrolną. Wpływ przeciążeń na poprawność rozmnażania się królowych pszczół miodnych nie był do tej pory badany, a same eksperymenty na pszczołach w kontekście transportu kosmicznego były wykonane zaledwie kilka razy. Do tej pory badana była m.in. zdolność do budowania plastrów w warunkach mikrograwitacji. Badania te prowadzone były w latach 80. przez Amerykańską Agencję Kosmiczną NASA.

We wcześniejszych latach doktorantka, wówczas członkini Koła Naukowego AGH Space Systems, prowadziła badania wstępne, obejmujące swoim zakresem robotnice pszczół miodnych. Do badań posłużyły wtedy rakiety sondujące, skonstruowane przez studentów z AGH. Autorka badań jest jednocześnie liderką sekcji AGH Space Systems zajmującej się ładunkami rakietowymi i misjami balonów stratosferycznych. Przeprowadzone kilka lat temu eksperymenty pozwoliły stwierdzić, że przeżywalność osobników doświadczających działania przeciążeń nie odbiega znacząco od przeżywalności grupy kontrolnej i umożliwiły dalsze badania, obejmujące swoim zakresem matki pszczele.

Promotorem pracy doktorskiej dotyczącej oceny przydatności biocybernetycznego modelu rodziny pszczelej do przewidywania skutków poddania matki pszczelej stresom związanym z lotem kosmicznym jest prof. dr hab. inż. Ryszard Tadeusiewicz, biocybernetyk i były Rektor AGH.

Cieszę się, że dzięki badaniom Pani Dagmary mogę powrócić do wątku naukowego, który silnie rozwijałem w latach 70. ubiegłego wieku. Budowaliśmy wtedy z doktorem Andrzejem Migaczem pierwsze – chyba w skali światowej – biocybernetyczne modele rodziny pszczelej i jej interakcji ze środowiskiem. Uzyskiwane z symulacji komputerowych wyniki dobrze zgadzały się z obserwacjami prowadzonymi na rzeczywistych ulach – podkreśla prof. Ryszard Tadeusiewicz.

Badania prowadzone są przy współudziale biologa i pszczelarza dr. Michała Kolasy oraz Fundacji Apikultura, która działa na rzecz upowszechnianie wiedzy na temat pszczelarstwa.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Chiny przeprowadziły udane lądowanie łazika na powierzchni Marsa. Stały się tym samym drugim krajem w historii – po USA – któremu udała się ta trudna sztuka. Łazik Zhurong, nazwany tak od imienia boga ognia, jest częścią pierwszej samodzielnej chińskiej misji międzyplanetarnej Tianwen-1, która trafiła na orbitę Marsa w lutym bieżącego roku.
      Na razie Chińczycy nie ujawniają szczegółów lądowania. Wiemy, że stało się to w nocy z piątku na sobotę czasu polskiego. Nie wiemy natomiast, jakie jest dokładnie miejsce lądowania.
      Misja Tianwen-1 wystartowała 23 lipca 2020 roku. Składa się ona z orbitera, lądownika i łazika. Wiemy, że Zhurong, który jest wielkości łazików Spirit i Opportunity, został wyposażony w kamery, georadar, laser oraz czujniki badające atmosferę i pole magnetyczne Marsa.
      Li Chunlai, jeden z głównych projektantów misji Tianwen-1 mówi, że jej celem jest nie tylko poszukiwanie obecnego lub dawnego życia na Marsie, ale też badanie jego ewolucji i poszukiwanie potencjalnych miejsc, w których mogliby osiedlić się ludzie.
      Lądowanie Zhuronga przebiegało podobnie, jak wcześniejsze lądowanie amerykańskich łazików. Wykorzystano osłonę termiczną, wyhamowującą opadający pojazd oraz spadochron, a także niewielkie silniki, które spowolniły pojazd w ostatnim etapie lądowania. Chiński łazik bezpiecznie wylądował w regionie Utopia Planitia i po kilkunastu minutach, po rozwinięciu paneli słonecznych, przesłał sygnał świadczący o udanym przybyciu na Czerwoną Planetę.
      Misja Tianwen-1 nie jest pierwszą chińską próbą dotarcia na Marsa. Wcześniej Państwo Środka usiłowało wysłać na orbitę Marsa pojazd Yinghuo-1. Stanowił on część nieudanej misji Fobos-Grunt z 2011 roku zorganizowanej wraz z Rosją.
      Chiny stały się drugim państwem w historii, które umieściły łazik na Marsie. Wcześniej NASA przeprowadziła udane lądowania 5 łazików. Poza USA i Chinami jedynym państwem, któremu udało się lądowanie na Marsie, jest ZSRR, jednak misja Mars 3 uległa awarii zaledwie kilka minut po wylądowaniu. Unia Europejska próbowała dwukrotnie posadowić obiekt na Marsie i dwa razy się jej nie udało.
      Z kolei pojazdy na orbicie Marsa umieściły dotychczas USA, ZSRR, UE, Indie, Zjednoczone Emiraty Arabskie oraz Chiny.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA poinformowała, że śmigłowiec Ingenuity będzie pracował na Marsie miesiąc dłużej niż planowano i dostanie nowe zadania. Zdecydowano, że po zakończeniu fazy demonstracyjnej lotu w atmosferze Marsa śmigłowiec przejdzie do fazy demonstracyjnej zwiadu powietrznego.
      Nie planowaliśmy demonstracji zwiadu powietrznego, ale w międzyczasie wydarzyły się dwie rzeczy. Po pierwsze, początkowo zakładaliśmy, że łazik Perseverance dość szybko oddali się z miejsca lądowania, jednak zespół odpowiedzialny za Perseverance jest zainteresowany zebraniem próbek z tego regionu. Po drugie, śmigłowiec sprawuje się fantastycznie. Połączenie pomiędzy nim a łazikiem jest lepsze niż sądziliśmy. Uważamy, że nawet jeśli oba urządzenia będzie dzieliła większa odległość, wciąż będą miały ze sobą łączność, co pozwoli na prowadzenie fazy zwiadu, mówi Jennifer Trosper, zastępczyni menedżera projektu Perseverance.
      Spodziewane problemy z łącznością są jednym z powodów, dla których początkowo planowano, że Ingenuity będzie latał tylko przez 30 dni. Wbrew temu, co podpowiada intuicja, śmigłowiec nie jest w stanie nadążyć za łazikiem. Ingenuity jest uzależniony od komunikacji z Ziemi, która jest z nim prowadzona za pośrednictwem łazika. O ile śmigłowiec przemieszcza się szybciej niż łazik, to po każdym locie musi się przez dłuższy czas ładować. Jeśli w tym czasie Perseverance oddaliłby się na zbyt dużą odległość, Ingenuity straci z nim łączność.
      Ponadto misja Ingenuity jest misją dodatkową, misją z wkalkulowanym wysokim ryzykiem awarii, na którą nie przeznaczano dużych środków. Dlatego też nie prowadzono testów dotyczących możliwej interferencji pomiędzy modułem komunikacyjnym łazik-śmigłowiec, a urządzeniami pracującymi na pokładzie łazika. Z tego powodu śmigłowiec miał latać przez 30 dni, gdyż w tym czasie planowano, że Perseverance i tak pozostanie nieruchomy. Właśnie dlatego nie mamy wideo nagranego przez Perseverance, na którym widać, że kamery łazika podążają za latającym śmigłowcem. Uruchomienie aktuatorów kamer mogłoby bowiem zaburzyć łączność pomiędzy łazikiem a śmigłowcem.
      W końcu, podstawową misją jest misja łazika i to ona jest priorytetem. To Ingenuity będzie musiał postarać się, by nie utracić kontaktu z Perseverance. Podczas demonstracji zwiadu powietrznego śmigłowiec ma nie oddalać się od łazika bardziej niż na kilometr i próbować nawiązać łączność, kiedy będzie mógł. W tym czasie Perseverance będzie wykonywał swoje zadania. Dlatego też obecne założenia mówią, że Ingenuity ma latać przez kolejnych 30 dni, a jeśli okaże się, że nie jest w stanie tego zrobić bez zbytniego angażowania zasobów Perseverance, będzie to jego koniec.
      W najbliższym czasie planujemy dla Perseverance krótkie trasy. Ingenuity może więc latać i lądować w pobliżu obecnej lub planowanej lokalizacji łazika. Śmigłowiec może wykonywać w tym czasie obserwacje celów naukowych łazika, jego potencjalnych tras czy niedostępnych lokalizacji. To, w jaki sposób będzie się sprawował będzie ważną lekcją dla planowania przyszłych misji. Loty Ingenuity to dodatek, nie są one potrzebne Perseverance do wykonania jego misji, oświadczyła NASA.
      Wiadomo, że loty Ingenuity będą odbywały się coraz rzadziej, od jednego na kilka dni po 1 na 2 lub 3 tygodnie. Będą też planowane tak, by nie wpływały na pracę łazika. Po 30 marsjańskich dniach dokonana zostanie skuteczność Ingenuity. NASA nie ma zamiaru przedłużać misji śmigłowca poza 30 sierpnia.
      Musimy pamiętać, że pierwotnie Ingenuity zaplanowano jako 30-dniową misję testową. Śmigłowiec budowano z myślą o tak krótkim czasie pracy. NASA przypuszcza, że podzespoły Ingenuity powinny wytrzymać co najmniej 100 startów i lądowań, a jego panel słoneczny oraz kąt padania promieni słonecznych pozwolą na ładowanie akumulatorów przez kilka miesięcy.
      Prawdopodobnie po pewnej liczbie zmian temperatury pomiędzy nocą a dniem dojdzie do uszkodzenia miejsca połączenia panelu z akumulatorem i Ingenuity przestanie działać. Nie wiadomo tylko, kiedy to może nastąpić.
      Będziemy świętowali każdy dodatkowy dzień misji, który Ingenuity przetrwa poza wyznaczonym 30-dniowym terminem, stwierdziła MimAung, menedżerka projektu Mars Helicopter.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dane, które nadeszły z Marsa wskazują, że śmigłowiec Ingenuity nie wykonał postawionego przed nim zadania i nie odbył czwartego lotu testowego. Jednocześnie z danych wynika, że urządzenie jest w dobrym stanie i jest bezpieczne. Inżynierowie NASA próbują dowiedzieć się, dlaczego śmigłowiec nie przełączył się w tryb lotu, co jest koniecznym elementem, do rozpoczęcia testu.
      Przypomnijmy, że Ingenuity – pierwszy w historii pojazd, który wykonał kontrolowany lot w atmosferze Marsa – ma na swoim koncie 3 loty. Podczas pierwszego z nich wzniósł się na wysokość 3 metrów i wylądował. Podczas drugiego osiągnął wysokość 5 metrów, a podczas trzeciego wzbił się na 5 metrów i przeleciał 50 metrów, osiągając maksymalną prędkość ok. 8 km/h.
      Dzisiaj około godziny 17 czasu polskiego NASA spróbuje powtórzyć 4. lot Ingenuity. O tym, czy się udał, dowiemy się kilka godzin później, gdy napłyną dane z Marsa.
      Trzeba tutaj przypomnieć, że przed ponad dwoma tygodniami, podczas próby pierwszego lotu, doszło do automatycznego awaryjnego wykonywania komend i próba musiała zostać przełożona. NASA szacuje, że istnieje 15-procentowe prawdopodobieństwo, iż taka sytuacja się powtórzy. Dlatego też fakt, że 4. lot się nie odbył, nie jest niczym zaskakującym i nie wpływa na plany dotyczące dalszych testów śmigłowca.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Marsjański śmigłowiec Ingenuity odbył 3. lot w atmosferze Czerwonej Planety. Tym razem nie skończyło się, jak podczas dwóch poprzednich lotów, jedynie na wzniesieniu się, zawiśnięciu i lądowaniu. Urządzenie odbyło też lot w poziomie. Była to pierwsza próba prędkości i zasięgu. Ingenuity poleciał dalej i szybciej niż podczas testów na Ziemi.
      Podczas pierwszego historycznego lotu w atmosferze Marsa Ingenuity wzniósł się na wysokość 3 metrów, zawisł nad powierzchnią i wylądował. W czasie drugiego lotu śmigłowiec znalazł się na wysokości 5 metrów nad powierzchnią. Przed dwoma dniami, 25 kwietnia, śmigłowiec wzniósł się na wysokość 5 metrów, a następnie przeleciał 50 metrów, osiągając maksymalną prędkość 2,2 m/s czyli niemal 8 km/h.
      Teraz zespół odpowiedzialny za śmigłowiec analizuje przysłane dane. Przydadzą się one nie tylko podczas kolejnych lotów Ingenuity, ale mogą również posłużyć przyszłym marsjańskim śmigłowca.
      Dzisiejszy lot mieliśmy szczegółowo zaplanowany, ale i tak było to niesamowite osiągnięcie. Test ten wykazał, że możliwe jest dołączenie pojazdu latającego do przyszłych misji marsjańskich, mówi Dave Lavery, menedżer odpowiedzialny za Ingenuity w siedzibie NASA.
      Lot śmigłowca został sfilmowany przez kamery znajdujące się na łaziku Perseverance. Jednocześnie sam śmigłowiec, który jest wyposażony w procesor potężniejszy niż ten wykorzystywany przez łazik, filmował w kolorze swój lot. To jeden z elementów testów śmigłowca. Opiekujący się nim zespół chce „wycisnąć” z urządzenia co tylko się da, by móc określić przydatność tego typu pojazdów dla przyszłych misji na Marsa i inne obiekty Układu Słonecznego.
      Ingenuity jest też wyposażony w czarno-białą kamerę nawigacyjną, która rozpoznaje ukształtowanie terenu. Obrazy są na bieżąco wysyłane do procesora śmigłowca i w ten sposób testowane są możliwości komputera pokładowego. Kamera i możliwości obliczeniowe procesora to niektóre z elementów, ograniczających prędkość śmigłowca. Jeśli będzie ona zbyt duża, algorytm nie będzie w stanie śledzić ukształtowania terenu.
      To pierwszy test, w czasie którego widzieliśmy jak w praktyce działa algorytm na długich dystansach. W komorze testowej nie da się tego sprawdzić, mówi MiMi Aung, menedżerka projektu. Komora, w której na Ziemi testowano Ingenuity, symulując warunki panujące na Marsie, nie pozwalała na lot dłuższy niż pół metra w każdym kierunku. Inżynierowie nie wiedzieli więc, jak się będzie sprawowała kamera oraz oprogramowania i czy będą równomiernie pracowały przez cały czas.
      W komorze testowej masz wszystko po kontrolą. Są tam zabezpieczenia, możesz awaryjnie lądować. Zrobiliśmy wszystko, by Ingenuity latał bez tych zabezpieczeń, wyjaśnia inżynier Gerik Kubiak.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzisiaj, 19 kwietnia 2021 roku, miał miejsce pierwszy w historii kontrolowany lot w atmosferze Marsa. Śmigłowiec Ingenuity, który trafił na Czerwoną Planetę w ramach misji Mars 2020 łazika Perseverance, wzniósł się na wysokość 3 metrów, zawisł nad powierzchnią Marsa i wylądował.
      To początek testów śmigłowca. Misja Ingenuity nie ma znaczenia dla misji łazika, a sam śmigłowiec nie prowadzi żadnych badań. Jednak dzisiejsza udana demonstracja technologiczna może mieć wielkie znaczenie dla przyszłości podboju kosmosu. Sukces oznacza bowiem, że w przyszłych misjach – zarówno załogowych jak i bezzałogowych – udział mogą wziąć śmigłowce. Będą one służyły np. do szybkich zwiadów okolicy i poszukiwania interesujących celów naukowych. Śmigłowiec może dotrzeć też do miejsc, do których łazik nie dojedzie.
      Lot na Marsie to poważne wyzwanie. Gęstość tamtejszej atmosfery to zaledwie 1% gęstości atmosfery Ziemi. I tę tak rzadką atmosferę trzeba wykorzystać do uzyskania siły nośnej i kontroli pojazdu. Nigdy wcześniej żaden ziemski śmigłowiec nie latał w takich warunkach.
      Ingenuity został wyposażony w dwa rotory z włókna węglowego. Obracają się one w przeciwnych kierunkach z prędkością ok. 2500 obrotów na minutę. To pięciokrotnie szybciej niż wirniki śmigłowca na Ziemi. Gdyby obracały się wolniej, dron mógłby się nie oderwać od Marsa. Jednak gdyby obracały się szybciej, końcówki wirników zbliżyłyby się do prędkości dźwięku, co wywołałoby falę uderzeniową, a ta zdestabilizowałaby pojazd.
      Testy Ingenuity mają potrwać przez 30 dni. Inżynierowie NASA mają nadzieję, że w tym czasie uda się wykonać co najmniej 5 lotów. Żaden z nich nie potrwa dłużej niż 90 sekund, Jako, że misja Ingenuity została dołączona do misji łazika Perseverance i nie jest jej częścią, od śmigłowca nie oczekuje się zbyt wiele. To zaś powoduje, że nie musi on spełniać tak wysokich wymagań dotyczących minimalizacji ryzyka. Przez to zastosowany w nim sprzęt nie musi spełniać wyśrubowanych wymagań.
      Dlatego też wiele elementów śmigłowca zostało wykonanych z powszechnie dostępnych materiałów. Na przykład zastosowano w nim standardowy procesor Snapdragon 801. Dlatego też, ironią losu, śmigłowiec, który ma po po prostu latać, dysponuje mocą obliczeniową o całe rzędy wielkości większą niż łazik, wykonujący złożone badania naukowe. Jako, że moc procesora znakomicie przewyższa moc potrzebną do samego sterowania, Ingenuity wyposażono też w kamerę rejestrującą obraz z prędkością 30 klatek na sekundę oraz oprogramowanie nawigacyjne, które na bieżąco obraz analizuje. Śmigłowiec będzie działał w trybie półautonomicznym. Dostanie z Ziemi szczegółowy plan lotu, który będzie musiał wykonać.
      Specjaliści z NASA stwierdzili, że najlepszą porą na lot będzie późny poranek. Słońce świeci na tyle mocno, że powinno zapewnić wystarczającą ilość energii do lotu. Jednak później lot mógłby być trudniejszy, gdyż powierzchnia planety rozgrzewa się, przez co atmosfera unosi się i jeszcze bardziej rozrzedza.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...