Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Kolosalna poprawa u ciężko chorych dzieci dzięki terapii genetycznej opracowanej przez Polaka

Recommended Posts

Dzieci z rzadką chorobą genetyczną, deficytem AADC, nie mogą siedzieć, chodzić, mówić, mają nawet problemy z podniesieniem głowy. Tymczasem u grupy maluchów poddanych w San Francisco eksperymentalnej terapii genetycznej doszło do olbrzymiej poprawy funkcjonowania. A wszystko zaczęło się od rewolucyjnej metody leczenia, opracowanej przed laty przez profesora Krzysztofa Bankiewicza.

Deficyt AADC (dekarboksylaza L-aminokwasów aromatycznych) to bardzo rzadka choroba genetyczna, w wyniku której mózgi dzieci mają problemy z wydzielaniem neuroprzekaźników – dopaminy i serotoniny – regulujących wiele funkcji i procesów. dzieci takie nie są np. w stanie mówić czy samodzielnie jeść.

W eksperymentalnym leczeniu prowadzonym przez Uniwersytet Kalifornijski w San Francisco (USCF) i będący jego częścią Benioff Children's Hospitals, wzięło udział 7 dzieci w wieku 4–9 lat, które urodziły się z AACD. Po leczeniu wszystkich pacjentów zaobserwowano poprawę funkcji motorycznych, lepsze zachowanie, dłuższy sen i lepszą interakcję z rodzicami i rodzeństwem.

Charakterystyczne dla tej choroby napadowe przymusowe patrzenie w górę z rotacją gałek ocznych, podczas którego chorzy całymi godzinami patrzą do góry i mogą doświadczać epizodów podobnych do drgawek, cofnęło się u 6 z 7 pacjentów, donoszą autorzy badań. Jednym z nich jest pionier nowej metody leczenia, profesor Krzysztof Bankiewicz z Wydziału Neurochirurgii UCSF.

Profesor Bankiewicz już przed 20 laty stworzył technologię, w ramach której pacjentom z chorobą Parkinsona wszczepiał bezpośrednio do mózgu odpowiednie geny. Przed kilku laty rozpoczął próby z wykorzystaniem jej u dzieci z AADC, osiągając bardzo obiecujący wyniki. Obie choroby są bowiem powiązane z nieprawidłowościami w enzymie AADC, który zamienia lewodopę w dopaminę. W 2019 roku profesor Bankiewicz operował w Warszawie dwoje małych Polaków oraz Hiszpankę.

Obecnie wiadomo o 135 dzieciach z AADC żyjących na świecie. Problem ten dotyka częściej dzieci o azjatyckich korzeniach.

Profesor Bankiewicz stworzył wektor wirusowy, za pomocą którego dostarcza gen AADC. Wektor jest wstrzykiwany bezpośrednio w mózg przez mały otwór w czaszce, pod kontrolą rezonansu magnetycznego. Dzieci z niedoborem AACD nie posiadają funkcjonującej kopii genu, ale założyliśmy, że sama ścieżka neuronowa jest nienaruszona, mówi współautor badań, doktor Nalin Gupta. To inna sytuacja niż w parkinsonizmie, gdzie neurony wytwarzające dopaminę ulegają degeneracji. Istnieje jeszcze jedna zasadnicza różnica pomiędzy leczeniem tą metodą AADC i choroby Parkinsowna. W parkinsonizmie lek podaje się do skorupy, w AADC zaś do istoty czarnej śródmózgowia oraz pola brzusznego nakrywki.

Leczenia AADC jest prostsze niż parkinsonizmu. W AADC neurony są prawidłowe, nie wiedzą tylko, jak wytwarzać dopaminę, gdyż brakuje im AADC, wyjaśnia Bankiewicz.

Obrazowanie za pomocą PET (pozytonowa tomografia emisyjna), przeprowadzone po podaniu środka, wykazały wzrost aktywności AADC w mózgu. Natomiast w płynie mózgowo-rdzeniowym stwierdzono zwiększoną koncentrację metabolitów neuroprzekaźników.

Gdy naukowcy rozpoczynali swój eksperyment, tylko 2 z 7 dzieci było w stanie częściowo kontrolować głowę, jedno mogło wyciągać ręce lub chwytać, a żadne nie było w stanie samodzielnie siedzieć. Sześcioro dzieci określano jako drażliwe, sześcioro cierpiało na bezsenność. Zdolności motoryczne wszystkich dzieci należały do kategorii ciężko upośledzonych.

Po zabiegu u wszystkich dzieci doszło do poprawy, a zaczęła się ona od zniknięcia problemów z napadowym przymusowym patrzeniem w górę. Problem ten zniknął jako pierwszy i nigdy nie powrócił. W kolejnych miesiącach u wielu pacjentów doszło do poprawy całkowicie zmieniającej życie. Nie tylko zaczęły się śmiać i poprawił im się nastrój, ale niektóre nawet mogły mówić i chodzić.

U wszystkich pacjentów doszło do widocznej poprawy funkcji motorycznych, lepiej kontrolowały głowę, tułów i wykonywać celowe ruchy kończynami. Do 12 miesiąca po zabiegu 6 z 7 dzieci było w stanie kontrolować głowę, a 4 potrafiło samodzielnie siedzieć. W tym samym czasie 3 pacjentów zyskało możliwość wyciągania ramion i chwytania, a 2 było w stanie chodzić o lasce. Ponadto jeden z pacjentów zaczął mówić posługując się około 50 wyrazami, a inny zaczął mówić przy pomocy wspomagającego urządzenia w ciągu 12-18 miesięcy po dostarczeniu genów. W 2,5 roku po zabiegu jeden z pacjentów zaczął samodzielnie chodzić.

Rodzice i opiekunowie dzieci donosili o znacznej poprawie nastroju i snu, w znacznym stopniu poprawiła się też zdolność dzieci do odżywania się, rzadziej wymiotowały, lepiej odprowadzały śluz i ślinę z górnych dróg oddechowych.

U żadnego z dzieci nie zauważono ani krótko-, ani długoterminowych skutków ubocznych terapii. Jeden z małych pacjentów zmarł 7 miesięcy po zabiegu. Był w tym czasie w dobrym – jak na swoją chorobę – stanie zdrowia i przyczyną śmierci prawdopodobnie była AADC.

Obecnie zespół doktora Bankiewicza kontynuuje testy swojej terapii na chorych z parkinsonizmem i przygotowuje się do przetestowania tej samej techniki chirurgicznej i wektora wirusowego na pacjentach na wczesnym etapie choroby Alzheimera i zanikiem wieloukładowym.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Niedawno informowaliśmy, że spożywanie kawy nie zwiększa ryzyka wystąpienia arytmii. Tym razem mamy nie najlepsze wieści dla kawoszy. Międzynarodowy zespół naukowy złożony ze specjalistów z Australii, Etiopii i Wielkiej Brytanii poinformował, że spożywanie dużych ilości kawy jest powiązane ze zwiększonym ryzykiem demencji i mniejszą objętością mózgu. Do takich wniosków doszli przyglądając się danym 17 702 osób w wieku 37–73 lat z UK Biobank.
      Kawa to jeden z najpopularniejszych napojów na świecie. Roczna globalna konsumpcja przekracza 9 milionów ton. Ważne jest zatem, byśmy rozumieli jej wpływ na zdrowie, mówi główna autorka badań, doktorantka Kitty Pham z University of South Australia. Wraz z kolegami z Uniwersytetów w Addis Abebie, Exeter, Cambridge i Alan Turing Institute, analizowała ona dane dotyczące m.in. ryzyka udaru, demencji i objętości mózgu.
      Po uwzględnieniu wszelkich możliwych zmiennych zauważyliśmy, że konsumpcja większych ilości kawy jest w istotnym stopniu powiązana z mniejszą objętością mózgu. Picie ponad 6 filiżanek kawy dziennie może zwiększać ryzyko demencji i udarów, dodaje Pham.
      Naukowcy zauważyli, że związek pomiędzy konsumpcją kawy a ryzykiem demencji nie jest liniowy. Okazało się bowiem, że osoby spożywające ponad 6 filiżanek dziennie są narażone na średnio o 53% większe ryzyko wystąpienia demencji. Związek kawy z ryzykiem udaru był mniej widoczny.
      Zwykle ludzie piją 1-2 filiżanki kawy dziennie. [...] Jeśli jednak zauważymy, że zbliżamy się do 6 filiżanek dziennie, powinniśmy poważnie zastanowić się nad każdą kolejną filiżanką – stwierdziła jedna z badaczek, profesor Elina Hypponen.
      Wyniki badań ukazały się na łamach Nutritional Neuroscience.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      O ile nam wiadomo, jest to pierwsza udana demonstracja bezpośredniego dekodowania z mózgu pełnych wyrazów u osoby, która jest sparaliżowana i nie może mówić, stwierdza neurochirurg profesor Edward Chang. Uczony wraz z kolegami opracował „neuroprotezę mowy”, urządzenie, które u ciężko sparaliżowanego pacjenta rejestruje sygnały w mózgu i przekłada je na mowę.
      Każdego roku z powodu różnych chorób, udarów czy wypadków tysiące osób tracą możliwość mówienia. Nowy system daje nadzieję, że będą mogły łatwo komunikować się z otoczeniem.
      Dotychczasowe badania na tym polu ograniczały się do literowania. Neuroprotezy do komunikacji wyłapywały z mózgu sygnały, za pomocą których chory sterował kursorem i na wirtualnej klawiaturze, litera po literze, pisał to, co chce powiedzieć. Cheng i jego zespół poszli w zupełnie innym kierunku. Skupili się na sygnałach kontrolujących mięśnie aparatu mowy. Zdaniem Amerykanów, jest to bardziej naturalny i płynny sposób, dzięki któremu komunikacja z niemówiącym pacjentem może być znacznie szybsza i bardziej płynna.
      Zwykle mówimy z prędkością 150–200 wyrazów na minutę, zauważa Cheng. Wszelkie metody pisania czy kontrolowania kursora są wolniejsze i bardziej pracochłonne. Jeśli przejdziemy bezpośrednio do słów, tak jak robimy to tutaj, wiele zyskamy, gdyż jest to bardziej podobne do naturalnego sposobu mówienia.
      W ciągu ostatniej dekady Chengowi bardzo pomogli pacjenci z University of California San Francisco (UCSF) Epilepsy Center. Były to osoby, które operowano w celu znalezienia źródła epilepsji i na powierzchni ich mózgów umieszczano elektrody.
      Wszystkie to osoby mówiły i zgodziły się na dokonanie badań, podczas których analizowano aktywność ich mózgów w czasie mówienia. W ten sposób udało się stworzyć mechanizm przekładający sygnały z mózgu służące do sterowania aparatem mowy, na słowa. Jednak sam ten fakt nie gwarantował, że to samo będzie skuteczne u osób, których aparat mowy został sparaliżowany. Tym bardziej, że nie było wiadomo, czy u osób, których aparat mowy sparaliżowany jest od lat, sygnały go kontrolujące nie uległy jakimś zmianom lub uszkodzeniom.
      Rozpoczęto więc program badawczy BRAVO (Brain-Computer Interface Restoration Arm and Voice). Jego pierwszym pacjentem (BRAVO1), był mężczyzna w wieku nieco poniżej 40 lat, który ponad 15 lat wcześniej doznał poważnego udaru, który uszkodził połączenia pomiędzy jego mózgiem, kończynami i aparatem mowy. Od tamtej pory mężczyzna komunikował się ze światem za pomocą bardzo ograniczonych ruchów głowy i wskaźnika przyczepionego do czapki baseballowej, którym pokazywał litery na ekranie.
      Pacjent, wraz z zespołem Cheunga stworzyli najpierw słownik składający się z 50 wyrazów, jakie można było rozróżniać na podstawie aktywności mózgu. Wyrazy te, jak „rodzina”, „woda” czy ”dobrze” – pozwalały na stworzenie setek zdań. Naukowcy umieścili na mózgu pacjenta gęstą sieć elektrod, która badała aktywność w korze ruchowej i ośrodkach mowy. W czasie 48 sesji nagrali 22 godziny aktywności neuronów. W czasie nagrywania pacjent starał się wielokrotnie wypowiadać każde z 50 słów ze słownika, a elektrody rejestrowały aktywność jego mózgu.
      Podczas testów, zadaniem BRAVO1 była próba wypowiedzenia prezentowanych przez naukowców zdań utworzonych za pomocą 50-wyrazowego słownika. Później zaś pacjentowi zadawano pytania, a ten miał na nie odpowiadał.
      Testy wykazały, że system na podstawie aktywności mózgu jest w stanie pracować ze średnią prędkością do 15 wyrazów na minutę, a mediana bezbłędnego generowania wypowiedzi wynosi 75%. Najlepszy osiągnięty wynik to 18 wyrazów na minutę i dokładność 93%.
      Autorzy badań mówią, że były to testy mając sprawdzić czy ich koncepcja w ogóle m sens. Jesteśmy zachwyceni, że udało się w ten sposób dekodować wiele zdań o różnym znaczeniu. Wykazaliśmy, że w ten sposób można ułatwić pacjentom komunikację, stwierdza doktor David Moses, inżynier z laboratorium Changa i jeden z głównych autorów badań.
      Naukowcy już przygotowują się do poszerzenia swoich eksperymentów o kolejne osoby z poważnym paraliżem i deficytami komunikacyjnymi. Pracują jednocześnie nad powiększeniem słownika i przyspieszeniem tempa komunikacji.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ludzkim organizmie występuje naturalnie około 10 metali. Szczególnie potrzebne są tlenki miedzi i żelaza, biorące udział w procesach wewnątrzkomórkowych. Naukowcy od pewnego czasu podejrzewali, że w blaszkach amyloidowych gromadzących się w mózgu w przebiegu choroby Alzheimera, mogą znajdować się dowody na nieprawidłowe obchodzenie się organizmu z metalami. Jednak najnowsze odkrycie zaskoczyło wszystkich i pokazało, że nie do końca rozumiemy procesy chemiczne w mózgu.
      W mózgach dwóch osób zmarłych na chorobę Alzheimera naukowcy odkryli żelazo i miedź w stanie wolnym, nagromadzone obok tlenków żelaza i miedzi. Nie spodziewaliśmy się znaleźć wolnego żelaza i miedzi. To jasno pokazuje, że musimy o chemii mózgu nauczyć się więcej, niż sobie wyobrażaliśmy, mówi profesor nanofizyki biomedycznej Neil Telling z Keele University.
      W czasie badań naukowcy użyli spektromikroskopii rentgenowskiej. To niedestrukcyjna metoda wykorzystywana do badań środowiskowych i analizowania materiałów syntetycznych w skali nano. Wykorzystuje synchrotron generujący polichromatyczne promieniowanie rentgenowskie. Wybiera się z niego promieniowanie o niskiej energii i kieruje na badany obiekt. Skoncentrowane promienie, o średnicy 20 nanometrów, były przesuwane przez badane płytki amyloidowe, tworząc szereg obrazów. Każdy obraz ze zbioru odpowiadał innej energii promieniowania. Po ich połączeniu uczeni uzyskali spektrum absorpcji dla różnych regionów blaszek. Następnie przeanalizowali te spektra, identyfikując w ten sposób obecne metale. Zbadali też właściwości magnetyczne próbek, wykorzystując spolaryzowane promienie rentgenowskie.
      Badania przeprowadzone w brytyjskim Diamond Light Source i amerykańskim Advanced Light Source pozwoliły na zaobserwowanie nanoskalowych złogów żelaza i miedzi w stanie wolnym. Autorzy badań sądzą, że depozyty takie mogły pojawić się w wyniku reakcji chemicznych zachodzących w blaszkach. Wolne metale znajdowały się bowiem w sąsiedztwie tlenków tych metali.
      Profesor Telling mówi, że konieczne są dalsze badania, by móc powiedzieć cokolwiek na temat roli tych metali w chorobach neurodegeneracyjnych. Minie wiele lat, zanim z całą pewnością będziemy mogli powiedzieć, czy metale w stanie wolnym występują tylko w blaszkach amyloidowych czy też znajdują się również w innych tkankach. Jednak nasze odkrycie sugeruje, że w mózgu może dochodzić do agresywnych reakcji redoks, które być może biorą udział w postępie choroby.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Instytutu Podstaw Informatyki PAN, Instytutu Nenckiego PAN, Uniwersytetu Warszawskiego opracowali pierwszy, kompleksowy „Atlas obszarów regulatorowych aktywnych w glejakach o różnym stopniu złośliwości”, który ujawnił zaburzenia ekspresji genów i nowy mechanizm regulujący inwazyjność złośliwych guzów mózgu. Wyniki badań zostały opublikowane w czasopiśmie Nature Communications.
      Ludzki genom to ogromny zbiór instrukcji, które są odczytywane i interpretowane, aby wyprodukować białka komórkowe i umożliwić różnorodne funkcje komórek i tkanek. DNA kodujące białka stanowi mniej niż 2% ludzkiego genomu, a odszyfrowanie funkcji pozostałych, niekodujących regionów, stanowi wielkie wyzwanie. W każdej tkance aktywnych jest kilkadziesiąt tysięcy genów, a zrozumienie sposobu ich regulacji pozwala lepiej wniknąć w funkcje komórki.
      W komórce nić DNA jest owinięta wokół białek zwanych histonami i tworzy wysoce zorganizowaną strukturę zwaną chromatyną. Zmiany biochemiczne histonów przyczyniają się do otwartości lub braku dostępu do chromatyny, i mogą pobudzać lub hamować ekspresję genów (procesy te nazywamy epigenetycznymi). Enzymy mogą odczytywać instrukcje zawarte w DNA tylko w miejscach chromatyny, które są otwarte, co oznacza, że są dostępne dla enzymów. Mapowanie regionów regulatorowych i otwartej chromatyny w skali całego genomu zapewnia wgląd w to, jak geny są regulowane w określonych komórkach i stanach fizjologicznych lub patologicznych. Zmiany w dostępności chromatyny są regulowane przez procesy epigenetyczne, które zapewniają ich trwałość, wpływają na odczytywanie konkretnych genów, a w konsekwencji na procesy komórkowe.
      Rozregulowanie ekspresji genów często towarzyszy rozwojowi nowotworów. Procesy regulujące otwartość chromatyny są odwracalne i można je kontrolować czynnikami zewnętrznymi, zatem sterowanie dostępnością chromatyny ma duży potencjał kliniczny.
      Glejaki są guzami mózgu, w których często dochodzi do zaburzenia kontroli ekspresji genów, co powoduje niekontrolowany rozrost guza i zaburzenia funkcji mózgu. Złośliwe glejaki najczęściej występują u osób starszych, są odporne na standardowe terapie i dlatego mają bardzo złe rokowania. Łagodne glejaki występują głównie u dzieci i mają lepsze rokowania, choć nieleczone, mogą przekształcić się w złośliwe nowotwory.
      Współpracując z neurochirurgami z warszawskich ośrodków klinicznych zebrano unikalną kolekcję próbek i przeprowadzono kompleksową, cało-genomową analizę wzorców epigenetycznych w próbkach guzów łagodnych i złośliwych. Porównanie wzorców pozwoliło wskazać konkretne procesy powiązane ze złośliwością glejaków. W projekcie po raz pierwszy zbadano jednocześnie wzorce otwartości chromatyny, stanu histonów, metylacji DNA i ekspresji genów w ponad 30 próbkach guzów mózgu. Wykorzystano wszystkie wskazówki molekularne, aby zidentyfikować elementy regulatorowe, takie jak promotory, które kontrolują ekspresję sąsiednich genów i wzmacniacze, które sterują ekspresją odległych genów.
      Stworzony przez naukowców Atlas, do którego można uzyskać dostęp za pośrednictwem serwera internetowego, pozwala lepiej zrozumieć znaczenie niekodujących regionów genomu, które są aktywne w mózgu. Ujawnił też nowe mechanizmy sterujące nowotworzeniem w guzach mózgu.
      Nasze badania doprowadziły do powstania pierwszego, kompleksowego atlasu aktywnych elementów regulatorowych w glejakach, który umożliwił identyfikację funkcjonalnych wzmacniaczy ekspresji i promotorów w próbkach pacjentów. To kompleksowe podejście ujawniło wzorce epigenetyczne wpływające na ekspresję genów w łagodnych glejakach oraz nowy mechanizm powiązany ze złośliwością guzów obejmujący ścieżkę sygnałową kierowaną przez czynnik FOXM1 i kontrolująca inwazyjność i migracje komórek glejaka. Atlas dostarcza ogromnego zbioru danych, które można wykorzystać do kolejnych analiz i porównań z istniejącymi i nowymi zbiorami danych. Pozwoli to na nowe odkrycia i lepsze zrozumienie mechanizmów rozwoju glejaków – mówią dr Karolina Stępniak i dr Jakub Mieczkowski, główni autorzy publikacji.
      Stworzenie i udostępnienie atlasu aktywnych obszarów regulatorowych w glejakach o różnym stopniu złośliwości umożliwi dokonywanie nowych odkryć i lepsze zrozumienie mechanizmów kluczowych dla rozwoju glejaków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Uczeni z Uniwersytetów w Aberdeen i Leicester zidentyfikowali w mózgu obszar, który napędza zapotrzebowanie na pożywienie bogate w białko. Odkrycie może mieć znaczenie dla rozwoju personalizowanych terapii otyłości. Nie od dzisiaj bowiem wiadomo, że dieta niskobiałkowa jest powiązana z otyłością.
      Naukowcy zauważyli, że gdy szczury trzymano na diecie niskobiałkowej, doszło do większej aktywizacji pola brzusznego nakrywki (VTA), czyli jądra limbicznego śródmózgowia, obszaru odpowiedzialnego za aktywne poszukiwanie jedzenia.
      Z badań wynika, że gdy wcześniej ograniczy się dostarczanie protein, VTA staje się bardziej wrażliwe na proteiny niż na inne składniki odżywcze. To zaś sugeruje, że mózgi zwierząt działają tak, by upewnić się, że dostawy białka zostaną utrzymane na odpowiednim poziomie. Taka adaptacja jest zrozumiała, gdyż niedobór białka może mieć katastrofalne skutki zdrowotne. Ponadto wcześniejsze badania wiązały niski poziom białek z otyłością. Nie wiadomo było jednak, jak na zjawisko to wpływa mózg.
      Współautor badań doktor Fabien Naneix mówi: Odkryliśmy, że zmniejszenie podaży białka zwiększyło preferencje ku żywności, w której jest więcej białka niż węglowodanów. Ta preferencja ku białkom jest powiązana z większą odpowiedzią VTA i gdy zwierzęta przestawia się z normalnej zbilansowanej diety na dietę niskobiałkową, dochodzi do indukowania preferencji ku białkom, jednak zmiany w VTA wymagają intensywnego procesu uczenia się.
      Nasze badania są pierwszymi, łączącymi preferencje ku białkom ze specyficzną aktywnością mózgu. Wiemy,że VTA odgrywa kluczową rolę w procesach pobierania innych składników odżywczych. Teraz wykazaliśmy, że dotyczy to również białek.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...