-
Similar Content
-
By KopalniaWiedzy.pl
Naukowcom z University of Massachusetts w Amherst udało się rozwiązać jedną z podstawowych zagadek astronomii, na którą odpowiedzi szukano od lat. Dzięki ich pracy, opublikowanej na łamach Nature, wiemy, dlaczego niektóre z najstarszych i najbardziej masywnych galaktyk bardzo szybko przestały być aktywne i nie pojawiają się w nich już nowe gwiazdy.
Najbardziej masywne galaktyki we wszechświecie powstały niezwykle szybko, krótko po Wielkim Wybuchu sprzed niemal 14 miliardów lat. Jednak z jakiegoś powodu przestały działać. Już nie powstają w nich nowe gwiazdy, mówi profesor Kate Whitaker. To właśnie formowanie się nowych gwiazd jest jednym z procesów umożliwiających wzrost galaktyk. Od dawna wiemy, że wczesne masywne galaktyki stały się nieaktywne, ale dotychczas nie wiedzieliśmy dlaczego.
Zespół Whitaker połączył dane z teleskopu Hubble'a i ALMA. Pierwszy z nich obserwuje wszechświat w zakresie od ultrafioletu do bliskiej podczerwieni – w tym część zakresu widzialnego dla ludzkiego oka – drugi zaś pracuje w spektrum pomiędzy 0,32 do 3,6 mm, którego nasze oczy nie widzą.
Naukowcy poszukiwali za pomocą ALMA niewielkich ilości zimnego gazu, który stanowi główne źródło energii dla procesu tworzenia się nowych gwiazd. We wczesnym wszechświecie, a więc i w tych galaktykach, było bardzo dużo tego gazu. Skoro galaktyki te przestały szybko tworzyć nowe gwiazdy, to powinno im sporo takiego gazu pozostać", spekulowali uczeni. Jednak okazało się, że w badanych galaktykach pozostały jedynie śladowej ilości zimnego gazu znajdujące się w okolicach ich centrów. To zaś oznacza, że w ciągu kilku pierwszych miliardów lat galaktyki te albo zużyły cały gaz, albo go wyrzuciły. Niewykluczone też, że istnieje jakiś mechanizm, który blokuje uzupełnianie gazu przez galaktyki.
W następnym etapie badań naukowcy chcą sprawdzić, jak bardzo zagęszczony jest ten pozostały w starych galaktykach gaz i dlaczego znajduje się wyłącznie w pobliżu ich centrum.
« powrót do artykułu -
By KopalniaWiedzy.pl
Dwie grupy naukowe twierdzą, że wpadły na ślad nieznanego rodzaju ciemnej energii, która mogła istnieć w ciągu pierwszych 300 000 lat po Wielkim Wybuchu, przed okresem rekombinacji, w którym protony i elektrony utworzyły atomy. Obecność tej ciemnej energii – o ile w ogóle spostrzeżenia się potwierdzą – może wyjaśniać, dlaczego różne metody obliczania tempa rozszerzania się wszechświata dają różne wyniki.
Tempo rozszerzania się wszechświata, stała Hubble'a, zostało wyliczone 100 lat temu. Problem w tym, że wyliczenia stałej Hubble'a w oparciu o badania mikrofalowego promieniowania tła (CMB), czyli promieniowania wyemitowanego na wczesnych etapach rozwoju wszechświata, dają inne wyniki, niż liczone w oparciu o supernowe. Innymi słowy, obliczenia oparte na najstarszych danych nie zgadzają się z tymi, opartymi na danych nowszych. Istnienie w przeszłości nieznanej formy ciemnej energii być może pozwoliłoby wyjaśnić te różnice.
Dotychczas powstały liczne hipotezy, próbujące wyjaśnić te różnice. Przed dwoma laty Marc Kamionkowski i jego koledzy z Johns Hopkins University, zaproponowali hipotezę o „wczesnej ciemnej energii”, która miała wypełniać wszechświat przez kilkaset tysięcy lat po Wielkim Wybuchu. Nie jest to do końca przekonujące, ale to jedyny model, który może działać, mówi Kamionkowski.
Ta wczesna ciemna energia nie byłaby w stanie napędzać przyspieszenia wszechświata w sposób, jaki robi to „normalna” ciemna energia, ale spowodowałaby ona, że plazma we wczesnym wszechświecie ochładzałaby się szybciej. A to z kolei wpłynęłoby na interpretację wyników pomiarów CMB, szczególnie zaś wieku wszechświata i tempa jego rozszerzania się.
Informacje, sugerujące istnienie energii postulowanej przez zespół Kamionkowskiego, zauważono w danych dotyczących polaryzacji CMB z Atacama Cosmology Telscope (ACT) z lat 2013–2016. Autorami jednego z artykułów – oba zostały opublikowane na serwerze arXiv – są uczeni pracujący przy ACT, a autorami drugiego niezależna grupa naukowa.
Sami autorzy badań, zwracają uwagę, że jest jeszcze zdecydowanie zbyt wcześnie, by ogłaszać odkrycie. Zebrane dane nie pozwalają jednoznacznie stwierdzić, że mamy do czynienia z nieznanym rodzajem ciemnej energii. Jednak, jak zauważają, kolejne obserwacje za pomocą ACT oraz South Pole Telescope mogą już wkrótce dostarczyć kolejnych danych. Jeśli to prawda, jeśli rzeczywiście we wczesnym wszechświecie istniała jakaś inna forma ciemnej energii, to powinniśmy zobaczyć silny sygnał, mówi Colin Hill, kosmolog z Columbia University, który jest współautorem badań zespołu ACT.
ACT i South Pole Telescope to urządzenia, których celem jest mapowanie CMB. Autorzy obu artykułów z arXiv twierdzą, że dane z ACT dotyczące polaryzacji mikrofalowego promieniowania tła, bardziej pasują do modelu zawierającego wczesną ciemną energię, niż do modelu standardowego. Jeśli byłyby prawdziwe, to by oznaczało, że wszechświat liczy sobie 12,4 miliarda lat, a nie 13,8 miliarda lat, jak się obecnie przyjmuje. Ponadto tempo rozszerzania się wszechświata liczone z mikrofalowego promieniowania tła byłoby o 5% większe, czyli wynosiłoby ok. 71 km/s/Mpc (kilometrów na sekundę na megaparsek), a to już mieści się w zakresach wartości liczonych z supernowych.
Uczeni bardzo ostrożnie podchodzą do swoich spostrzeżeń. W tej chwili sprawdzają, czy również w zarejestrowanych przez ACT danych dotyczących temperatury CMB zauważą preferencje odnośnie hipotezy o wczesnej ciemnej energii. Niezwykle ważne dla zweryfikowanie tych informacji będzie sprawdzenie danych z ACT za pomocą danych z South Pole Telescope.
« powrót do artykułu -
By KopalniaWiedzy.pl
Międzynarodowy zespół astronomów, w którego składzie znajdują się także naukowcy z Uniwersytetu Mikołaja Kopernika w Toruniu, opublikował najdokładniejszą w historii mapę Wszechświata w zakresie niskich częstotliwości radiowych, używając europejskiej sieci odbiorników LOFAR.
Aby tego dokonać, obserwowano wielokrotnie te same obszary nieba, by móc je następnie połączyć w jeden obraz o bardzo długiej ekspozycji. Dzięki temu na obrazie wykryto słabe poświaty radiowe od gwiazd, które eksplodowały jako supernowe w dziesiątkach tysięcy galaktyk, rozmieszczonych aż po najdalsze rejony Wszechświata. Specjalne wydanie czasopisma naukowego Astronomy and Astrophysics jest poświęcone czternastu pracom badawczym opisującym sposób powstania map i pierwsze wyniki naukowe.
Do tej pory radiowe obserwacje nieba w głównej mierze skupiały się na najjaśniejszej emisji, jaką możemy odebrać, czyli tej pochodzącej od masywnych czarnych dziur znajdujących się w centrum swoich galaktyk. Jednak obraz, jaki powstał na niskich częstotliwościach radiowych dzięki obserwacjom LOFAR-a, jest tak głęboki, że większość obiektów na nim widocznych to galaktyki takie jak nasza Droga Mleczna, których gwiazdy dopiero się tworzą. Połączenie bezprecedensowej czułości tego przeglądu i jego dużego obszaru na niebie - około 300 razy większego niż Księżyc w pełni - pozwala na wykrycie dziesiątek tysięcy galaktyk podobnych do naszej Drogi Mlecznej i położonych nawet na krańcach Wszechświata, w momencie, gdy jeszcze się tworzyły.
Co więcej, powstawanie gwiazd zwykle zachodzi w chmurach pyłu, które w zakresie fal widzialnych przesłaniają nam widok. Tymczasem fale radiowe przenikają przez pył, dzięki czemu możemy uzyskać pełny obraz tworzenia się gwiazd w galaktykach. Bardzo dokładne obserwacje wykonane za pomocą instrumentu LOFAR umożliwiły precyzyjne wyznaczenie związku między jasnością galaktyk w zakresie fal radiowych a tempem formowania się nowych gwiazd, a także pomogły w dokładniejszych ocenach liczby nowych gwiazd tworzących się w młodym Wszechświecie.
Ponadto unikalny zbiór danych pochodzących z przeglądu LOFAR umożliwił przeprowadzenie szeregu innych badań naukowych, takich jak badanie emisji radiowej pochodzącej z masywnych czarnych dziur w kwazarach czy też ze zderzeń olbrzymich gromad galaktyk. Analiza zebranych danych przyniosła również pewne zaskakujące rezultaty. Powtarzane co pewien czas obserwacje fragmentu nieba pozwoliły na badanie źródeł o zmiennej jasności. Umożliwiło to m.in. wykrycie czerwonego karła – gwiazdy CR Draconis. Gwiazda ta wykazuje wybuchy emisji radiowej, które bardzo przypominają te pochodzące z Jowisza i mogą być wywołane interakcją gwiazdy z nieznaną wcześniej planetą lub być wynikiem bardzo szybkiej rotacji gwiazdy.
Obrazy radiowe nieba uzyskuje się w wyniku przetworzenia ogromnej ilości danych. Aby stworzyć obrazy z LOFAR-a, połączono sygnały pochodzące z ponad 70 000 anten wchodzących w skład tego instrumentu, co dało ponad 4 petabajty surowych danych, czyli około miliona płyt DVD. Przetworzenie tej olbrzymiej ilości informacji i interpretacja uzyskanych obrazów możliwa była dzięki zastosowaniu najnowszych osiągnięć matematycznych z zakresu analizy danych.
Omawianymi badaniami kierował prof. Philip Best z Uniwersytetu w Edynburgu w Wielkiej Brytanii, a wzięli w nich udział również polscy astronomowie: prof. Krzysztof Chyży, dr Arti Goyal, dr hab. Marek Jamrozy, dr Błażej Nikiel-Wroczyński z Uniwersytetu Jagiellońskiego w Krakowie; dr hab. Magdalena Kunert-Bajraszewska, mgr Aleksandra Wołowska z Uniwersytetu Mikołaja Kopernika w Toruniu; dr hab. Katarzyna Małek z Narodowego Centrum Badań Jądrowych.
Międzynarodowy Teleskop LOFAR (LOw Frequency ARray) to transeuropejska sieć anten radiowych, której centrum znajduje się w Exloo w Holandii. LOFAR został zaprojektowany, zbudowany i jest aktualnie obsługiwany przez ASTRON, Holenderski Instytut Radioastronomii. Francja, Irlandia, Łotwa, Holandia, Niemcy, Polska, Szwecja, Włochy i Zjednoczone Królestwo są krajami partnerskimi w konsorcjum Międzynarodowego Teleskopu LOFAR. Polskimi stacjami LOFAR-a kieruje grupa POLFARO, w skład której wchodzą właściciele 3 stacji: Uniwersytet Warmińsko-Mazurski w Olsztynie – stacja Bałdy, Uniwersytet Jagielloński w Krakowie – stacja Łazy, Centrum Badań Kosmicznych PAN w Warszawie – stacja Borówiec; oraz Poznańskie Centrum Superkomputerowo-Sieciowe w Poznaniu. Utrzymanie polskich stacji LOFAR-a finansowane jest przez Ministerstwo Edukacji i Nauki.
« powrót do artykułu -
By KopalniaWiedzy.pl
Jednym z najważniejszych odkryć dokonanych w ciągu ostatnich 25 lat było stwierdzenie, że w Układzie Słonecznym istnieją światy, gdzie pod powierzchnią skał i lodu kryje się ocean. Takimi obiektami są księżyce wielkich planet jak Europa, Tytan czy Enceladus. Teraz S. Alan Stern z Southwest Research Institute przedstawił hipotezę mówiącą, że takie światy z wewnętrznym ciekłym oceanem (IWOW) są powszechne we wszechświecie i znacząco zwiększają one liczbę miejsc, w których może istnieć życie. Dzięki nim może ono bowiem występować poza wąską ekosferą.
Od dawna wiadomo, że planety takie jak Ziemia, z oceanami na powierzchni, muszą znajdować się w ekosferze swoich gwiazd, czyli w takiej odległości od nich, że gdzie temperatura pozwala na istnienie wody w stanie ciekłym. Jednak IWOW mogą istnieć poza ekosferą. Co więcej, obecne tam życie może być znacznie lepiej chronione niż życie na Ziemi. W światach taki jak nasz życie narażone jest na wiele zagrożeń, od uderzeń asteroidów przez niebezpieczne rozbłyski słoneczne po eksplozje pobliskich supernowych.
Stern, który zaprezentował swoją hipotez podczas 52. dorocznej Lunar and Planetary Science Conference, zauważa, że światy z wewnętrznym ciekłym oceanem” zapewniają istniejącemu tam życiu lepszą stabilność środowiskową i są mniej narażone na zagrożenia ze strony własnej atmosfery, gwiazdy, układu planetarnego czy galaktyki niż światy takie jak Ziemia, z oceanem na zewnątrz. IWOW są bowiem chronione przez grubą, liczącą nawet dziesiątki kilometrów, warstwę lodu i skał.
Uczony zauważa ponadto, że warstwa ta chroni potencjalnie obecne tam życie przed wykryciem jakąkolwiek dostępną nam techniką. Jeśli więc w takich światach istnieje życie i jeśli może w nich rozwinąć się inteligentne życie to – jak zauważa Stern – istnienie IWOW pozwala na poradzenie sobie z paradoksem Fermiego. Jego twórca, Enrico Fermi, zwrócił uwagę, że z jednej strony wszystko wskazuje na to, że wszechświat powinien być pełen życia, w tym życia inteligentnego, a my dotychczas nie mamy dowodu na jego istnienie. Ta sama warstwa, która tworzy w takich światach stabilne i bezpieczne środowisko jednocześnie uniemożliwia wykrycie tego życia, mówi Stern.
« powrót do artykułu -
By KopalniaWiedzy.pl
Międzynarodowy zespół naukowców, w tym dwoje naukowców z NCBJ - Katarzyna Małek i William Pearson, rzucił nieco światła na złożone procesy fizyczne związane z wytwarzaniem pyłu, metali i gwiazd w ewolucji galaktyk. Badacze przeanalizowali dużą próbkę odległych pyłowych galaktyk, wykrytych za pomocą ALMA. Badanie, opublikowane w Astronomy & Astrophysics, ujednoliciło metody obserwacyjne i teoretyczne, znajdując dowody na szybki wzrost pyłu w młodych, ale już bogatych w metale galaktykach w odległym wszechświecie.
Dwa miliardy lat po Wielkim Wybuchu wszechświat był wciąż bardzo młody. Jednak już powstały w nim tysiące ogromnych galaktyk, bogatych w gwiazdy i pył. Międzynarodowe badanie, prowadzone równocześnie przez Wyższą Międzynarodową Szkołę Badań Zaawansowanych (SISSA) w Trieście oraz Narodowe Centrum Badań Jądrowych z udziałem międzynarodowego zespołu naukowców, wyjaśnia teraz, jak to było możliwe. Naukowcy połączyli metody obserwacyjne i teoretyczne, aby zidentyfikować procesy fizyczne leżące u podstaw ich ewolucji i po raz pierwszy znaleźli dowody na szybki wzrost zawartości pyłu w tych galaktykach, spowodowany wysokim stężeniem metali w odległym wszechświecie. Badanie, opublikowane w czasopiśmie Astronomy & Astrophysics, przedstawia nowe podejście do badania fazy ewolucyjnej masywnych obiektów.
Odległe galaktyki, istniejące w bardzo wczesnym wszechświecie, ale już masywne i bardzo aktywnie tworzące nowe gwiazdy, stanowią od momentu ich odkrycia 20 lat temu prawdziwe wyzwanie dla astronomów. Z jednej strony są one trudne do wykrycia, ponieważ znajdują się w gęstych obszarach odległego wszechświata i zawierają cząstki pyłów, które pochłaniają większość światła optycznego emitowanego przez młode gwiazdy – wyjaśnia dr Drako Donevski, stypendysta SISSA i główny autor badania. Z drugiej strony wiele z tych pyłowych "olbrzymów" powstało w czasach, gdy wszechświat był bardzo młody - miał mniej niż 1 miliard lat - i nadal pozostaje zagadką pytanie, jak tak duża ilość pyłu mogła zostać wyprodukowana tak wcześnie we wszechświecie.
Badanie tych egzotycznych obiektów jest teraz możliwe dzięki Atacama Large Millimeter/submillimeter Array (ALMA). Interferometr składający się z 66 teleskopów umieszczony jest na pustyni Atakama w północnym Chile i jest w stanie wykryć światło podczerwone, które przenika przez pyłowe chmury, ujawniając obecność nowo tworzących się gwiazd. Jednak pochodzenie dużej ilości pyłu we wczesnym czasie kosmicznym wciąż pozostaje otwartą kwestią dla astronomów. Przez wiele lat naukowcy sądzili, że powstawanie pyłu kosmicznego jest spowodowane wyłącznie eksplozjami supernowych. Jednak ostatnie prace teoretyczne sugerują, że zawartość pyłu może również wzrastać w wyniku zderzeń cząstek zimnego, bogatego w metale gazu, który wypełnia galaktyki- wyjaśnia naukowiec. Międzynarodowy zespół uczonych z instytucji w Europie, USA, Kanadzie i RPA, kierowany przez dra Donevskiego, połączył metody obserwacyjne i teoretyczne, aby zbadać 300 odległych zapylonych galaktyk w nadziei, że pomoże to odkryć pochodzenie tych "gigantów".
Wyznaczyliśmy właściwości fizyczne naszych galaktyk, stosując specjalną technikę modelowania ich szerokopasmowych widm energetycznych - uzupełnia dr hab. Katarzyna Małek, adiunkt w Zakładzie Astrofizyki Narodowego Centrum Badań Jądrowych. Jest to istotne źródło informacji o naturze galaktyk, ponieważ wiele złożonych procesów fizycznych, które w nich zachodzą, pozostawia swój ślad w ich widmie. Widmo energetyczne, czyli zależność wypromieniowywanej energii od długości fali, to swoiste DNA galaktyki. Modelowanie widm energetycznych pomaga nam oszacować takie wielkości fizyczne, jak masa pyłu lub masa gwiazd w galaktyce. Dzięki analizie widm szerokopasmowych udało nam się zidentyfikować dwie różne populacje galaktyk w naszej próbce: typowe galaktyki aktywne gwiazdotwórczo - tak zwane galaktyki ciągu głównego, i ekstremalne obiekty, w których zachodzą wyjątkowo intensywne procesy gwiazdotwórcze (ang. starburst galaxies). Taka ekstremalna galaktyka tworzy rocznie gwiazdy o łącznej masie nawet 10-100 mas Słońca.
Znaleźliśmy ogromną ilość masy pyłu w większości naszych galaktyk – uzupełnia dr Donevski. Nasze szacunki pokazały, że wybuchy supernowych nie mogą być odpowiedzialne za to wszystko, a część musiała powstać w wyniku zderzeń cząstek w środowisku bogatym w gazowe metale wokół masywnych gwiazd, jak wcześniej przewidywały to modele teoretyczne. To pierwszy przypadek, kiedy dane obserwacyjne potwierdzają istnienie obu mechanizmów produkcji.
Naukowcy przyjrzeli się również zmianom w czasie stosunku masy pyłu do masy gwiazd, aby zbadać, jak skutecznie galaktyki tworzą i niszczą pył podczas swojej ewolucji. To pozwoliło nam zidentyfikować cykl życia pyłu w dwóch różnych populacjach galaktyk: normalnych, oraz bardziej ekstremalnych, szybko ewoluujących galaktykach gwiazdotwórczych - powiedziała Lara Pantoni, doktorantka w SISSA, która opracowała model analityczny służący do interpretacji danych i wykazujący ogromny potencjał w opisywaniu różnic w tych dwóch grupach obserwowanych galaktyk. Co ciekawe, wykazaliśmy również, że bez względu na odległość, masę lub rozmiar gwiazd, zwarte galaktyki gwiazdotwórcze zawsze mają wyższy stosunek masy pyłu do masy gwiazdy niż zwykłe galaktyki.
Aby w pełni ocenić wyniki obserwacji, zespół astronomów skonfrontował także swoje dane z najnowszymi modelami i symulacjami galaktyk. Wykorzystano symulację kosmologiczną SIMBA, nowy zestaw, który symuluje powstawanie i ewolucję milionów galaktyk od początku wszechświata do chwili obecnej, śledząc wszystkie ich właściwości fizyczne, w tym masę pyłu. Do tej pory modele teoretyczne miały problemy z jednoczesnym dopasowaniem zawartości pyłu w galaktykach i właściwości gwiazd. Jednak nasz nowy pakiet symulacji kosmologicznych SIMBA był w stanie odtworzyć większość zaobserwowanych danych - wyjaśnia Desika Narayanan, profesor astronomii na Uniwersytecie Florydy i członek instytutu DAWN w Kopenhadze.
Z naszych badań wynika, że produkcja pyłu w "gigantach" jest zdominowana przez bardzo szybki wzrost ilości cząstek w wyniku ich zderzeń z gazem - podsumowuje dr Donevski. Stanowi to pierwszy dowód na poparcie tezy, że powstawanie pyłu zachodzi zarówno podczas śmierci gwiazd, jak i w przestrzeni między tymi masywnymi gwiazdami, jak zakładają badania teoretyczne. Co więcej, nasza praca oferuje nowe, mieszane, podejście do badania ewolucji masywnych obiektów w odległym wszechświecie, które będą testowane za pomocą przyszłych teleskopów kosmicznych, takich jak Kosmiczny Teleskop Jamesa Webba.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.