Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Udało się wyjaśnić przyczynę gwałtownego spadku jasności nadolbrzyma

Rekomendowane odpowiedzi

Betelgeza, najbliższy nam czerwony nadolbrzym, to dziesiąta najjaśniejsza gwiazda na niebie. W bliskiej podczerwieni jest zaś gwiazdą najjaśniejszą. Gdyby znajdowała się w centrum Układu Słonecznego, orbita Jowisza znalazłaby się w jej wnętrzu. W latach 2019–2020 Betelgeza zaczęła przygasać i pojawiły się spekulacje, że może eksplodować. Tymczasem gwiazda wróciła do dawnej jasności, a teraz udało się rozwiązać zagadkę jej tajemniczego zachowania.

Jednym z wyjaśnień nietypowego zachowania gwiazdy była hipoteza, że przesłania ją orbitująca chmura pyłu. Drugie z wyjaśnień brzmiało, że na jej powierzchni uformował się chłodny obszar.

Wyjaśnienie dotyczące pyłu zdobyło większą popularność, jednak w danych instrumentu SPHERE umieszczonego na Very Large Telescope w Chile nie widać, by utrata jasności była okresowa, a tak by się działo, gdybyśmy mieli do czynienia z pyłem krążącym wokół gwiazdy.

Naukowcy z Observatoire de Paris oraz Uniwersytetu Katolickiego z Leuven, pracujący pod kierunkiem Miguela Montargesa, uważają, że oba wyjaśnienia są prawdziwe i łączą się ze sobą. SPHERE wykazał bowiem, że spadek jasności dotyczył fragmentu półkuli południowej gwiazdy. Był on 10-krotnie ciemniejszy niż reszta Betelgezy. Sądzimy, że w związku z pojawieniem się tego zimnego obszaru doszło do szybkiej koncentracji pyłu, co spowodowało głęboki spadek jasności gwiazdy z naszego punktu widzenia, mówi Montarges.

Takie wnioski wyciągnięto na podstawie kilku wcześniejszych prac. W 2020 roku naukowcy z University of Colorado, prowadzeni przez Grahama Harpera, zaobserwowali w atmosferze gwiazdy emisję z tlenku tytanu. Odkryli, że uformował się chłodny obszar. Chłodne gwiazdy, jak Betelgeza, doświadczają silnej konwekcji, a komórki konwekcyjne mają rozmiar olbrzymich planet. Pojawiają się na powierzchni i ponownie toną. Chłodny obszar mógł być więc nietypową duża komórką konwekcyjną. W tym samym roku inny zespół amerykańskich uczonych zauważył, że temperatura Betelgezy nie spadła poniżej 3600 kelwinów, była więc zbyt wysoka, by wyjaśnić tak dużą zmianę jasności.

Zespół Montargesa połączył te informacje z innymi badaniami i zaproponował całościowe wyjaśnienie. Zdaniem naukowców chłody obszar, ufomowany w wyniku naturalnego pulsowania gwiazdy, doprowadził do zmniejszenia promieniowania wzbudzającego chmurę gazu, która została wyemitowana przez gwiazdę, ale nie była na jej orbicie. Pochodzenie tego gazu nie jest jasne, ale to on może być odpowiedzialny za asymetrię gwiazdy zaobserwowaną w 2015 roku. Przypuszczamy, że gaz ten został wyrzucony przez silniejszą niż zwykle komórkę konwekcyjną, mówi Montarges. Gdy uformowała się kolejna wielka komórka konwekcyjna o niższej temperaturze, doprowadziło to do spadku temperatury gazu i jego kondensacji. Gaz ten przysłonił nam Betelgezę, przez co dla nas jej jasność jeszcze bardziej spadła.

O ile wiadomo, jest to pierwszy przypadek zaobserwowania i opisania takiego zjawiska. My natomiast opisywaliśmy Betelgezę już kilkukrotnie. Informowaliśmy, że czerwony nadolbrzym idzie na czołowe zderzenie, że na Betelgezie istnieją tajemnicze gorące punkty oraz że gwiazda obraca się zbyt szybko.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      NASA wybrała sześć niewielkich amerykańskich firm, które w sumie otrzymają 20 milionów dolarów na rozwój technologii usuwania odpadów z niskiej orbity okołoziemskiej oraz rozwiązania problemu pyłu osiadającego na urządzeniach pracujących poza Ziemią. Prowadzone przez nas misje wymagają innowacyjnych rozwiązań złożonych wyzwań pojawiających się podczas pobytu w kosmosie. Niewielkie firmy mogą mieć wielki wpływ na rozwiązanie problemów od dawna gnębiących przemysł kosmiczny, mówi Jenn Gustetic,  dyrektor ds. wstępnych innowacji i partnerstwa w NASA Space Technology Mission Directorate.
      Sześć wspomnianych firm współpracowało już z NASA w ramach programu Small Business Innovation Research. W jego ramach NASA przeznacza co roku 180 milionów USD na współpracę z amerykańskimi przedsiębiorstwami zatrudniającymi mniej niż 500 osób. Pieniądze od agencji kosmicznej pozwalają im na dalsze rozwijanie obiecujących technologii. Każda z firm wybranych do współpracy w bieżącym roku ma mniej niż 60 pracowników.
      Na niskiej orbicie okołoziemskiej ludzie pozostawiają coraz więcej śmieci. To zepsute satelity i ich fragmenty czy pozostałości po wystrzeliwaniu kolejnych misji. Odpady te zmuszają pojazdy kosmiczne do manewrowania, zagrażają bezpieczeństwu astronautów i satelitów. Z czasem cała orbita może stać się bezużyteczna. Cztery z wybranych przedsiębiorstw proponują technologie, które mają rozwiązać ten problem.
      Firma Busek otrzyma 3,4 miliona USD na rozwój technologii autonomicznego deorbitowania niewielkich satelitów przy użyciu nietoksycznego paliwa. Z kolei CU Aerospace ma za 2,6 miliona USD stworzyć napęd wielokrotnego użytku do niewielkich misji przechwytujących odpady na orbicie. Firmie Flight Works przyznano 4 miliony dolarów na rozwinięcie technologii tankowania na orbicie pojazdów zajmujących się usuwaniem odpadów, a Vestigo Aerospace ma zademonstrować działający żagiel Spinnaker, który – montowany za pomocą prostego połączenia mechanicznego i elektrycznego – będzie rozwijany po zakończeniu misji małych (do 180 kg) satelitów, zwiększając w ten sposób opór stwarzany przez atmosferę i pozwalając na szybsze, przewidywalne i całkowicie pasywne deorbitowanie takich pojazdów.
      Przyszłe misje NASA będą obejmowały roboty podróżujące po powierzchni Marsa i Księżyca. Osiadający na tych urządzeniach pył może znacząco skrócić czas ich pracy czy doprowadzić do awarii instrumentów naukowych. Pył jest też niebezpieczny dla urządzeń, które będą potrzebne podczas misji załogowych. Rozwiązaniem tego problemu mają zająć się dwa kolejne przedsiębiorstwa. Firma Applied Material System Engineering ma za 2,6 miliona USD zademonstrować system nakładania w przestrzeni kosmicznej swojej powłoki ograniczającej osadzanie pyłu, a ATSP Innovations otrzyma 3,2 miliona USD na stworzenie prototypowego materiału odpornego na ekstremalne temperatury, ciśnienia i pył obecne na powierzchni planet, księżyców, asteroid i komet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nie wszystkie zanieczyszczenia powietrza mają pochodzenie antropogeniczne. Jeśli średnia globalna temperatura wzrośnie o 4 stopnie Celsjusza, ilość pyłków roślinnych oraz pyłu w atmosferze zwiększy się nawet o 14%, uważają naukowcy z Uniwersytetu Kalifornijskiego w Riverside. Powietrze będzie więc znacznie bardziej zanieczyszczone niż obecnie, a trzeba wziąć pod uwagę, że mowa tutaj wyłącznie o wzroście zanieczyszczeń ze źródeł naturalnych. Źródła antropogeniczne nie zostały uwzględnione.
      Nie badaliśmy antropogenicznego zanieczyszczenia, gdyż mamy wpływ na poziom naszej emisji. Ale nie mamy wpływu na zanieczyszczenie powietrza przez rośliny i pył, mówi główny autor najnowszych badań, doktorant James Gomez.
      Wszystkie rośliny emitują biogenne lotne związki organiczne (LZO). Zapach świeżo skoszonej trawy czy dojrzałej truskawki to właśnie biogenne LZO. Rośliny emitują je bez przerwy, mówi Gomez. Same w sobie związki te nie są groźne, ale gdy przereagują z tlenem tworzą aerozole organiczne. Te zaś mogą przyczyniać się do zwiększenia śmiertelności niemowląt i rozwoju astmy u dzieci oraz do chorób serca i nowotworów płuc u dorosłych. Rośliny zwiększają produkcję LZO w reakcji na rosnący poziom dwutlenku węgla oraz wzrost temperatur. Dlatego też w kolejnych dziesięcioleciach należy spodziewać się wyższego stężenia biogennych LZO w atmosferze.
      Drugim źródłem naturalnych zanieczyszczeń będzie pył z Sahary. Z naszych modeli wynika, że zwiększy się intensywność wiatrów, które uniosą do atmosfery więcej pyłu, wyjaśnia współautor badań, profesor Robert Allen. Więcej pyłu pojawi się przede wszystkim w Afryce, na wschodzie USA i na Karaibach. Bardziej zapylone powietrze nad Afryką Północną – nad Saharą i Sahelem – prawdopodobnie zwiększy intensywność zachodnioafrykańskich monsunów.
      Autorzy badań stwierdzili, że zanieczyszczenie pyłem zawieszonym PM 2.5 – do których należą organiczne aerozole, pył, sól morska, sadza czy związki siarki – będzie rosło proporcjonalnie do wzrostu poziomu dwutlenku węgla w atmosferze. Im bardziej zwiększymy poziom CO2, tym więcej PM 2.5 trafy do atmosfery. Prawdziwa jest również zależność odwrotna. Mniejsza emisja CO2 to mniej PM 2.5, wyjaśnia Gomez. Naukowcy zauważyli, że przy wzroście globalnej temperatury o 2 stopnie Celsjusza poziom PM 2.5 nad lądami wzrośnie o 7%. Stwierdzają przy tym, że ich szacunki mogą być zaniżone, gdyż nie brali pod uwagę wpływu częstszych pożarów lasów spowodowanych zwiększonymi temperaturami.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy korzystający z Teleskopu Webba opublikowali pierwsze wyniki dotyczące formowania się gwiazd oraz pyłu i gazu w pobliskich galaktykach. W ramach projektu Physics at High Angular resolution in Nearby Galaxies (PHANGS) prowadzony jest największy z dotychczasowych przeglądów nieodległych galaktyk z użyciem najnowszego kosmicznego teleskopu. W badaniach pod kierunkiem Janice Lee z Gemini Observatory i NOIRLab bierze udział ponad 100 naukowców z całego świata.
      Uczeni postanowili przyjrzeć się 19 galaktykom spiralnym. W pierwszych miesiącach pracy Webba na celownik wzięli pięć z nich – M74, NGC 7496, IC 5332, NGC 1365 oraz NGC 1433 – i już opublikowali wstępne wnioski oraz artykuły naukowe.
      Jesteśmy zdumieni szczegółami struktur, jakie możemy obserwować, mówi David Thilker z Uniwersytetu Johnsa Hopkinsa. Bezpośrednio widzimy, jak energia z formowania się młodych gwiazd wpływ na pobliski gaz. To coś niezwykłego, wtóruje mu Erik Rosolowsky z kanadyjskiego University of Alberta.
      Na obrazach zarejestrowanych przez MIRI widzimy sieć wysoko zorganizowanych struktur – świecące obszary pyłu i bąble gazu łączące ramiona galaktyk. Struktury te powstały zarówno w wyniku oddziaływania indywidualnych gwiazd, jak i nachodzą na siebie, gdy tworzące się gwiazdy są wystarczająco blisko położone. Obszary, które są całkowicie ciemne na obrazach z Hubble'a, tutaj są rozświetlone i widzimy niezwykłe szczegóły. Możemy dzięki temu badać, jak pył z ośrodka międzygwiezdnego absorbuje światło z gwiazd i emituje je w podczerwieni, podświetlając niezwykle interesującą sieć pyłu i gazu, zachwyca się Karin Sandstrom z Uniwersytetu Kalifornijskiego w San Diego.
      Dzięki Webbowi naukowcy mogą dostrzec struktury, których dotychczas nie widzieli. Zespół PHANGS przez lata obserwował te galaktyki w paśmie optycznym, radiowym i ultrafioletowym, wykorzystując w tym celu Teleskop Hubble'a, Atacama Large Millimeter/Submillimeter Array i Very Large Telescope. Ale nie mogliśmy dostrzec najwcześniejszych etapów życia gwiazd, gdyż były one przesłonięte gazem i pyłem, dodaje Adam Leroy z Ohio State University. Dopiero Teleskop Webba pozwolił na uzupełnienie brakującej wiedzy.
      Webb pozwala dostrzec to, co dotychczas było niedostrzegalne. Na przykład jego instrument MIRI, pracujący w zakresie 7,7 i 11,3 mikrometra oraz NIRCam, który działa w zakresie 3,3 mikrometra, rejestrują emisję z wielopierścieniowych węglowodorów aromatycznych, które odgrywają ważną rolę w formowaniu się gwiazd i planet. To zaś pozwala na poznanie ewolucji galaktyk.
      Dzięki dużej rozdzielczości teleskopu możemy po raz pierwszy przeprowadzić kompletny badania formowania się gwiazd oraz przyjrzeć się bąblastym strukturom ośrodka międzygwiezdnego w pobliskich galaktykach poza Grupą Lokalną Galaktyk, wyjaśnia Janice Lee.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Analiza danych z Teleskopu Hubble'a i innych obserwatoriów ujawniła, że w 2019 roku czerwony nadolbrzym Betelgeza odrzucił znaczną część powierzchni. Doszło do gigantycznego powierzchniowego wyrzutu masy (SME). Zjawiska tego nigdy wcześniej nie zaobserwowano na Betelgezie.
      Na Słońcu bardzo często dochodzi do koronalnych wyrzutów masy (CME). W trakcie tego procesu pojawia się olbrzymi obłok plazmy, który jest przyspieszany w koronie słonecznej i wyrzucany w przestrzeń kosmiczną nawet z prędkością nawet do 3000 km/s. Wydarzenia takie mają olbrzymie znaczenie dla pogody kosmicznej. Wyrzut masy na Betelgezie był godzien czerwonego nadolbrzyma. Gwiazda utraciła w jego wyniku aż... 400 miliardów razy więcej masy, niż Słońce traci w wyniku typowego CME.
      Betelgeza wciąż powoli odradza się po katastrofalnym wydarzeniu. Dzieje się tam coś niezwykłego. W jej wnętrzu jakby zachodził proces odbicia, mówi Andrea Dupree z Center for Astrophysics | Harvard & Smithsonian.
      Odkrycie pokazuje, jak czerwone gwiazdy tracą masę pod koniec życia, zanim jeszcze wybuchną jako supernowe. Ilość traconej masy ma znaczny wpływ na ich los. Jednak, ku zdziwieniu specjalistów, nic w zachowaniu Betelgezy nie wskazuje na nadchodzącą eksplozję. Zatem utrata masy, nawet tak olbrzymia, niekoniecznie zapowiada rychły koniec Betelgezy.
      Dupree i jej zespół zbierają obecnie dane dotyczące zachowania gwiazdy przed, w czasie i po SME. Nigdy wcześniej nie widzieliśmy tak gigantycznego wyrzutu masy z powierzchni gwiazdy. To coś, czego zupełnie nie rozumiemy. To całkowicie nowe zjawisko, które możemy szczegółowo obserwować dzięki Teleskopowi Hubble'a. Oglądamy ewolucję gwiazdy w czasie rzeczywistym, mówi uczona.
      Naukowcy sądzą, że wyrzut masy został spowodowany przez pojawienie się kolumny konwekcyjnej o średnicy ponad 1,5 miliona kilometrów. Kolumna ruszyła z wnętrza gwiazdy ku górze i wywołała pojawienie się fal uderzeniowych i impulsów które odrzuciły znaczną część fotosfery, pozostawiając w gwieździe olbrzymi chłodny obszar ukryty pod pyłem utworzonym przez schłodzone fragmenty odrzuconej fotosfery. Obecnie na Betelgezie widać proces „gojenia rany”.
      Podczas SME Betelgeza odrzuciła materię o masie kilkukrotnie większej od masy Księżyca. Rozrzucone w przestrzeni kosmicznej fragmenty fotosfery schłodziły się, tworząc pył, który przesłonił Betelgezę. To właśnie dlatego pod koniec 2019 roku przez kilka miesięcy widoczna była zmiana jasności gwiazdy.
      Co interesujące, po wyrzucie masy zanikła dobrze znana od niemal 200 lat pulsacja Betelgezy. Dotychczas gwiazda zmieniała jasność co 400 dni. Obecnie tego zjawiska się nie obserwuje, co dodatkowo świadczy o tym, jak potężny był SME.
      Uczeni zwracają uwagę, że co prawda znamy koronalne wyrzuty masy na Słońcu, ale nigdy nie doprowadziły one do odrzucenia tak dużej części gwiazdy co powierzchniowy wyrzut masy na Betelgezie. To zaś może oznaczać, że CME i SME są różnymi zjawiskami.
      Betelgeza to czerwony nadolbrzym znajdujący się w odległości ponad 642 lat świetlnych od Ziemi. Jest tak wielka, że gdyby umieścić ją w miejscu Słońca, sięgałaby za orbitę Jowisza.
      NASA zauważa, że odrzuconą przez Betelgezę, oddalającą się od niej materię, być może udałoby się obserwować za pomocą Teleskopu Webba.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół dr hab. Agnieszki Babczyńskiej z Uniwersytetu Śląskiego bada skutki narażenia wybranych roślinożernych bezkręgowców na pył z opon. W projekcie, który dopiero się rozpoczyna, biorą udział specjaliści z Polski, Litwy, Włoch i Francji.
      Jak się żyje w pobliżu autostrady
      Dr hab Agnieszka Babczyńska opowiada, jak wygląda życie w pobliżu autostrady. Wyjaśnia, że w okresie budowy drogi, który wydaje się najtrudniejszy, wszystko diametralnie się zmienia, a świat zwierząt zostaje, i to dosłownie, wywrócony do góry nogami. Dla wielu gatunków autostrada jest nieprzekraczalnym pasem (wydzielone przejścia znajdują się przede wszystkim w miejscach przecinających szlaki migracji). Nie mamy jednak wątpliwości, że natura sobie poradzi i zwierzęta przyzwyczają się do nowej sytuacji.
      Po ustabilizowaniu środowiska można spotkać gatunki, które wykorzystują zmienione warunki. Dobrym przykładem są ptaki drapieżne, które przesiadują nieopodal, czekając na ofiary ruchu samochodowego.
      Należy pamiętać, że z istnieniem autostrady wiążą się też hałas, drgania i różne zanieczyszczenia. Ostatni z wymienionych elementów jest szczególnym przedmiotem naszego zainteresowania. To bardzo ciekawy temat, ponieważ nie rozmawiamy tylko o wpływie ruchu samochodowego na gazowe zanieczyszczenie powietrza, lecz również o pyłach, które dostają się do środowiska w wyniku eksploatacji pojazdów. Może to być pył powstający na skutek ścierania się różnych, plastikowych, metalowych czy gumowych części samochodów – tłumaczy specjalistka.
      Nie tylko hałas i drgania, ale i pyły
      Jak wspomniała dr hab. Babczyńska, pyły w okolicach autostrad są złożoną mieszaniną różnych związków. Tworzą się wskutek ścierania takich elementów samochodów, jak klocki czy tarcze hamulcowe, opony, amortyzatory, łańcuchy, pasy oraz sprężyny. Ich zasięg rozprzestrzeniania/osiadania również jest różny. Z tego względu inne zanieczyszczenia znajdziemy na roślinach przy autostradzie, a inne na liściach drzew w pewnej odległości. Znaczenie ma też, oczywiście, ukształtowanie terenu wokół autostrady: czy są to płaskie powierzchnie, trawy i łąki, czy też obszary górzyste albo pokryte lasem. Inaczej sytuacja wygląda latem, inaczej zimą. Na zasięg osiadania pyłów ma też wpływ pogoda - zaznaczono w komunikacie prasowym UŚ.
      Naukowcy planują wzięcie pod uwagę jak największej liczby zmiennych, ale na początek skupią się na wpływie pyłu z opon na roślinożerne bezkręgowce. Nie będzie to proste, dr hab. Babczyńska wspomina nawet o koniu trojańskim... Z naszej perspektywy bardzo ważny jest skład chemiczny tworzywa, z którego wykonywane są opony. Wiemy, że są to polimery z najróżniejszymi domieszkami. Ich mikrocząstki najpierw unoszą się w powietrzu, a potem opadają, pokrywając rośliny i wszystko wokół. Ze względu na swoje właściwości fizykochemiczne i porowatość to prawdziwe konie trojańskie, które transportują „pasażerów na gapę”, czyli inne związki organiczne i nieorganiczne, które dodatkowo komplikują toksyczność pyłów autostradowych - tłumaczy.
      Sześć instytucji naukowych
      Badania prowadzone będą w dwóch miejscach, dobrze charakteryzujących drogę szybkiego ruchu. Jednym będzie skrzyżowanie przy centrum handlowym M1 w Czeladzi, które otoczone jest dużymi niezalesionymi obszarami. Drugie miejsce to okolice zjazdu na Czułów pomiędzy Katowicami a Tychami. One z kolei są zalesione.
      W pracach weźmie udział sześć jednostek naukowych z Polski, Litwy, Włoch oraz Francji. Naukowcy z Uniwersytetu Śląskiego przeprowadzą badania toksykologiczne. Uczeni zebrali już organizmy modelowe, w tym mącznika młynarka, a na prośbę partnerów z Uniwersytetu Witolda Wielkiego w Kownie dołączyli też rozwielitkę i dżdżownicę. Paczka z 40 kilogramami materiału do dalszych badań już została wysłana ze Sląska na Litwę.
      Później, po odpowiednim przygotowaniu, zwierzęta trafią do Włoch. Tam eksperci z Uniwersytetów w Trieście i Kalabrii będą identyfikowali cząstki pyłów z opon, które zgromadziły w organizmach zwierząt. W międzyczasie polscy naukowcy zbiorą z przydrożnych roślin sam pył, który wyślą do Francji do Uniwersytetu Grenoble Alpes. Francuzi zajmą się charakterystyką pyłu, a Polacy dostarczą im dodatkowo materiał referencyjny, samodzielnie ścierając w laboratorium fragmenty różnych opon.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...