Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Pierwszy moduł Central Solenoid, jednego z najpotężniejszych magnesów, gotowy do wysyłki do ITER

Recommended Posts

Po dziesięciu latach prac projektowych i produkcyjnych firma General Atomics jest gotowa do dostarczenia pierwszego modułu Central Solenoid, jednego z najpotężniejszych magnesów na świecie. Będzie on centralnym elementem ITER. Ten reaktor fuzyjny, który ma produkować energię metodą fuzji jądrowej – tak jak powstaje ona w Słońcu – jest budowany we Francji przez 35 krajów. Central Solenoid, największy z magnesów ITER to główny wkład USA w instalację.

Potężny magnes będzie składał się z sześciu modułów. Jego wysokość sięgnie 18, a szerokość 4,25 metrów. Będzie ważył 1000 ton. Jego zadaniem będzie indukowanie pola magnetycznego, które pomoże kontrolować plazmę ITER.

Central Solenoid będzie naprawdę potężny. Generowane przezeń pole magnetyczne o mocy 13 tesli będzie 280 000 razy silniejsze niż pole magnetyczne Ziemi. Byłoby ono w stanie unieść lotniskowiec na wysokość 2 metrów. Struktury podtrzymujące to wielkie urządzenie będą musiały wytrzymać siły dwukrotnie przekraczające ciąg promu kosmicznego.

General Atomics zakończył w bieżącym roku testy pierwszego modułu Central Solenoid. W ciągu najbliższych dni zostanie on załadowany na specjalną ciężarówkę, przewieziony do Houston, skąd popłynie do Francji.

To jeden z największych, najbardziej złożonych i najbardziej wymagających projektów związanych z magnesami, jaki kiedykolwiek został podjęty. To najważniejsze przedsięwzięcie naszych karier, stwierdził John Smith, dyrektor GA ds. inżynieryjnych i projektowych.

Nad projektem i produkcją magnesów czuwają specjaliści z Oak Ridge National Laboratory, w którym siedzibę ma US ITER. Pozostałych pięć dodatkowych modułów Central Solenoid, plus jeden zapasowy, są na różnym etapie tworzenia. Moduł 2. ma trafić do Francji już w sierpniu.

ITER to największy z prowadzonych projektów prac nad uzyskaniem energii fuzyjnej. Bierze w nim udział 35 krajów. Zgodnie z umową z 2006 roku każdy członek ITER w równej mierze skorzysta z technologii opracowanych przy projekcie. Różne kraje finansują go jednak w różnym stopniu. Stany Zjednoczone finansują około 9% kosztów budowy.

ITER to najbardziej złożony projekt współpracy naukowej w historii, mówi dyrektor ITER Organization, doktor Bernard Bigot. Od 10 lat na trzech kontynentach tworzone są komponenty, których nigdy wcześniej nie budowano. Bez globalnej współpracy ITER nie mógłby powstać. Jednak dzięki niej, każdy z zespołów korzysta z doświadczeń innych.

Na wspólnym projekcie korzystają również poszczególne kraje. Wiele z nich prowadzi też własne badania nad fuzją jądrową. Pracując nad ITER rozwijają własny przemysł, naukę, zapewniają miejsca pracy wysoko wykwalifikowanej kadrze.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed miesiącem należąca do Pentagonu Defense Innovation Unit przyznała firmie Avalanche Energy grant na stworzenie prototypu urządzenia Orbitron, które ma generować ciepło lub elektryczność na potrzeby napędu prototypowego satelity. Satelita ma trafić w przestrzeń kosmiczną już w 2027 roku. I nie byłoby w tym nic nadzwyczajnego, gdyby nie fakt, że Orbitron ma być niewielkim reaktorem, w którym ma zachodzić... fuzja jądrowa. Ta słynna fuzja, która ma nam zapewnić nieskończone źródło czystej energii, a od której od zawsze dzieli nas tylko 20 lat.
      Fuzja jądrowa polega na połączeniu dwóch lżejszych atomów w jeden cięższy. Uwalnia się przy tym duża ilość energii. Problem jednak w tym, że aby pokonać siły elektrostatyczne odpychające od siebie atomy potrzeba albo ekstremalnie wysokich temperatur, albo potężnych impulsów laserowych. To zaś wymaga budowy olbrzymich, bardzo skomplikowanych i kosztownych instalacji. Prace nad opanowaniem fuzji jądrowej trwają od lat, pochłonęły już miliardy dolarów, a elektrowni fuzyjnej generującej zysk energetyczny netto jak nie było, tak nie ma.
      Pomysł Orbitrona opiera się na pracy doktorskiej Toma McGuire'a z 2007 roku, który pracował na MIT nad inercyjnym uwięzieniem elektrostatycznym plazmy (IEC). Idea ta polega na uwięzieniu jonów w polach elektrycznych generowanych przez sferyczne elektrody. Jony krążą w takim polu, przez co mają wiele okazji, by się połączyć.
      McGuire przeprowadził symulacje zachowania jonów przy różnych ułożeniach katody i zauważył, że niektóre konfiguracje prowadzą do spontanicznego organizowania się plazmy w zsynchronizowane impulsy grup jonów. Grupy takie istniały przez około 1/10 sekundy, a więc tysiące razy dłużej niż samodzielnie poruszające się jony, co zwiększało szanse na zajście fuzji. Kilka lat później pracą McGuire'a zainteresowali się dwaj inżynierowie z Blue Origin. Przed 4 laty założyli oni Avalanche Energy.
      W marcu bieżącego roku Avalanche Energy zyskała 5 milionów dolarów od inwestorów. Firma złożyła wniosek patentowy na Orbitron. Opisano w nim urządzenie o średnicy kilkudziesięciu centymetrów, w którym strumień jonów pod wpływem pola elektrostatycznego wchodzi na eliptyczną orbitę wokół elektrody. W systemie tym jony mają istnieć przez około sekundę, co wystarczy, by każdy z nich okrążył elektrodę miliony razy. Avalanche twierdzi, że uzyskała już tą metodą neutrony powstałe w wyniku fuzji jądrowej. Orbitron o średnicy 10 cm ma dostarczać 1 kW mocy. Możliwe byłoby grupowanie takich urządzeń, co pozwoliłoby niewielkim pojazdom na swobodne manewrowanie w przestrzeni kosmicznej. Teraz Avalanche musi wykazać, że to wszystko jest możliwe i w ciągu 5 lat dostarczyć działający prototyp.
      Eksperci zajmujący się fuzją jądrową sceptycznie podchodzą do pomysłu. Jedni zwracają uwagę, że bardzo trudno będzie osiągnąć odpowiednie zagęszczenie jonów bez zaburzenia ich orbitalnego ruchu wokół elektrody. Inni przypominają, że fuzja nie jest jedynym, co może się zdarzyć, gdy dwa jony zbliżą się do siebie. Prawdopodobieństwo zajścia fuzji jest znacznie mniejsze niż np. prawdopodobieństwo rozproszenia.
      Kolejnym problemem mogą być neutrony, których uzyskaniem pochwaliła się Avalanche. Bez odpowiednich osłon mogą one uszkodzić pojazd kosmiczny, ładunek czy zaszkodzić zdrowiu znajdujących się w pobliżu ludzi. Właściciele firmy Avalanche mogą się więc pocieszać, że jeśli nie wyjdzie im z napędem, być może opracują tanie źródło neutronów, które już teraz znajdują wiele zastosowań od obrazowania medycznego po bezpieczeństwo.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po trzech latach pracy inżynierom z MIT udało się zwiększyć moc wysokotemperaturowego nadprzewodzącego elektromagnesu dla reaktorów fuzyjnych do rekordowych 20 tesli. Tym samym stworzyli najpotężniejszy magnes tego typu. Osiągnięcie to pozwoli na zbudowanie pierwszej elektrowni fuzyjnej, zdolnej do wygenerowania większej ilości energii niż sama pobiera.
      Przed zaledwie 3 miesiącami informowaliśmy, że po dziesięciu latach prac projektowych i produkcyjnych firma General Atomics jest gotowa do dostarczenia pierwszego modułu Central Solenoid, jednego z najpotężniejszych magnesów na świecie. Będzie on centralnym elementem reaktora fuzyjnego ITER. Central Solenoid to główny wkład USA w tę instalację. Będzie on generował pole magnetyczne o mocy 13 tesli, czyli 280 000 razy większe od ziemskiego pola magnetycznego. Magnes z MIT generuje pole magnetyczne silniejsze o 50%.
      Reaktory fuzyjne wytwarzają energię metodą fuzji jądrowej, w czasie której lżejsze pierwiastki łączą się w cięższe. Taki proces zachodzi na Słońcu. Fuzja to pod wieloma względami najdoskonalsze źródło czystej energii. Ilość energii, jaką może dostarczyć zupełnie zmieni reguły gry. Paliwo do fuzji jądrowej można uzyskać z wody, a Ziemia jest pełna wody. To niemal niewyczerpane źródło energii. Musimy tylko dowiedzieć się, jak go używać, mówi profesor Maria Zuber, wiceprezydent MIT ds. badawczych.
      Osiągnięcie naukowców z MIT daje nadzieję na uzyskanie w laboratorium zysku energetycznego netto drogą fuzji jądrowej. To zaś znakomicie ułatwi i przyspieszy prace nad tą technologią. Teraz, gdy udało się przeprowadzić udane testy tak potężnego magnesu dla reaktorów fuzyjnych konsorcjum MIT-CMS będzie chciało wybudować pierwszą na świecie demonstracyjną elektrownię fuzyjną, zwaną SPARC, uzyskującą dodatni bilans energetyczny. Wspomniany magnes to krok milowy na drodze do jej budowy. Dzięki niemu jest szansa, że SPARC powstanie już za 4 lata.
      CFS (Commonwealth Fusion Systems) to firma założona w 2018 roku w Plasma Science and Fusion Center na MIT. Jest finansowana m.in. przez włoski koncern ENI, założoną przez Billa Gatesa Breakthrough Energy Ventures  czy singapurską Temasek. Firma współpracuje z Departamentem Energii, MIT oraz Princeton Plasma Physics Laboratory, a jej celem jest wybudowanie kompaktowej elektrowni fuzyjnej opartej na stworzonej na MIT koncepcji tokamaka ARC.
      Żeby zrozumieć, po co w reaktorach fuzyjnych tak potężne magnesy, trzeba wiedzieć, że do zaistnienia fuzji jądrowej potrzebne są olbrzymie temperatury, sięgające 100 milionów stopni Celsjusza i więcej. Takich temperatur nie wytrzyma żadne ciało stałe. Dlatego też plazmę, w której będzie zachodziła fuzja, trzeba utrzymać z dala od ścian reaktora. Można to zrobić za pomocą silnego pola magnetycznego. I właśnie temu – zawieszeniu plazmy w przestrzeni – służą potężne elektromagnesy.
      Główna innowacja projektu ARC polega na wykorzystaniu wysokotemperaturowych nadprzewodników, które pozwalają na uzyskanie znacznie silniejszego pola magnetycznego w mniejszej przestrzeni. Materiały pozwalające na stworzenie takiego magnesu pojawiły się na rynku dopiero kilka lat temu. Koncepcja ARC powstała w 2015 roku. Demonstracyjny reaktor SPARC ma być o połowę mniejszy niż pełnowymiarowy ARC i ma posłużyć do przetestowania projektu.
      Prace nad fuzją jądrową trwają na MIT od dawna. W ubiegłym roku pojawiło się kilka artykułów naukowych, których autorzy donosili, że jeśli uda się wyprodukować takie magnesy, jak założono, to reaktory typu ARC rzeczywiście powinny wytwarzać więcej energii niż zużyją.
      Nasz projekt wykorzystuje standardową fizykę plazmy oraz projekt i założenia inżynieryjne konwencjonalnego tokamaka, ale łączy je z nową technologią wytwarzania magnesów. Zatem nie potrzebowaliśmy innowacji na kilku polach. Naszym celem było stworzenie odpowiedniego magnesu, a następnie zastosowanie w praktyce tego, czego nauczyliśmy się w ciągu ostatnich kilku dekad, mówi Martin Greenwald z Plasma Science and Fusion Center.
      To wielka chwila, dodaje Bob Mumgaard, dyrektor wykonawczy CFS. Dysponujemy teraz platformą, która dzięki dziesięcioleciom badań nad tego typu rozwiązaniami jest bardzo zaawansowana z naukowego punktu widzenia i jednocześnie bardzo interesująca z komercyjnego punktu widzenia. To pozwoli nam szybciej budować mniejsze i tańsze reaktory. Trzy lata temu ogłosiliśmy, że zamierzamy zbudować magnes o mocy 20 tesli, który będzie potrzebny do przyszłych reaktorów fuzyjnych. Osiągnęliśmy nasz cel bez żadnych opóźnień, dodaje.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W brytyjskim tokamaku Joint European Torus (JET) wkrótce rozpoczną się testy mieszanki paliwowej, która w przyszłości może zasilać ITER – największy na świecie eksperymentalny reaktor fuzyjny. Fuzja jądrowa to proces, który zachodzi w Słońcu. Jej opanowanie może zapewnić ludzkości niemal niewyczerpane źródło czystej energii.
      JET jest 10-krotnie mniejszy od ITER. W grudniu rozpoczęto tam eksperymenty z trytem. Tym samym po raz pierwszy od 1997 roku ludzkość prowadzi reakcje fuzji jądrowej ze znaczącymi ilościami tego pierwiastka.
      W czerwcu bieżącego roku rozpoczną się testy, podczas których w reakcji będą brały udział równe ilości trytu i deuteru. Dokładnie tak samo ma działać ITER, którego zadaniem będzie doprowadzenie do sytuacji, w której z fuzji jądrowej uzyskamy więcej energii niż w nią włożyliśmy. Dotychczas ludzkości nie udało się uzyskać energetycznego zysku netto z fuzji.
      W końcu, po latach przygotowań, udało nam się dojść do punktu, w którym możemy rozpocząć testy. Jesteśmy gotowi, mówi Joelle Mailloux, która kieruje programem naukowym w JET.
      Eksperymenty w JET pomogą naukowcom przewidzieć, w jaki sposób będzie zachowywała się plazma w ITER i odpowiednio dobrać parametry pracy wielkiego tokamaka. To najbliższa symulacja warunków w ITER, jaką w tej chwili możemy wykonać, wyjaśnia Tim Luce, główny naukowiec eksperymentu ITER. Testy, do których przygotowuje się JET, to kulminacja 2 dekad badań. ITER ma ruszyć w 2025 roku. Wówczas będą w nim przeprowadzane niskoenergetyczne reakcje z udziałem wodoru. Jednak od roku 2035 ma używać wyłącznie trytu i deuteru w proporcjach 1:1.
      Zarówno ITER jak i JET wykorzystują bardzo silne pole magnetyczne do utrzymania i ściśnięcia plazmy. Temperatura w JET może osiągnąć 100 milionów stopni Celsjusza. To wielokrotnie więcej niż w jądrze Słońca.
      Ostatnie eksperymenty, jakie prowadziła ludzkość z fuzją trytu były przeprowadzone właśnie w JET. Celem było ustanowienie rekordowego stosunku energii uzyskanej do energii włożonej. JET ustanowił wówczas do dzisiaj obowiązujący rekord Q=0,67. Celem tegorocznego eksperymentu jest uzyskanie podobnego wyniku i utrzymanie reakcji przez co najmniej 5 sekund. W ten sposób naukowcy chcą zdobyć dane dotyczące zachowania się plazmy przez dłuższy czas.
      Praca z trytem stawia przed specjalistami nowe wyzwania. Specjaliści z JET przez ostatnie 2 lata dostosowywali swoje urządzenia i przygotowywali je do pracy z tym radioaktywnym pierwiastkiem. Tryt ma bardzo krótki czas półrozpadu, w naturze występuje w ilościach śladowych, a powstaje jako półprodukt pracy elektrowni jądrowych. Całą światowa produkcja trytu to zaledwie 20 kilogramów.
      Po uruchomieniu eksperymentów z trytem, wnętrze JET stanie się radioaktywne i ludzie nie będą mieli do niego wstępu przez 18 miesięcy. Musieliśmy zmienić nasze procedury. Wszystko musi zadziałać za pierwszym razem. Nie będziemy mogli tam wejść i czegoś poprawić, wyjaśnia  Ian Chapman.
      Podczas badań JET wykorzysta mniej niż 60 gramów trytu, który będzie poddawany recyklingowi. Paliwo zawierające ułamek grama trytu będzie wstrzykiwane do tokamaka 3 do 14 razy na dobę. Każde takie wstrzyknięcie będzie stanowiło osobny eksperyment o nieco innych parametrach i z każdego naukowcy uzyskają od 3 do 10 sekund użytecznych danych. W ten sposób chcemy zweryfikować naszą obecną wiedzę i wykorzystać ją do dalszych prac, mówi Mailloux. Podczas części eksperymentów będzie używany tylko tryt, a podczas innych tryt i deuter w równych proporcjach.
      Dzięki obu rodzajom badań naukowcy chcą zrozumieć, jak na zachowanie się plazmy wpłynie większa masa trytu. Pierwiastek ten ma w jądrze dwa neutrony, tymczasem deuter ma jeden, a wodór – żadnego.
      Badania takie pozwolą przewidzieć, co w przyszłości będzie się działo w ITER. Masa izotopów wpływa bowiem na pole magnetyczne czy temperaturę plazmy. "Musimy zbadać co się tam dzieje i dlaczego się dzieje", wyjaśnia Anna White, fizyk plazmy z MIT.
      Inną ważną różnicą w porównaniu z ostatnimi eksperymentami z trytem z roku 1997 jest fakt, że obecnie wnętrze JET zostało wyłożone takimi materiałami osłonowymi, co wnętrze ITER. Jako, że materiały te mogą oddawać energię do plazmy i ją chłodzić, niezwykle istotnym jest zrozumienie, w jaki sposób wpływają one na fuzję.
      Nie należy też zapominać o jeszcze jednym bardzo ważnym czynniku. Ludziach. Ostatnie eksperymenty z trytem były prowadzone przed 24 laty. Nowe pokolenie fizyków zupełnie nie ma doświadczenia z tym pierwiastkiem. Teraz będą mieli okazję uczyć się od bardziej doświadczonych kolegów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Przed dwoma dniami odbyła się oficjalna uroczystość, podczas której zainaugurowano montaż reaktora termojądrowego, tokamaka ITER. Dziesięć lat po rozpoczęciu budowy projekt ITER wszedł w decydującą fazę. W miesiącach poprzedzających niedawną uroczystość do Francji dostarczono główne elementy tokamaka, w tym cewki toroidalne – jedna Europy i dwie z Japonii. Kilka dni przed uroczystością z Korei dotarła pierwsza część komory próżniowej.
      Rozpoczynamy montaż ITER. To historyczny moment. Mija sto lat od chwili, gdy naukowcy zrozumieli, że Słońce i gwiazdy są zasilane przez fuzję jądrową, i sześć dekad od czasu, gdy w Związku Radzieckim zbudowano pierwszy tokamak. [...] Musimy jak najszybciej zastąpić paliwa kopalne [...] Posuwamy się do przodu tak szybko, jak to możliwe, mówił dyrektor generalny ITER, Bernard Bigot.
      ITER ma być urządzeniem badawczym. Największym dotychczas zbudowanym tokamakiem i pierwszym, w którym uzyskany zostanie dodatni bilans energetyczny. Naukowcy od kilkudziesięciu lat pracują nad fuzją termojądrową, ale dopiero niedawno udało się uzyskać z takiej reakcji więcej energii niż w nią włożono. Dokonali tego w 2013 roku specjaliści z amerykańskiego National Ignition Facility.
      Z fuzją termojądrową wiązane są olbrzymie nadzieje na uzyskanie źródła naprawdę czystej bezpiecznej energii. Różnica pomiędzy reaktorem fuzyjnym, a standardowym reaktorem atomowym polega na tym, że w reaktorze atomowym energię uzyskuje się z rozpadu ciężkich izotopów radioaktywnych. Zaś w elektrowni termojądrowej ma ona powstawać w wyniku łączenia się lekkich izotopów wodoru. Proces ten, podobny do procesów zachodzących w gwiazdach, niesie ze sobą dwie olbrzymie korzyści.
      Po pierwsze w reaktorze termojądrowym nie może zajść niekontrolowana reakcja łańcuchowa, podobna do tej, jaka zaszła w Czarnobylu. Po drugie, nie powstają tam odpady radioaktywne, które trzeba by przez tysiące lat przechowywać w specjalnych bezpiecznych warunkach.
      Fuzja jądrowa ma olbrzymi potencjał. Z 1 grama wodoru i trytu można teoretycznie uzyskać tyle energii, co ze spalenia 80 000 ton ropy naftowej. Deuter i tryt są łatwo dostępnymi, powszechnie występującymi na Ziemi pierwiastkami. ITAR zaś posłuży to badań i stworzenia technologii, które pozwolą na zbudowanie komercyjnych elektrowni fuzyjnych. Obecnie przewiduje się, że pierwszy zapłon ITER nastąpi w 2025 roku, a 10 lat później rozpoczną się regularne prace z kontrolowaną syntezą termojądrową.
      Obecnie przewiduje się, że pierwsze komercyjne elektrownie termojądrowe powstaną w latach 50. obecnego wieku.
      Uczestnikami projektu ITER są Unia Europejska, Chiny, Indie, Japonia, Korea Południowa, Rosja i Stany Zjednoczone. UE pokrywa 45,4% kosztów projektu, a pozostałe koszty są po równo (po 9,1%) podzielone pomiędzy resztę członków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjaliści z Fermilab stworzyli najpotężniejszy na świecie magnes do akceleratorów cząstek. Magnes pozwala na wygenerowanie pola magnetycznego o indukcji 14,5 tesli. Poprzedni rekord wynosił 14,1 tesli i również został ustanowiony w Fermilab.
      Obecne osiągnięcie to niezwykle ważny krok dla budowy przyszłych akceleratorów cząstek. Bez silniejszych magnesów nie powstaną bowiem przyszłe akceleratory, takie jak proponowany przez CERN 100-kilometrowy Future Circural Collider (FCC). O ile bowiem Wielki Zderzacz Hadronów wykorzystuje magnesy generujące pole 7,8 tesli, to w FCC naukowcy będą potrzebowali nawet 16 tesli.
      Naszym kolejnym celem jest przekroczenie poziomu15 tesli i zwiększenie maksymalnej siły pola naszych magnesów do 17 tesli albo i więcej. To znakomicie zwiększy wydajność magnesów i zoptymalizuje koszty, mów Alexander Zlobin, który stoi na czele grupy pracującej nad magnesami. Osiągnięcie wyznaczonych przez nas celów położy silne podwaliny pod przyszłe akceleratory cząstek, dodaje uczony.
      W akceleratorach magnesy są używane do kontrolowania wiązki cząstek poruszających się niemal z prędkością światła. Im silniejszy magnes tym łatwiej wiązkę kontrolować.
      Warto zauważyć, że Fermilab znacząco przyspieszyło postęp w dziedzinie magnesów. Prace nad przekroczeniem granicy 14 tesli trwały przez kilkanaście lat. W 2011 roku w Lawrence Berkeley National Laboratory osiągnięto 13,8 tesli. Rekord ten utrzymał się do 2019 roku, kiedy to w Fermilab osiągnięto 14,1 tesli. Wystarczył rok, by osiągnąć 14,5 tesli.
      Tworzenie coraz silniejszych magnesów to konieczność, jeśli chcemy mieć coraz doskonalsze akceleratory. Nie jest to jednak łatwe zadanie. Problem nie tylko w samej technologii, ale też w konieczności opracowywania nowych materiałów. W Wielkim Zderzaczu Hadronów pracują magnesy niobowo-tytanowe. Nie są one w stanie wytrzymać napięcia prądu elektrycznego potrzebnego do wygenerowania 15 tesli. Z odpowiednimi napięciami mogą pracować magnesy niobowo-cynowe, jednak ą one bardzo kruche i mogą rozsypać się pod wpływem działających na nie sił.
      Dlatego w Fermilab już podczas bicia poprzedniego rekordu stworzono specjalną architekturę magnesu, która go wzmacnia i pozwala przetrzymać ściskające i rozciągające go siły. Dziesiątki przewodów o okrągłym przekroju zostało skręconych w odpowiedni sposób, by uzyskane przewody spełniały specyficzne wymagania elektryczne i mechaniczne. Po utworzeniu z kabli zwojów całość była podgrzewana przez dwa tygodnie w temperaturach sięgających niemal 650 stopni Celsjusza, co nadało materiałowi właściwości nadprzewodzące. Następnie zwoje zostały zamknięte w żelaznych obejmach zamkniętych aluminiowymi klamrami, na co nałożono powłokę ochronną z nierdzewnej stali, która ma ochronić zwoje przed ich deformacją.
      I to właśnie magnesy niobowo-cynowe mają pozwolić na osiągnięcie 17 tesli. Zlobin nie wyklucza, że w przyszłości, dzięki nowym materiałom, uda się wygenerować nawet 20 tesli.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...