Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

W mózgu znaleziono obszar odpowiedzialny za apetyt na białko. Może to pomóc w leczeniu otyłości

Recommended Posts

Uczeni z Uniwersytetów w Aberdeen i Leicester zidentyfikowali w mózgu obszar, który napędza zapotrzebowanie na pożywienie bogate w białko. Odkrycie może mieć znaczenie dla rozwoju personalizowanych terapii otyłości. Nie od dzisiaj bowiem wiadomo, że dieta niskobiałkowa jest powiązana z otyłością.

Naukowcy zauważyli, że gdy szczury trzymano na diecie niskobiałkowej, doszło do większej aktywizacji pola brzusznego nakrywki (VTA), czyli jądra limbicznego śródmózgowia, obszaru odpowiedzialnego za aktywne poszukiwanie jedzenia.

Z badań wynika, że gdy wcześniej ograniczy się dostarczanie protein, VTA staje się bardziej wrażliwe na proteiny niż na inne składniki odżywcze. To zaś sugeruje, że mózgi zwierząt działają tak, by upewnić się, że dostawy białka zostaną utrzymane na odpowiednim poziomie. Taka adaptacja jest zrozumiała, gdyż niedobór białka może mieć katastrofalne skutki zdrowotne. Ponadto wcześniejsze badania wiązały niski poziom białek z otyłością. Nie wiadomo było jednak, jak na zjawisko to wpływa mózg.

Współautor badań doktor Fabien Naneix mówi: Odkryliśmy, że zmniejszenie podaży białka zwiększyło preferencje ku żywności, w której jest więcej białka niż węglowodanów. Ta preferencja ku białkom jest powiązana z większą odpowiedzią VTA i gdy zwierzęta przestawia się z normalnej zbilansowanej diety na dietę niskobiałkową, dochodzi do indukowania preferencji ku białkom, jednak zmiany w VTA wymagają intensywnego procesu uczenia się.

Nasze badania są pierwszymi, łączącymi preferencje ku białkom ze specyficzną aktywnością mózgu. Wiemy,że VTA odgrywa kluczową rolę w procesach pobierania innych składników odżywczych. Teraz wykazaliśmy, że dotyczy to również białek.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W jaki sposób mózg decyduje, jak najlepiej poruszać naszym ciałem? Okazuje się, że dla układu nerwowego to spore wyzwanie, gdyż mamy setki mięśni, które muszą być koordynowane setki razy na sekundę, a liczba możliwych wzorców koordynacji, z których musi wybierać mózg, jest większa niż liczba ruchów na szachownicy, mówi profesor Max Donelan z kanadyjskiego Simon Fraser University. Donelan i jego zespół badali, w jaki sposób ciało adaptuje się d nowych ruchów. A ich badania mogą mieć znaczenie zarówno dla treningu sportowców, jak i rehabilitacji niepełnosprawnych.
      Naukowcy zauważają, że bardzo często doświadczamy zmian zarówno w naszym organizmie, jak i w środowisku zewnętrznym. Być może lubisz biegać w niedzielę rano, Twoje mięśnie będą tym bardziej zmęczone im dłuższy dystans przebiegniesz. A może w czasie wakacji biegasz po plaży, gdzie podłoże jest luźne i nierówne w porównaniu z chodnikiem, po którym codziennie chodzisz. Od dawna jesteśmy w stanie rejestrować zmiany w sposobie poruszania się, ale dotychczas chyba nie docenialiśmy, w jaki sposób nasz organizm do takich zmian się adaptuje, stwierdza Donelan.
      Chcąc przyjrzeć się tym zmianom kanadyjscy neurolodzy podjęli współpracę z inżynierami z Uniwersytetu Stanforda, którzy specjalizują się w tworzeniu egzoszkieletów.
      Badania kanadyjsko-amerykańskiego zespołu przyniosły bardzo interesujące wyniki. Okazało się, że system nerwowy, ucząc się wzorców koordynacji nowych ruchów, najpierw rozważa i sprawdza wiele różnych wzorców. Stwierdzono to, mierząc zmienność zarówno samego ruchu ciała jako takiego, jak i ruchów poszczególnych mięśni i stawów. W miarę, jak układ nerwowy adaptuje się do nowego ruchu, udoskonala go, a jednocześnie zmniejsza zmienność. Naukowcy zauważyli, że gdy już nasz organizm nauczy się nowego sposobu poruszania się, wydatek energetyczny na ten ruch spada aż o 25%.
      Z analiz wynika również, że organizm odnosi korzyści zarówno z analizy dużej liczby możliwych wzorców ruchu, jak i ze zmniejszania z czasem liczby analizowanych wzorców. Zawężanie poszukiwań do najbardziej efektywnych wzorców pozwala bowiem na zaoszczędzenie energii.
      Zrozumienie, w jaki sposób mózg szuka najlepszych sposobów poruszania ciałem jest niezwykle ważne zarówno dla ultramaratończyka, przygotowującego się do biegu w trudnym terenie, jak i dla pacjenta w trakcie rehabilitacji po uszkodzeniu rdzenia kręgowego czy wylewu. Na przykład trener, który będzie wiedział, w którym momencie organizm jego podopiecznego zaadaptował się do nowego programu treningowego, będzie wiedział, kiedy można wdrożyć kolejne nowe elementy. A twórcy egzoszkieletów pomagających w rehabilitacji dowiedzą się, w którym momencie można przed pacjentem postawić nowe zadania, bo dobrze opanował wcześniejsze.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Krwawienie z naczyń krwionośnych podczas operacji neurochirurgicznych to poważny problem. Krew zasłania pole widzenia i konieczne jest jej usuwanie. Dlatego pole operacyjne, w którym nie pojawiałaby się krew czyniłoby cały zabieg bardziej precyzyjnym i bezpiecznym. Naukowcy z University of Texas w Austin i University of California, Irvine, opracowali właśnie laserową platformę do bezkrwawej resekcji tkanki mózgowej.
      Obecnie podczas zabiegów neurochirurgicznych, by zapewnić dobre pole widzenia, wykorzystuje się ultradźwiękowe aspiratory, po których stosuje się przyżeganie (elektrokauteryzację). Jako jednak, że obie metody stosowane są jedna po drugiej, wydłuża to operację. Ponadto przyżeganie może prowadzić do uszkodzenia części tkanki.
      Specjaliści z Teksasu i Kalifornii wykazali podczas eksperymentów na myszach, że ich nowy laser pozwala na bezkrwawą resekcję tkanki. Ich system składa się z urządzenia do koherencyjnej tomografii optycznej (OCT), które zapewnia obraz w mikroskopowej rozdzielczości, bazującego na iterbie lasera do koagulacji naczyń krwionośnych oraz wykorzystującego tul lasera do cięcia tkanki.
      Maksymalna moc lasera iterbowego wynosi 3000 W, a urządzenie pozwala na dobranie częstotliwości i długości trwania impulsów w zakresie od 50 mikrosekund do 200 milisekund, dzięki czemu możliwa jest skuteczna koagulacja różnych naczyń krwionośnych. Laser ten emituje światło o długości 1,07 mikrometra. Z kolei laser tulowy pracuje ze światłem o długości fali 1,94 mikrometra, a jego średnia moc podczas resekcji tkanki wynosi 15 W. Twórcy nowej platformy połączyli oba lasery w jednym biokompatybilnym włóknie, którym można precyzyjnie sterować dzięki OCT.
      Opracowanie tej platformy możliwe było dzięki postępowi w dwóch kluczowych dziedzinach. Pierwszą jest laserowa dozymetria, wymagana do koagulacji naczyń krwionośnych o różnych rozmiarach. Wcześniej duże naczynia, o średnicy 250 mikrometrów i większej, nie poddawały się laserowej koagulacji z powodu szybkiego wypływu krwi. Mój kolega Nitesh Katta położył podstawy naukowe pod metodę dozymetrii laserowej pozwalającej na koagulowanie naczyń o średnicy do 1,5 milimetra, mówi główny twórca nowej platformy, Thomas Milner.
      Drugie osiągnięcie to odpowiednia metodologia działań, która pozwala na osiągnięcie powtarzalnej i spójnej ablacji różnych typów tkanki dzięki głębiej penetrującym laserom. Jako, że laserowa ablacja jest zależna od właściwości mechanicznych tkanki, cięcia mogą być niespójne, a w niektórych przypadkach mogą skończyć się katastrofalną niestabilnością cieplną. Nasza platforma rozwiązuje oba te problemy i pozwala na powtarzalne spójne cięcie tkanki miękkiej jak i sztywnej, takiej jak tkanka chrzęstna.
      Na łamach Biomedical Optics Express twórcy nowej platformy zapewniają, że w polu operacyjnym nie pojawia się krew, jakość cięcia jest odpowiednia i obserwuje się jedynie niewielkie uszkodzenia termiczne tkanki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nie od dzisiaj wiemy, że spożywanie dużych ilości alkoholu negatywnie wpływa na mózg. U alkoholików następuje zmiana struktury i wielkości mózgu, co negatywnie odbija się na ich zdolnościach poznawczych. Jednak wyniki najnowszych badań pokazują, że do zmian mózgu dochodzi już przy spożyciu od niewielkich do umiarkowanych ilości alkoholu. Wystarczy kilka butelek piwa lub kieliszków wina tygodniowo, by doszło do zmniejszenia mózgu.
      Przeprowadzone przez naukowców z University of Pennsylvania badania pokazały na przykład, że jeśli osoba w wieku powyżej 50 lat zwiększy spożycie z jednej jednostki alkoholu (ok. 240 ml piwa) do dwóch jednostek (ok. 0,5 l piwa lub lampka wina) dziennie, to zmiany zachodzące w jej mózgu są takie, jakby osoba ta postarzała się o 2 lata. Z kolei przejście z dwóch do trzech jednostek alkoholu dziennie wywołuje zmiany odpowiadające postarzeniu się mózgu o 3,5 roku.
      "Dzięki temu, że pracowaliśmy na dużej próbie badanych mogliśmy wyłapać subtelne zmiany, nawet takie zachodzące pomiędzy spożywaniem pół a całej butelki piwa dziennie", mówi jeden z autorów badań, Gideon Nave. Uzyskane przez nas wyniki stoją w sprzeczności z tym, co obecnie opisują oficjalne zalecenia dotyczące bezpiecznych ilości spożywanego alkoholu. Na przykład zgodnie z zaleceniami National Institute on Alcohol Abuse and Alcoholism kobiety nie powinny pić więcej niż jednego drinka dziennie, a limit dla mężczyzn jest dwukrotnie wyższy. Jednak jest to ilość, która już przekracza bezpieczny poziom konsumpcji opisany w naszych badaniach, stwierdza profesor psychiatrii Henry Kranzler.
      Uczeni z Pennsylvanii wykorzystali dane z UK Biobank, dużej bazy danych zawierających szczegółowe informacje zdrowotne, w tym dane genetyczne, o 500 000 tysiącach mieszkańców Wielkiej Brytanii. Naukowcy skupili się na badaniach rezonansem magnetycznym mózgów ponad 36 000 osób i szacowali objętość istoty białej i szarej w różnych regionach mózgu tych osób. Pod uwagę wzięto takie czynniki jak wiek, wzrost, płeć, BMI, palenie papierosów, status społeczno-ekonomiczny, genetykę, miejsce zamieszkania oraz ogólną wielkość głowy. Badanych zapytano o to, ile piją alkoholu.
      Już uśrednienie spożycia alkoholu w całej grupie ujawniło pewien niewielki, ale wyraźny wzorzec. Otóż zauważono, że alkohol redukuje średnią objętość istoty białej i szarej w całej populacji. O ile różnica pomiędzy osobami, które w ogóle nie piły alkoholu, a tymi, które piły średnio jedną jednostkę dziennie (przypomnijmy, że 1 jednostka to ok. 0,5 butelki piwa dziennie) nie była zbyt duża, to już różnica pomiędzy spożywaniem 1 a 2 lub 3 jednostek była wyraźna. To nie jest zależność liniowa. Im więcej pijesz, tym jest gorzej, mówi Remi Daviet. Nawet gdy z analizy usunięto dane osób najwięcej pijących, zależność między spożyciem alkoholu, a zmniejszoną objętością mózgu była widoczna. Co więcej, nie stwierdzono, by dochodziło do zmniejszenia objętości tylko w jakichś określonych regionach mózgu.
      Uczeni, chcąc lepiej opisać swoje spostrzeżenia, porównali zmniejszenie objętości mózgu pod wpływem alkoholu, z jego zmniejszeniem związanym ze starzeniem się. Z ich obliczeń wynika, że wypijanie 1 jednostki alkoholu dziennie postarza mózg o pół roku. Jednak już wypijanie średnio 4 jednostek alkoholu dziennie – czyli ekwiwalentu 2 butelek piwa – powoduje takie zmniejszenie objętości mózgu, jakby był on o 10 lat starszy niż w rzeczywistości.
      Naukowcy już planują wykorzystać UK Biobank i inne duże bazy danych do odpowiedzi na dodatkowe pytania. Tutaj patrzyliśmy na uśrednioną konsumpcję dzienną. Chcielibyśmy jednak sprawdzić, czy np. picie jednej jednostki alkoholu dziennie jest lepsze niż nie picie przez cały tydzień, a później wypicie w ciągu dnia 7 jednostek. Istnieją podstawy, by przypuszczać, że tego typu okresy większego picia przynoszą większe szkody, niż regularnego umiarkowanego picia, jednak dowody te nie opierają się na dużych zestawach danych, stwierdzają autorzy badań.
      Z wynikami badań możemy zapoznać się na łamach Nature Communications.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Obecna epidemia otyłości jest głównie związana ze spożywaniem nadmiernej liczby kalorii, a nie z brakiem ruchu, mówi doktor Esra Tasali, dyrektor Centrum Snu na Wydziale Medycyny University of Chicago. Przez wiele lat my i inne grupy naukowe wielokrotnie wykazywaliśmy, że ograniczenie długości snu wpływa na apetyt, co powoduje, że jemy więcej, a to z kolei wiąże się z ryzykiem przybrania na wadze, dodaje. Podczas randomizowanych badań klinicznych naukowcy z Chicago wykazali, że wystarczy poprawić higienę snu, by zmniejszyć ilość spożywanych kalorii o 270 kcal dziennie.
      W testach klinicznych udział wzięło 80 dorosłych osób. U młodych dorosłych z nadwagą, którzy średnio spali mniej niż 6,5 godziny na dobę, naukowcy – poprawiając higienę snu – byli w stanie wydłużyć ten czas o średnio 1,2 godziny. Docelowo chcieli, by osoby te spały 8,5 godziny na dobę. Okazało się jednak, że już samo poprawienie higieny snu i dłuższy sen spowodowały, że badani mniej jedli. Co ważne, naukowcy w żaden sposób nie wpływali na zwyczaje żywieniowe badanych. Cały eksperyment odbywał się w naturalnych warunkach. Biorące w nim udział osoby spały we własnych domach i zachowywały się tak, jak dawniej. Jedną różnicą było poprawienie higieny ich snu, przez co uległ on wydłużeniu. To wystarczyło, by średnio spożywali o 270 kcal dziennie mniej. To zaś powinno przełożyć się na utratę 12 kilogramów w ciągu 3 lat.
      Większość badań tego typu to badania krótkotrwałe, prowadzone w laboratoriach, a spożywane kalorie pochodzą z diety oferowanej badanym przez naukowców. W naszym badaniu wpływaliśmy jedynie na sen. Badani jedli to co chcieli i ile chcieli. W żaden sposób nie mieliśmy na to wpływu, stwierdza Tasali.
      Naukowcy, by obiektywnie badać ilość kalorii spożywanych przez badanych, wykorzystali metodę „podwójnie oznaczonej wody”. To test z moczu wykonywany u osób pijących wodę, w której atomy wodoru i tlenu zostały zastąpione innymi, naturalnymi łatwymi do śledzenia izotopami. To złoty standard obiektywnego pomiaru wydatkowania energii w warunkach pozalaboratoryjnych. Jego zastosowanie zmieniło sposób prowadzenia badań nad otyłością u ludzi, mówi profesor Dale A. Schoeller.
      Warto podkreślić, że uczestnicy wzięli udział w zaledwie jednej sesji dotyczącej higieny snu. To wystarczyło, by wydłużyli sen o ponad godzinę na dobę. To wystarczyło, by większość zaczęła jeść zdecydowanie mniej. U niektórych spadek wyniósł aż 500 kcal dziennie.
      Eksperyment trwał w sumie miesiąc. Przez pierwsze dwa tygodnie naukowcy zbierali informacje o śnie i diecie badanych, a przez kolejne dwa, po sesji nt. higieny snu, monitorowali skutki dłuższego spania. To nie było badanie nad utratą wagi. Ale nawet po tych dwóch tygodniach zauważyliśmy, że badani zaczęli spalać więcej kalorii niż przyjmowali. Jeśli utrzymaliby higienę snu przez dłuższy czas, doszłoby u nich do klinicznie znaczącej utraty wagi. Wiele osób bardzo się stara, by zmniejszyć ilość spożywanych kalorii i schudną. Można to osiągnąć po prostu śpiąc dłużej, stwierdza Tsali.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naszym rozmówcą jest dr n. med. Tomasz Stępień, adiunkt w Instytucie Psychiatrii i Neurologii i koordynator wyjątkowego projektu Digital Brain. Doktor Stępień specjalizuje się w neuropatologii, jest autorem licznych prac naukowych z tej dziedziny. Poza tym opiekuje się największym zbiorem mózgów na świecie.
      Jest Pan koordynatorem projektu Digital Brain. Na czym on polega? Kto będzie mógł korzystać z cyfrowych zasobów platformy?
      Digital Brain to projekt digitalizacji, gromadzonych od przeszło pół wieku, zasobów Instytutu Psychiatrii i Neurologii. Wychodząc naprzeciw potrzebom środowiska naukowego i medycznego, przy współpracy z Centrum Projektów Polska Cyfrowa i Ministerstwem Cyfryzacji, powołano do życia projekt o nazwie Digital Brain. Głównym celem przyświecającym autorom projektu było zdigitalizowanie skolekcjonowanego materiału archiwalnego Zakładu Neuropatologii, Instytutu Psychiatrii i Neurologii.
      W grupie docelowej projektu znalazły się także instytucje szkolnictwa wyższego, jednostki naukowe, placówki medyczne, przedsiębiorcy rozwijający innowacyjne technologie medyczne, organizacje pozarządowe zajmujące się ochroną zdrowia. Platforma Digital Brain powstała przede wszystkim z myślą o lekarzach, naukowcach różnych specjalności, psychologach, studentach, dziennikarzach popularnonaukowych, a także wszystkich tych, którzy są zainteresowani neuronauką. Dzięki takiej formie szerzenia wiedzy udostępnione zasoby nauki będą cennym materiałem dla lekarzy i naukowców poszukujących czynników patogenetycznych, prowadzących badania nad nowymi biomarkerami i terapiami w jednostkach chorobowych.
      Czy mógłby Pan opowiedzieć o historii zbiorów Instytutu Psychiatrii i Neurologii? Przeczytałam, że archiwizację fragmentów mózgu zapoczątkowała wybitna polska neuropatolog, prof. Ewa Osetowska. Od lat 50. kolekcja się rozrastała. Czy to prawda, że obecnie należy do największych na świecie? Jak ma się jej wielkość do zasobów Harvard Brain Tissue Resource Center czy LIBD?
      W zasobach Instytutu Psychiatrii i Neurologii znajduje się ogromny, unikalny zbiór mózgów Zakładu Neuropatologii, obejmujący materiał gromadzony od 1952 roku do chwili obecnej przez kolejne pokolenia neuropatologów. Archiwizację fragmentów mózgów zainicjowała wybitna polska neuropatolog, prof. Ewa Osetowska. Kolekcja obejmuje zbiór fragmentów mózgów utrwalonych w zbuforowanym roztworze formaliny, bloczki parafinowe, preparaty histologiczne i immunohistochemiczne oraz protokoły neuropatologiczne z kilkudziesięciu jednostek chorobowych.
      Mózg przeznaczony do diagnostyki neuropatologicznej zostaje umieszczony w zbuforowanym roztworze formaliny w celu utrwalenia. Sekcja utrwalonego mózgu przeprowadzana jest metodą Spielmeyera. Podczas sekcji mózgu został sporządzony protokół badania neuropatologicznego wraz z wykazem pobranych wycinków mózgu. Do protokołu badania neuropatologicznego zostały dołączone dane kliniczne i patologiczne. Pobrane fragmenty mózgu zostały zatopione w parafinie. Skrojone 5-8-μm preparaty zostały zabarwione metodami histologicznymi oraz metodami immunohistochemicznymi przy użyciu odpowiednich przeciwciał.
      Po wykonaniu diagnostyki mikroskopowej fragmenty mózgów, bloczki, preparaty i protokoły badania neuropatologicznego zostają zarchiwizowane. Całość stworzyła zasoby o unikalnym charakterze, które są gotowym materiałem do dalszych badań. Wyjątkowy charakter zasobów Instytutu Psychiatrii i Neurologii podkreśla fakt, że jest największa tego typu kolekcja na świecie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...