Sztuczna inteligencja projektuje układy scalone dla przyszłych generacji sztucznej inteligencji
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Teksty informacyjne automatycznie generowane przez algorytmy sztucznej inteligencji są trudniejsze do zrozumienia, a czytelnicy oceniają je gorzej niż teksty napisane przez człowieka. Takie wnioski płyną z badań przeprowadzonych przez naukowców z Uniwersytetu Ludwika i Maksymiliana w Monachium, którzy przeprowadzili badania na próbce ponad 3000 osób z Wielkiej Brytanii. Wyniki badan zostały opublikowane w piśmie Journalism: Theory, Practice, and Criticism.
Badanym dano do przeczytania 24 informacje prasowe, z których połowa została wygenerowana automatycznie. Użytkownicy ocenili, że te 12 stworzonych przez automat tekstów jest trudniejszych do zrozumienia, mówi główna autorka badań Sina Thäsler-Kordonouri. Teksty autorstwa AI były gorzej ocenione, mimo że przed publikacją edytowali je dziennikarze.
Jednym z problemów z automatycznie generowanymi tekstami okazał się dobór słów. Zdaniem badanych, artykuły takie w zbyt dużej mierze stworzone zostały za pomocą niepasującego, skomplikowanego lub dziwacznego języka. Czytelnicy stwierdzili też, że nawet liczby i konkretne dane były w tekstach AI podane w mniej przystępny sposób. To właśnie sposób podawania liczb oraz dobór słów stanowił największy problem w automatycznych tekstach.
Podczas tworzenia i edytowania automatycznych tekstów, dziennikarze i programiści powinni postarać się, by w tekście było mniej liczb, lepiej wyjaśnić trudne wyrazy i poprawić strukturę językową tak, by czytelnik lepiej wiedział, o czym jest tekst, mówi profesor Neil Thurman.
Ze szczegółami eksperymentu można zapoznać się w artykule Too many numbers and worse word choice: Why readers find data-driven news articles produced with automation harder to understand.
« powrót do artykułu -
By KopalniaWiedzy.pl
Gdy Deep Blue wygrał w szachy z Garri Kasparowem, a w 2016 roku AlphaGo pokonał w go Lee Sedola wiedzieliśmy, że jesteśmy świadkami ważnych wydarzeń. Były one kamieniami milowymi w rozwoju sztucznej inteligencji. Teraz system sztucznej inteligencji „Swift” stworzony na Uniwersytecie w Zurychu pokonał mistrzów świata w wyścigu dronów.
Swift stanął do rywalizacji z trzema światowej klasy zawodnikami w wyścigu, podczas którego zawodnicy mają założone na głowy specjalne wyświetlacze do których przekazywany jest obraz z kamery drona i pilotują drony lecące z prędkością przekraczającą 100 km/h.
Sport jest bardziej wymagający dla sztucznej inteligencji, gdyż jest mniej przewidywalny niż gra planszowa niż gra wideo. Nie mamy idealnej wiedzy o dronie i środowisku, zatem sztuczna inteligencja musi uczyć się podczas interakcji ze światem fizycznym, mówi Davide Scaramuzza z Robotik- und Wahrnehmungsgruppe na Uniwersytecie w Zurychu.
Jeszcze do niedawna autonomiczne drony potrzebowały nawet dwukrotnie więcej czasu by pokonać tor przeszkód, niż drony pilotowane przez ludzi. Lepiej radziły sobie jedynie w sytuacji, gdy były wspomagane zewnętrznym systemem naprowadzania, który precyzyjne kontrolował ich lot. Swift reaguje w czasie rzeczywistym na dane przekazywane przez kamerę, zatem działa podobnie jak ludzie. Zintegrowana jednostka inercyjna mierzy przyspieszenie i prędkość, a sztuczna sieć neuronowa, na podstawie obrazu z kamery lokalizuje położenie drona i wykrywa kolejne punkty toru przeszkód, przez które dron musi przelecieć. Dane z obu tych jednostek trafiają do jednostki centralnej – również sieci neuronowej – która decyduje o działaniach, jakie należy podjąć, by jak najszybciej pokonać tor przeszkód.
Swift był trenowany metodą prób i błędów w symulowanym środowisku. To pozwoliło na zaoszczędzenie fizycznych urządzeń, które ulegałyby uszkodzeniom, gdyby trening prowadzony był na prawdziwym torze. Po miesięcznym treningu Swift był gotowy do rywalizacji z ludźmi. Przeciwko niemu stanęli Alex Vanover, zwycięzca Drone Racing League z 2019 roku, Thomas Bitmatta lider klasyfikacji 2019 MultiGP Drone Racing oraz trzykroty mistrz Szwajcarii Marvin Schaepper.
Seria wyścigów odbyła się w hangarze lotniska Dübendorf w pobliżu Zurychu. Tor ułożony był na powierzchni 25 na 25 metrów i składał się z 7 bramek, przez które należało przelecieć w odpowiedniej kolejności, by ukończyć wyścig. W międzyczasie należało wykonać złożone manewry, w tym wywrót, czyli wykonanie półbeczki (odwrócenie drona na plecy) i wyprowadzenie go półpętlą w dół do lotu normalnego.
Dron kontrolowany przez Swift pokonał swoje najlepsze okrążenie o pół sekundy szybciej, niż najszybszy z ludzi. Jednak z drugiej strony ludzie znacznie lepiej adaptowali się do warunków zewnętrznych. Swift miał problemy, gdy warunki oświetleniowe były inne niż te, w których trenował.
Można się zastanawiać, po co drony mają latać bardzo szybko i sprawnie manewrować. W końcu szybki lot wymaga większej ilości energii, więc taki dron krócej pozostanie w powietrzu. Jednak szybkość lotu i sprawne manewrowanie są niezwykle istotne przy monitorowaniu pożarów lasów, poszukiwaniu osób w płonących budynkach czy też kręcenia scen filmowych.
Warto tutaj przypomnieć, że systemy sztucznej inteligencji pokonały podczas symulowanych walk doświadczonego wykładowcę taktyki walki powietrznej oraz jednego z najlepszych amerykańskich pilotów.
« powrót do artykułu -
By KopalniaWiedzy.pl
W przypadku sztucznej inteligencji z Osaki powiedzenie „wyglądasz na swój wiek” odnosi się nie do twarzy, a do... klatki piersiowej. Naukowcy z Osaka Metropolitan University opracowali zaawansowany model sztucznej inteligencji, który ocenia wiek człowieka na podstawie zdjęć rentgenowskich klatki piersiowej. Jednak, co znacznie ważniejsze, jeśli SI odnotuje różnicę pomiędzy rzeczywistym wiekiem, a wiekiem wynikającym ze zdjęcia, może to wskazywać na chroniczną chorobę. System z Osaki może zatem przydać się do wczesnego wykrywania chorób.
Zespół naukowy, na którego czele stali Yasuhito Mitsuyama oraz doktor Daiju Ueda z Wwydziału Radiologii Diagnostycznej i Interwencyjnej, najpierw opracował model sztucznej inteligencji, który na podstawie prześwietleń klatki piersiowej oceniał wiek zdrowych osób. Następnie model swój wykorzystali do badania osób chorych.
W sumie naukowcy wykorzystali 67 009 zdjęć od 36 051 zdrowych osób. Okazało się, że współczynnik korelacji pomiędzy wiekiem ocenianym przez SI, a rzeczywistym wiekiem badanych wynosił 0,95. Współczynnik powyżej 0,90 uznawany jest za bardzo silny.
Uczeni z Osaki postanowili sprawdzić, na ile ich system może być stosowany jako biomarker chorób. W tym celu wykorzystali 34 197 zdjęć rentgenowskich od chorych osób. Okazało się, że różnica pomiędzy oceną wieku pacjenta przez AI, a wiekiem rzeczywistym jest silnie skorelowana z różnymi chorobami, jak np. nadciśnienie, hiperurykemia czy przewlekła obturacyjna choroba płuc. Im więcej lat dawała pacjentowi sztuczna inteligencja w porównaniu z jego rzeczywistym wiekiem, tym większe było prawdopodobieństwo, że cierpi on na jedną z tych chorób.
Wiek chronologiczny to jeden z najważniejszych czynników w medycynie. Nasze badania sugerują, że wiek oceniany na podstawie prześwietlenia klatki piersiowej może oddawać rzeczywisty stan zdrowia. Będziemy nadal prowadzili nasze badania. Chcemy sprawdzić, czy system ten nadaje się do oceny zaawansowania choroby, przewidzenia długości życia czy możliwych komplikacji pooperacyjnych, mówi Mitsuyama.
Szczegóły badań opublikowano na łamach The Lancet.
« powrót do artykułu -
By KopalniaWiedzy.pl
Sztuczna inteligencja lepiej niż technik-elektroradiolog ocenia i diagnozuje funkcjonowanie serca na podstawie badań ultrasonograficznych, wynika z badań przeprowadzonych przez naukowców z Cedars-Sinai Medical Center. Randomizowane testy prowadzili specjaliści ze Smidt Heart Institute i Division of Articifial Intelligence in Medicine.
Uzyskane wyniki będą miały natychmiastowy wpływ na obrazowanie funkcji serca oraz szerszy wpływ na całe pole badań obrazowych serca, mówi główny autor badań, kardiolog David Ouyang. Pokazują bowiem, że wykorzystanie sztucznej inteligencji na tym polu poprawi jakość i efektywność obrazowania echokardiograficznego.
W 2020 roku eksperci ze Smidt Heart Institute i Uniwersytetu Stanforda stworzyli jeden z pierwszych systemów sztucznej inteligencji wyspecjalizowany w ocenie pracy serca, a w szczególności w ocenie frakcji wyrzutowej lewej komory. To kluczowy parametr służący ocenie pracy mięśnia sercowego. Teraz, bazując na swoich wcześniejszych badaniach, przeprowadzili eksperymenty, w ramach których wykorzystali opisy 3495 echokardiografii przezklatkowych. Część badań została opisana przez techników, część przez sztuczną inteligencję. Wyniki badań wraz z ich opisami otrzymali kardiolodzy, którzy mieli poddać je ocenie.
Okazało się, że kardiolodzy częściej zgadzali się z opisem wykonanym przez sztuczną inteligencję niż przez człowieka. W przypadku SI poprawy wymagało 16,8% opisów, natomiast kardiolodzy wprowadzili poprawki do 27,2% opisów wykonanych przez techników. Lekarze nie byli też w stanie stwierdzić, które opisy zostały wykonane przez techników, a które przez sztuczą inteligencję. Badania wykazały również, że wykorzystanie AI zaoszczędza czas zarówno kardiologów, jak i techników.
Poprosiliśmy naszych kardiologów, by powiedzieli, które z opisów wykonała sztuczna inteligencja, a które technicy. Okazało się, że lekarze nie są w stanie zauważyć różnicy. To pokazuje, jak dobrze radzi sobie sztuczna inteligencja i że można ją bezproblemowo wdrożyć do praktyki klinicznej. Uważamy to za dobry prognostyk dla dalszych testów na wykorzystaniem SI na tym polu, mówi Ouyang.
Badacze uważają, że wykorzystanie AI pozwoli na szybszą i sprawniejszą diagnostykę. Oczywiście o ostatecznym opisie badań obrazowych nie będzie decydował algorytm, a kardiolog. Tego typu badania, kolejne testy i artykuły naukowe powinny przyczynić się do szerszego dopuszczenia systemów AI do pracy w opiece zdrowotnej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Światło posiada niezwykle interesującą cechę. Jego fale o różnej długości nie wchodzą ze sobą w interakcje. Dzięki temu można jednocześnie przesyłać wiele strumieni danych. Podobnie, światło o różnej polaryzacji również nie wchodzi w interakcje. Zatem każda z polaryzacji mogłaby zostać wykorzystana jako niezależny kanał przesyłania i przechowywania danych, znakomicie zwiększając gęstość informacji.
Naukowcy z Uniwersytetu Oksfordzkiego poinformowali właśnie o opracowaniu metody wykorzystania polaryzacji światła do zmaksymalizowania gęstości danych. Wszyscy wiemy, że przewaga fotoniki nad elektronika polega na tym, że światło przemieszcza się szybciej i jest bardziej funkcjonalne w szerokich zakresach. Naszym celem było wykorzystanie wszystkich zalet fotoniki połączonych z odpowiednim materiałem, dzięki czemu chcieliśmy uzyskać szybsze i gęstsze przetwarzanie informacji, mówi główny autor badań, doktorant June Sang Lee.
Jego zespół, we współpracy z profesorem C. Davidem Wrightem z University of Exeter, opracował nanowłókno HAD (hybrydyzowane-aktywne-dielektryczne). Każde z nanowłókien wyróżnia się selektywną reakcją na konkretny kierunek polaryzacji, zatem możliwe jest jednoczesne przetwarzanie danych przenoszonych za pomocą różnych polaryzacji. Stało się to bazą do stworzenia pierwszego fotonicznego procesora wykorzystującego polaryzację światła. Szybkość obliczeniowa takiego procesora jest większa od procesora elektronicznego, gdyż poszczególne nanowókna są modulowane za pomocą nanosekundowych impulsów optycznych. Nowy układ może być ponad 300-krotnie bardziej wydajny niż współczesne procesory.
To dopiero początek tego, co możemy osiągnąć w przyszłości, gdy uda się nam wykorzystać wszystkie stopnie swobody oferowane przez światło, w tym polaryzację. Dzięki temu uzyskamy niezwykły poziom równoległego przetwarzania danych. Nasze prace wciąż znajdują się na bardzo wczesnym etapie, dlatego też szacunki dotyczące prędkości pracy takiego układu wciąż wymagają eksperymentalnego potwierdzenia. Mamy jednak niezwykle ekscytujące pomysły łączenia elektroniki, materiałów nieliniowych i komputerów, komentuje profesor Harish Bhakaran, który od ponad 10 lat prowadzi prace nad wykorzystaniem światła w technologiach obliczeniowych.
Ze szczegółami pracy można zapoznać się w artykule Polarisation-selective reconfigurability in hybridized-active-dielectric nanowires opublikowanym na łamach Science Advances.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.