Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Woda znajdująca się na zimnej powierzchni zanim zamarznie musi się ogrzać. Odkrycie dokonane przez naukowców z Cambridge University i Uniwersytetu Technologicznego w Grazu pozwoli lepiej zrozumieć i kontrolować proces zamarzania.

Anton Tamtögl i jego zespół przeprowadzili eksperymenty z molekułami wody umieszczonymi na zimnym grafenie i zauważyli, że początkowo odpychają się one od siebie. Dopiero pojawienie się dodatkowej energii pozwala im na zmianę orientacji i utworzenie wiązań elektrostatycznych.

Gdy woda trafia na zimną powierzchnię, zachodzi proces nukleacji, w wyniku którego molekuły tworzą wiązania i błyskawicznie pojawiają się kryształy lodu. Zjawisko to było intensywnie badane w skali makroskopowej. Jednak trudno je badać na poziomie molekuł, gdyż zamarzanie zachodzi bardzo szybko, w czasie pikosekund.

Naukowcy z Cambridge wykorzystali nowatorką technikę badawczą zwaną echem spinowym helu-3. Polega ona na rozpraszaniu strumienia spolaryzowanych atomów helu. Atomy docierają do badanych powierzchni w skoordynowanych pakietach, a czas pomiędzy kolejnymi pakietami mierzony jest w pikosekundach. Ruch molekuł na powierzchni powoduje różnice w fazach pakietów. A różnice te można wychwycić i na ich podstawie badać zjawiska zachodzące w czasie pikosekund.

Badania ujawniły, że początkowo wszystkie molekuły wody przyczepiają się do zimnej powierzchni grafenu w ten sam sposób, z oboma atomami wodoru przy powierzchni i atomem tlenu powyżej. Molekuły wody są dipolami. Od strony tlenu mamy ładunek ujemny, od strony wodoru – dodatni. Tak więc pomiędzy identycznie zorientowanymi molekułami dochodzi do odpychania się, co uniemożliwia nukleację. Naukowcy zauważyli, że zjawisko to może zostać przezwyciężone poprzez ogrzanie molekuł. Dopiero wówczas zmieniają one orientację tak, że zaczynają się przyciągać, co rozpoczyna proces nukleacji.

Naukowcy, chcąc lepiej zrozumieć to zjawisko, przeprowadzili symulacje komputerowe ukazujące zachowanie molekuł wody przy różnych energiach. Zgodnie z ich oczekiwaniami, symulacje wykazały, że zmieniając ilość ciepła dostarczonego do molekuł, można powstrzymywać lub rozpoczynać proces nukleacji.

Odkrycie może doprowadzić do opracowania nowych technik ochrony przed formowaniem się lodu na skrzydłach samolotów, turbinach wiatrowych czy sprzęcie telekomunikacyjnym. Pozwoli też lepiej zrozumieć proces formowania się i topnienia lodu w lodowcach, a to z kolei da nam lepsze zrozumienie ziemskiej kriosfery i wpływu ocieplenia klimatu.

Z wynikami badań można zapoznać się na łamach Nature Communications.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czy mam rozumieć, że homeopaci jednak mają rację i że woda ma pamięć? ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Faktycznie! To wyjaśnia dlaczego "już niewielka utrata wody, bo ok. 1% masy ciała powoduje pogorszenie pamięci i zaburzenia koncentracji!" :lol:

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
45 minut temu, Sławko napisał:

Faktycznie! To wyjaśnia dlaczego "już niewielka utrata wody, bo ok. 1% masy ciała powoduje pogorszenie pamięci i zaburzenia koncentracji!" :lol:

To wiele wyjaśnia, idę się napić, o ile nie zapomnę po co tu przylazłem do tego kranu :/

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, peceed napisał:

Efekt Mbempy wyjaśniony

No jeśli przyczyną mają być słabe wiązania H+<->O- , to powinno to być widoczne w zależności ciepła właściwego od temperatury. Tymczasem ta zależność jest dość słaba.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dla mnie to wygląda na coś w rodzaju magnetyzmu lub wody.  Cząsteczki wydają się mieć jednak zorientowane pola, a w wyniku ogrzania wydają się układać w uporządkowane polarnie struktury. Pomimo tego że są bipolarne. Ciekawe czy ktoś się temu przyglądał. Bo jak na razie to wszystkie magnetyzery wody i różdżki to w opini nauki, są bzdury. Może warto się przyjrzeć na formowanie się pływającego lodu od tej strony. Czy uporządkowana strukturalnie woda i zamrożona opadła by na dno? Czyste h2o da się zamrozić by nadal było płynne. Pewnie to głupoty, ale warto szukać, bo mało wiemy o wodzie jak widać.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Różdżki to są na pewno bzdury. Pamiętam, że był eksperyment, gdzie różdżkarzy przewietrzono na pustym, piętrowym parkingu i mieli wskazać w którym miejscu jest woda na poziomie niżej, gdzie było kilkanaście ton wody umieszczone w zbiornikach. Żaden nie wskazał tego prawidłowo. Magia ich zawiodła w kontrolowanym eksperymencie :)

Kiedyś przypadkiem natrafiłem w necie na film, gdzie ktoś opowiadał jak w USA budował się na pustyni i szukali źródła wody na studnię głębinową. A studnia nie w kij dmuchał, nawet kilkaset metrów głębokości w tych rejonach. Różdżkarz wskazał źródło wody akurat tam, gdzie wcześniej oszacował to geolog! Ot przypadeczek :)

Edycja!
Chyba było trochę inaczej w drugim przypadku. Pamięć mnie zawodzi :) Wróżbita podał lokalizację wody w innym miejscu, które akurat pasowało właścicielowi bardziej, bo było blisko w dogodnym punkcie na działce. Miejsce wyznaczone przez geologa było 2km(!) od fundamentów budynku. Właściciel więc zaczął wiercić i nic nie znalazł, ale wiercił dalej, bo załączył im się schemat hazardzisty i nie chcieli się wycofać ze stratą. Ale w końcu się poddali, bo już mieli kilkaset metrów odwiertu, którego koszty zaczęły astronomicznie rosnąć. Potulnie wrócili do danych od geologa. Skończyło się na tym, że musieli położyć te 2km rur i zrobić prawidłowy odwiert na krańcu działki :)

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie chciałem poruszać tego tematu tak dogłębnie, ale znałem takiego już nieżyjącego księdza (był rolnikiem i w sumie żył bardziej jak zakonnik, bo uprawiał rośliny, hodował zwierzęta i żył ubogo) i ten ksiądz miał taką umiejętność wskazywania wody pod ziemią. Nie było to tak że wzywał jakieś moce czy inne rzeczy, tylko po prostu skupiał się na poszukiwaniu źródeł i jakoś tak czuł gdzie są (przynajmniej tak odpowiedział mojej mamie). Dodam że bardzo dużo studni w mojej miejscowości stoi właśnie dzięki niemu. Czy czuł, czy miał po prostu intuicję jak beduini na pustyni, to trudno wyjaśnić.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pewnie miał info od boga :) Zaryzykuję stwierdzenie, że wody gruntowe w Polsce są prawie wszędzie, kwestia głębokości, ale nie jestem ekspertem, więc mogę się mylić. Mógł mieć podstawową wiedzę w temacie, bo skoro był zakonnikiem, to umiał czytać. W marę jak przybywało studni w rejonie, to miał coraz lepszą bazę danych, gdzie jest woda i na jakiej głębokości. A nawet jeżeli się pomylił kilka razy, to odeszło to w zapomnienie i przetrwał urban legend, że zakonnik był nieomylny ;) Jeżeli woda gruntowa jest płytko, to powinno to być widoczne na powierzchni. Tam gdzie jest niecka woda będzie bliżej powierzchni, etc. Na pustyniach są oazy, ale to ekstremalny przypadek.

Edytowane przez cyjanobakteria
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, Rowerowiec napisał:

Dodam że bardzo dużo studni w mojej miejscowości stoi właśnie dzięki niemu. Czy czuł, czy miał po prostu intuicję jak beduini na pustyni, to trudno wyjaśnić.

Ależ wyjaśnienie jest proste. Lodowiec oraz ile razy przez nas przeszedł. Europa jest jak tort, ma warstwy, wystarczy kopać gdziekolwiek. Przypadek opisany przez @cyjanobakteria jest zasadniczo wyjątkiem. Teść wykopał sobie dół pod altankę z piwnicą a potem miał studnię i klął w żywy kamień: "kurde, skąd tu woda?! Przecież to jest na górce?!" Generalnie większość uczciwych kopaczy studni na pytanie gdzie kopać odpowiada: gdzie najwygodniej ;)

 

  • Pozytyw (+1) 2

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tak, ta historia działa się na pustyni w USA :) Przypomniałem sobie szczegóły. Ktoś kupił działkę kilka km2 na lekko górzystym terenie pustynnym, dlatego mieli problem z wodą. Zrobili błąd i zaczęli budować dom nie mając rozeznania, gdzie jest woda głębinowa na ich działce. Wróżbita naciągnął ich na kwotę, która pokryła by niemałą cześć kosztów normalnego odwiertu w miejscu wskazanym przez geologa/geodetę, nie wspominając o tym, że wykonali niepotrzebny, głęboki i kosztowny odwiert w piachu :) A to dlatego, że geolog/geodeta wskazał miejsce na skraju działki, w dużym oddaleniu i do tego w niecce, skąd musieliby pompować na duży dystans i pod górę. Wróżbita za to zaproponował odwiert blisko przyszłego domu i to się spodobało właścicielowi bardziej :) Ciekawy przypadek myślenia życzeniowego. Nie zdziwiłbym się, jakby okazali się mormonami...

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 godzinę temu, Jajcenty napisał:

kurde, skąd tu woda?! Przecież to jest na górce?!

To jak u mnie na wsi - dom na niewielkim wzniesieniu, a ma założone dreny, żeby woda odpływała z piwnicy.

Edytowane przez darekp

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Problem grzania korony słonecznej pozostaje nierozwiązany od 80 lat. Z modeli obliczeniowych wynika, że temperatura we wnętrzu Słońca wynosi ponad 15 milionów stopni, jednak na jego widocznej powierzchni (fotosferze) spada do około 5500 stopni, by w koronie wzrosnąć do około 2 milionów stopni. I to właśnie ta olbrzymia różnica temperatur pomiędzy powierzchnią a koroną stanowi zagadkę. Jej rozwiązanie – przynajmniej częściowe – zaproponował międzynarodowy zespół naukowy z Polski, Chin, USA, Hiszpanii i Belgii. Zdaniem badaczy za podgrzanie części korony odpowiadają... chłodne obszary na powierzchni.
      W danych z Goode Solar Telescope uczeni znaleźli intensywne fale energii pochodzące z dość chłodnych, ciemnych i silnie namagnetyzowanych regionów fotosfery. Takie ciemniejsze regiony mogą powstawać, gdy silne pole magnetyczne tłumi przewodzenie cieplne i zaburza transport energii z wnętrza naszej gwiazdy na jej powierzchnię. Naukowcy przyjrzeli się aktywności tych chłodnych miejsc, przede wszystkim zaś włóknom plazmy powstającym w umbrze, najciemniejszym miejscu plamy słonecznej. Włókna te to stożkowate struktury o wysokości 500–1000 kilometrów i szerokości około 100 km. Istnieją one przez 2-3 minuty i zwykle ponownie pojawiają się w tym samym najciemniejszym miejscu umbry, gdzie pola magnetyczne są najsilniejsze, wyjaśnia profesor Vasyl Yurchyshyn z New Jersey Institute of Technology (NJIT).
      Te ciemne dynamiczne włóka obserwowane były od dawna, jednak jako pierwsi byliśmy w stanie wykryć ich oscylacje boczne, które są powodowane przez szybko poruszające się fale. Te ciągle obecne fale w silnie namagnetyzowanych włóknach transportują energię w górę i przyczyniają się do podgrzania górnych części atmosfery Słońca, dodaje Wenda Cao z NJIT. Z przeprowadzonych obliczeń wynika, że fale te przenoszą tysiące razy więcej energii niż ilość energii tracona w aktywnych regionach atmosfery. Rozprzestrzenianie się tej energii jest nawet o 4 rzędy wielkości większa niż ilość energii potrzebna do utrzymania temperatury korony słonecznej.
      Wszędzie na Słońcu wykryto dotychczas różne rodzaje fal. Jednak zwykle niosą one ze sobą zbyt mało energii, by podgrzać koronę. Szybkie fale, które wykryliśmy w umbrze plam słonecznych to stałe i wydajne źródło energii, które może podgrzewać koronę nad plamami, wyjaśnia Yurchyszyn. Odkrycie to, jak mówią naukowcy, nie tylko zmienia nasz pogląd na umbrę plam, ale również jest ważnym krokiem w kierunku zrozumienia transportu energii i podgrzewania korony.
      Jednak, jak sami zauważają, zagadka grzania korony słonecznej nie została rozwiązania. Przepływ energii pochodzącej z plam może odpowiadać tylko za podgrzanie pętli koronalnych, które biorą swoje początki z plam. Istnieją jednak inne, wolne od plam, regiony Słońca powiązane z gorącymi pętlami koronalnymi. I czekają one na swoje wyjaśnienie, dodaje Cao.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ponad połowa największych jezior na świecie traci wodę, wynika z badań przeprowadzonych przez międzynarodowy zespół naukowy z USA, Francji i Arabii Saudyjskiej. Przyczynami tego stanu rzeczy są głównie globalne ocieplenie oraz niezrównoważona konsumpcja przez człowieka. Jednak, jak zauważają autorzy badań, dzięki opracowanej przez nich nowej metodzie szacunku zasobów wody, trendów oraz przyczyn jej ubywania, można dostarczyć osobom odpowiedzialnym za zarządzanie informacji, pozwalającymi na lepszą ochronę krytycznych źródeł wody.
      Przeprowadziliśmy pierwsze wszechstronne badania trendów oraz przyczyn zmian ilości wody w światowych jeziorach, wykorzystując w tym celu satelity oraz modele obliczeniowe, mówi główny autor badań, Fangfang Yao z Uniwersytetu Kalifornijskiego w Boulder (CU Boulder). Mamy dość dobre informacje o słynnych jeziorach, jak Morze Kaspijskie, Jezioro Aralskie czy Salton Sea, jeśli jednak chcemy dokonać szacunków w skali globalnej, potrzebujemy wiarygodnych informacji o poziomie wód i objętości jeziora. Dzięki tej nowej metodzie możemy szerzej spojrzeć na zmiany poziomu wód jezior w skali całej planety, dodaje profesor Balaji Rajagopalan z CU Boulder.
      Naukowcy wykorzystali 250 000 fotografii jezior wykonanych przez satelity w latach 1992–2020. Na ich podstawie obliczyli powierzchnię 1972 największych jezior na Ziemi. Użyli też długoterminowych danych z pomiarów poziomu wód z dziewięciu satelitów. W przypadku tych jezior, co do których brak było danych długoterminowych, wykorzystano pomiary wykorzystane za pomocą bardziej nowoczesnego sprzętu umieszczonego na satelitach. Dzięki połączeniu nowych danych z długoterminowymi trendami byli w stanie ocenić zmiany ilości wody w jeziorach na przestrzeni kilku dziesięcioleci.
      Badania pokazały, że 53% największych jezior na świecie traci wodę, a jej łączny ubytek jest 17-krotnie większy niż pojemność największego zbiornika na terenie USA, Lake Meads. Wynosi zatem około 560 km3 wody.
      Uczeni przyjrzeli się też przyczynom utraty tej wody. W przypadku około 100 wielkich jezior przyczynami były zmiany klimatu oraz konsumpcja przez człowieka. Dzięki tym badaniom naukowcy dopiero teraz dowiedzieli się, że za utratą wody w jeziorze Good-e-Zareh w Afganistanie czy Mar Chiquita w Argentynie stoją właśnie takie przyczyny. Wśród innych ważnych przyczyn naukowcy wymieniają też odkładanie się osadów. Odgrywa ono szczególnie ważną rolę w zbiornikach, które zostały napełnione przed 1992 rokiem. Tam zmniejszanie się poziomu wody jest spowodowane głównie zamuleniem.
      Podczas gdy w większości jezior i zbiorników wody jest coraz mniej, aż 24% z nich doświadczyło znacznych wzrostów ilości wody. Są to głównie zbiorniki znajdujące się na słabo zaludnionych terenach Tybetu i północnych części Wielkich Równin oraz nowe zbiorniki wybudowane w basenach Mekongu czy Nilu.
      Autorzy badań szacują, że około 2 miliardów ludzi mieszka na obszarach, gdzie w zbiornikach i jeziorach ubywa wody, co wskazuje na pilną potrzebę uwzględnienia takich elementów jak zmiany klimatu, konsumpcja przez człowieka czy zamulanie w prowadzonej polityce. Jeśli na przykład konsumpcja przez człowieka jest ważnym czynnikiem prowadzącym do utraty wody, trzeba wprowadzić mechanizmy, które ją ograniczą, mówi profesor Ben Livneh. Uczony przypomina jezioro Sevan w Armenii, w którym od 20 lat poziom wody rośnie. Autorzy badań łączą ten wzrost z wprowadzonymi i egzekwowanymi od początku wieku przepisami dotyczącymi sposobu korzystania z wód jeziora.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Z im większą prędkością dwie powierzchnie metalowe przesuwają się po sobie, tym bardziej się zużywają. Okazało się jednak, że przy bardzo dużych prędkościach, porównywalnych z prędkością pocisku wystrzeliwanego pistoletu, proces ten ulega odwróceniu. Szybszy ruch powierzchni prowadzi do ich wolniejszego zużycia.
      Gdy dwie metalowe powierzchnie ześlizgują się po sobie, zachodzi wiele złożonych procesów. Krystaliczne regiony, z których zbudowane są metale, mogą ulegać deformacjom, pęknięciom, mogą skręcić się czy nawet zlać. Występuje tarcie i niszczenie powierzchni. Ten niepożądany proces powoduje, że urządzenia się zużywają oraz ulegają awariom. Dlatego też ważne jest, byśmy lepiej zrozumieli zachodzące wówczas procesy. Podczas badań nad tym zjawiskiem naukowcy z Uniwersytetu Technicznego w Wiedniu (TU Wien) i Austriackiego Centrum Doskonałości Tribologii dokonali zaskakującego, sprzecznego z intuicją odkrycia.

      W przeszłości tarcie mogliśmy badać tylko w czasie eksperymentów. W ostatnich latach dysponujemy superkomputerami na tyle potężnymi, że możemy w skali atomowej modelować bardzo złożone procesy zachodzące na powierzchniach materiałów, mówi Stefan Eder z TU Wien. Naukowcy modelowali różne rodzaje metalowych stopów. Nie były to doskonałe kryształy, ale powierzchnie bliskie rzeczywistości, złożone niedoskonałe struktury krystaliczne. To bardzo ważne, gdyż te wszystkie niedoskonałości decydują o tarciu i zużywaniu się powierzchni. Gdybyśmy symulowali doskonałe powierzchnie miałoby to niewiele wspólnego z rzeczywistością, dodaje Eder.
      Z badań wynika, że przy dość niskich prędkościach, rzędu 10-20 metrów na sekundę, zużycie materiału jest niewielkie. Zmienia się tylko zewnętrzna jego warstwa, warstwy głębiej położone pozostają nietknięte. Przy prędkości 80–100 m/s zużycie materiału, jak można się tego spodziewać, wzrasta. Stopniowo wchodzimy tutaj w taki zakres, gdzie metal zaczyna zachowywać się jak miód czy masło orzechowe, wyjaśnia Eder. Głębiej położone warstwy materiału są ciągnięte w kierunku ruchu metalu przesuwającego się po powierzchni, dochodzi do całkowitej reorganizacji mikrostruktury.
      Później zaś na badaczy czekała olbrzymia niespodzianka. Przy prędkości ponad 300 m/s zużycie ocierających się o siebie materiałów spada. Mikrostruktury znajdujące się bezpośrednio pod powierzchnią, które przy średnich prędkościach były całkowicie niszczone, pozostają w większości nietknięte. To zaskakujące dla nas i wszystkich zajmujących się tribologią. Jednak gdy przejrzeliśmy literaturę fachową okazało się, że obserwowano to zjawisko podczas eksperymentów. Jednak nie jest ono powszechnie znane, gdyż eksperymentalnie bardzo rzadko uzyskuje się tak duże prędkości, dodaje Eder. Wcześniejsi eksperymentatorzy nie potrafili wyjaśnić, dlaczego tak się dzieje. Dopiero teraz, dzięki symulacjom komputerowym, można pokusić się o bardziej dokładny opis.
      Analiza danych komputerowych wykazała, że przy bardzo wysokich prędkościach w wyniku tarcia pojawia się duża ilość ciepła. Jednak ciepło to jest nierównomiernie rozłożone. Gdy dwa metale przesuwają się po sobie z prędkością setek metrów na sekundę, w niektórych miejscach rozgrzewają się do tysięcy stopni Celsjusza. Jednak pomiędzy tymi wysokotemperaturowymi łatami znajdują się znacznie chłodniejsze obszary. W wyniku tego niewielkie części powierzchni topią się i w ułamku sekundy ponownie krystalizują. Dochodzi więc do dramatycznych zmian w zewnętrznej warstwie metalu, ale to właśnie te zmiany chronią głębsze warstwy. Głębiej położone struktury krystaliczne pozostają nietknięte.
      Zjawisko to, o którym w środowisku specjalistów niewiele wiadomo, zachodzi w przypadku różnych materiałów. W przyszłości trzeba będzie zbadać, czy ma ono również miejsce przy przejściu z dużych do ekstremalnych prędkości, stwierdza Eder. Bardzo szybkie przesuwanie się powierzchni metalicznych względem siebie ma miejsce np. w łożyskach czy systemach napędowych samochodów elektrycznych czy też podczas polerowania powierzchni.
      Szczegóły badań zostały opublikowane na łamach Applied Materials Today.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ze względu na specyficzną konstrukcję domu, odległość budynku od sieci cieplnej umożliwiającej instalację centralnego ogrzewania oraz z szeregu innych powodów wiele osób szuka alternatywnych sposobów na ogrzanie poszczególnych pomieszczeń, całego domu lub tarasu. Część konsumentów jest zainteresowana ogrzewaniem, które w przyszłości potencjalnie mogłoby być zasilane z odnawialnych źródeł energii, inni szukają rozwiązań, których wdrożenie nie wymaga kosztownych remontów.
      W efekcie tych poszukiwań wiele osób decyduje się na ogrzewanie elektryczne, w tym konwektory i piece akumulacyjne, a także systemy ogrzewania powierzchniowego jak ogrzewanie podłogowe, ścienne i sufitowe. Jedną z metod elektrycznego ogrzewania są promienniki podczerwieni. Ogrzewanie za ich pomocą stale zyskuje na popularności ze względu na szereg zalet nad innymi formami ogrzewania elektrycznego, jak i tego, które pochodzi z innych źródeł. Ponieważ montaż promienników podczerwieni nie jest inwazyjny i nie wymaga kosztownych remontów, mogą one stanowić również uzupełnienie innych rodzajów ogrzewania.
      Czym jest i jak działa promiennik podczerwieni?
      Promienniki podczerwieni to płaskie panele zasilane energią elektryczną. Grzałka będąca częścią urządzenia sprawia, że emitowane jest promieniowanie podczerwone niewidoczne dla ludzkiego oka. Powierzchnia przedmiotów, ludzi i zwierząt, które znajdują się w pewnej odległości od promiennika, podlega ogrzaniu. Efekt komfortowego ciepła odczuwalny jest już po chwili działania urządzenia. Jest to cecha, która wyraźnie odróżnia promienniki podczerwieni od zwykłych grzejników konwekcyjnych. Tradycyjne grzejniki powodują cyrkulację nagrzanego powietrza, które ostatecznie unosi się ku górze. Promienniki podczerwieni natomiast ogrzewają przede wszystkim powierzchnie rzeczy w swoim otoczeniu, a nie samo powietrze. Nagrzane powierzchnie oczywiście są w stanie częściowo oddawać ciepło.
      Poza sprawnym dostarczaniem komfortu cieplnego charakterystyka działania promienników podczerwieni wiąże się z dodatkowymi korzyściami. Ponieważ ten rodzaj urządzeń nie wprawia w ruch powietrza, a wraz z nim kurzu i brudu, promienniki ciepła stanowią znacznie zdrowszą metodę ogrzewania dla alergików i astmatyków. Ogrzewanie podczerwienią nie wysusza również powietrza w pomieszczeniu. Pewien stopień wilgotności pomaga zachować zdrowie gardła, całych dróg oddechowych oraz spojówek oczu, które są wrażliwe na suchość powietrza.
      Ile kosztuje ogrzewanie promiennikiem podczerwieni?
      Ostateczne koszty montażu i późniejszej eksploatacji ogrzewania pomieszczeń przez elektryczne promienniki podczerwieni mogą zależeć od wielu indywidualnych czynników takich jak stopień ocieplenia domu, sprawność wybranego modelu, rodzaj konstrukcji domu (ogrzewanie promiennikowe polecane jest zwłaszcza w przypadku konstrukcji szkieletowych). To czy promiennik podczerwieni będzie dobrym wyborem pod względem ekonomicznym, zależy od oczekiwań użytkownika względem tego typu urządzenia. Czy chodzi o pojedynczy promiennik, którego zadaniem będzie jedynie dogrzanie stanowiska pracy lub czy promienniki na podczerwień mają stanowić jedyne źródło ciepła całego domu?
      Przy obecnych kosztach energii elektrycznej ogrzewanie promiennikiem na podczerwień jest szacunkowo oszczędniejsze od ogrzewania ekogroszkiem, gazem ziemnym, pelletem lub olejem opałowym. W ocenie kosztów warto mieć na uwadze też koszty montażu, które w przypadku promienników na podczerwień są niskie, a sama instalacja nie wymaga inwazyjnych remontów.
      Promiennik promiennikowi nierówny - o technologiach i funkcjonalnościach
      Wszystkie promienniki na podczerwień zapewnią komfort cieplny, ale różne modele urządzeń mogą się sprawdzać w różnych warunkach, odpowiadać na specyficzne zapotrzebowanie. Aby upewnić się, że kupiony promiennik podczerwieni spełni wszystkie oczekiwania, warto zapoznać się z kilkoma cechami, którymi mogą wyróżniać się poszczególne modele:
      Wodoodporność — część urządzeń jest zgodna z różnym stopniem normy IP, która opisuje poziom odporności na kurz i wodę. Zwróć uwagę na ten parametr, jeśli chcesz ogrzać łazienkę, w której często panuje wysoka wilgotność powietrza. IP54 powinno w zupełności wystarczyć, gdyż urządzenia o tym poziomie szczelności są w stanie wytrzymać nawet delikatne zachlapania. Wbudowane oświetlenie — ponieważ promienniki podczerwieni montuje się pod sufitem, stanowią idealne urządzenie, aby zintegrować je z systemem oświetlenia, zwłaszcza jeśli mamy do czynienia z niewielkim pomieszczeniem, gdzie samo umieszczenie promiennika pod sufitem nie zostawia wiele miejsca na dodatkowy montaż żyrandola. Nóżki w zestawie lub możliwość ich zastosowania — jeśli promiennik podczerwieni ma służyć jedynie dogrzewaniu pewnych pomieszczeń np. stanowiska pracy lub miejsca snu, nóżki lub nóżki na kółkach umożliwią łatwe stawianie urządzenia na podłodze i przenoszenie go, tylko w czasie, gdy potrzebne jest chwilowe dogrzanie. Obsługa aplikacji — coraz więcej modeli urządzeń oferujących ogrzewanie na podczerwień ma wsparcie dla aplikacji na smartfony, dzięki której łatwo zdalnie sterować promiennikiem. Aplikacje mobilne umożliwiają także skonfigurowanie wielu różnych scenariuszy automatyzacji ogrzewania za pomocą promienników np. włączanie i wyłączanie urządzeń powiązane ze wschodami i zachodami słońca. Zwracając uwagę na te cechy urządzeń, na pewno będziesz w stanie wybrać promiennik podczerwieni, który spełni Twoje indywidualne oczekiwania i już niedługo będziesz się cieszyć nowoczesnym, zdrowym i oszczędnym ogrzewaniem. Potrzebujesz pomocy w wyborze promiennika? Sprawdź artykuł o tym, jak wybrać promiennik podczerwieni.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjaliści od biomechaniki z Cornell University obliczyli maksymalną wysokość, z jakiej możemy skoczyć do wody bez większego ryzyka wyrządzenia sobie krzywdy. Uwzględnili rodzaj skoku, a zatem to, która część ciała najpierw styka się z wodą. Woda jest 1000-krotnie gęstsza niż powietrze, więc skacząc przemieszczamy się z bardzo rzadkiego do bardzo gęstego medium, co wiąże się z silnym uderzeniem, mówi profesor Sunghwan Jung, główny autor artykułu opublikowanego na łamach Science Advances.
      Z eksperymentów wynika, że w przypadku osoby, która nie przeszła odpowiedniego treningu, skok do wody z wysokości ponad 8 metrów grozi uszkodzeniami kręgosłupa i karku w sytuacji, gdy jako pierwsza z wodą styka się głowa. Jeśli zaś skoczymy tak, by jako pierwsze z wodą zetknęły się dłonie, to przy skoku z wysokości ponad 12 metrów ryzykujemy uszkodzeniem obojczyka. Z kolei uszkodzenie kolana jest prawdopodobne przy skoku na stopy z wysokości ponad 15 metrów.
      Chcieliśmy sprawdzić, jak pozycja przy skoku do wody wpływa na ryzyko odniesienia obrażeń. Motywowała nas też chęć opracowania ogólnej teorii dotyczącej tego, jak obiekty o różnych kształtach wpadają do wody. Prowadziliśmy więc analizy zarówno kształtu ludzkiego ciała i różnych rodzajów skoków, jak i ciał zwierząt. Mierzyliśmy przy tym oddziałujące siły, dodaje Jung.
      Na potrzeby badań naukowcy wydrukowali trójwymiarowe modele ludzkiej głowy i tułowia, głowy morświna zwyczajnego, dzioba głuptaka zwyczajnego oraz łapy jaszczurki z rodzaju Basiliscus. W ten sposób mogli zbadać różne kształty podczas zetknięcia się z wodą. Wrzucali do niej swoje modele, mierzyli działające siły oraz ich rozkład w czasie. Brali pod uwagę wysokość, z jakiej modele wpadały do wody, a znając działające siły oraz wytrzymałość ludzkich kości, mięśni i ścięgien byli w stanie wyliczyć ryzyko związane ze skakaniem do wody z różnych wysokości. Biomechanika człowieka dysponuje olbrzymią literaturą dotyczącą urazów w wyniku upadków, szczególnie wśród osób starszych, oraz urazów sportowych. Nie znam jednak żadnej pracy dotyczącej urazów podczas skoków do wody, mówi profesor Jung.
      Badania dają nam też wiedzę na temat przystosowania się różnych gatunków zwierząt do nurkowania. Na przykład głuptak zwyczajny ma tak ukształtowany dziób, że może wpadać do wody z prędkością do 24 m/s czyli ponad 86 km/h. Jung i jego zespół od dłuższego czasu badana mechanikę nurkowania zwierząt. Obecnie naukowcy skupiają się na tym, jak lisy nurkują w śniegu.
      Jesteśmy dobrymi inżynierami. Potrafimy zbudować samolot i okręt podwodny. Ale przechodzenie pomiędzy różnymi ośrodkami, co sprawnie robią zwierzęta, nie jest łatwym zadaniem. A to bardzo interesująca kwestia. Inżynierowie chcieliby np. budować drony, które sprawnie poruszałyby się w powietrzu, a później wlatywały pod wodę. Może dzięki naszym badaniom wpadną na odpowiednie rozwiązania. My zaś próbujemy zrozumieć podstawy mechaniki, dodaje Jung.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...