Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

DNA pomoże w wykrywaniu i badaniu ciemnej materii

Recommended Posts

Układ Słoneczny przemieszcza się przez wszechświat z prędkością 370 km/s. Wraz z nim przemieszcza się Ziemia, która na swojej drodze napotyka ciemną materię. Wykrywacze ciemnej materii, jak XENON1T, rejestrują zderzenia z cząstkami ciemnej materii. Jednak nie określają, z jakiego kierunku nadeszła cząstka. A to poważnie ogranicza możliwości badawcze.

XENON1T to wyjątkowe urządzenie. To jeden z najczulszych wykrywaczy ciemnej materii, w którym zaobserwowano najrzadsze zjawisko we wszechświecie, wykryto tajemnicze sygnały, a naukowcy zaproponowali kilka interesujących pomysłów na ich interpretację.

Teraz Ciaran O'Hare i jego koledzy z University of Sydney przetestowali projekt nowego detektora ciemnej materii, który nie tylko wykryje obecność jej cząstek, ale również określi kierunek, z którego nadeszły. Uczeni przeprowadzili pierwszą symulację działania ich wykrywacza i poinformowali o bardzo obiecujących wynikach.

Nowy wykrywacz ciemnej materii ma bazować na DNA. Podwójne helisy kwasów nukleinowych miałyby tworzyć gęsty las zwisając z warstw złotych płacht. Pozycja każdej z nici DNA byłaby znana z nanometrową dokładnością.

Gdy cząstka ciemnej materii trafi do takiego wykrywacza i uderzy w którąkolwiek z nici DNA, rozbije ją, a odłamane fragmenty wpadną do położonego poniżej specjalnego układu mikroprzepływowego. Za pomocą techniki PCR potrafimy precyzyjnie badać sekwencję par bazowych kwasów nukleinowych, zatem będziemy mogli z nanometrową precyzją określić oryginalną pozycję każdego z odłamanych fragmentów, stwierdzają naukowcy. W ten sposób możliwe będzie śledzenie trasy cząstek ciemnej materii w detektorze.

Pomysł detektora ciemnej materii opartego na DNA pojawił się już w 2012 roku. Teraz po raz pierwszy udało się przeprowadzić symulację pracy takiego detektora, by sprawdzić, czy ma on szansę działać. Badacze wzięli pod uwagę różne potencjalne typy cząstek, różne energie i kierunki. Doszliśmy do wniosku, że oparty na DNA detektor byłby ekonomicznym, przenośnym i potężnym wykrywaczem nowych cząstek, stwierdzają uczeni.

Nowy detektor byłby znacznie mniejszy i tańszy niż obecnie istniejące i budowane wykrywacze ciemnej materii. Nie jest jednak doskonały. Detektor DNA nie jest w stanie dostarczyć wystarczająco dużo informacji, by móc określić rodzaj cząstki czy jej dokładną energię. Dlatego też takie wykrywacze będą prawdopodobnie używane jako uzupełnienie tych tradycyjnych.


« powrót do artykułu

Share this post


Link to post
Share on other sites

To oznacza, że każda cząsteczka jest dresem swojej pozycji w detektorze - całkiem sprytne, tylko że oznacza to indywidualne tkanie gigantycznej ilości cząsteczek.
Jedyną możliwością na szybkie usprawnienie procesu jaką widzę to namnożenie jednej i unikalnej sekwencji bazowej z odpowiednimi unikalnymi "slotami" a następnie selektywne użycie CRISPR przez specjalne periodyczne maski przestrzenne.

Śledzenie trasy ciemnej materii w detektorze jest niemożliwe. Już pojedyncza interakcja z detektorem jest zjawiskiem nadzwyczajnie rzadkim, śledzenie trasy wymagałoby skorelowanych pomiarów pochodzących od pojedynczej cząsteczki - to niewykonalne!
Interakcja musiałaby wybić zwykłą cząsteczkę i nadać jej ten sam (albo z zależnością funkcyjną) kierunek co wyłapana cząsteczka ciemna, do tego z energią na poziomie jonizacyjnym pozwalającą na przenikanie przez materię detektora w stopniu umożliwiającym określenie kierunku - słabo to widzę. 

18 godzin temu, KopalniaWiedzy.pl napisał:

i uderzy w którąkolwiek z nich DNA

powinno być "z nici DNA"

 

Share this post


Link to post
Share on other sites
9 godzin temu, peceed napisał:

To oznacza, że każda cząsteczka jest dresem swojej pozycji w detektorze

Nie wiem czy to tak dobrze, że jest akurat dresem, może lepiej by była garniturem, kostiumem kąpielowym, czy dowolnym innym strojem sytuacyjnym?

Co do reszty, też podczas czytania artykułu miałem poważne wątpliwości czy da się rozpoznać jakiego typu cząstka trafiła w detektor, bo bez tego, możemy wykrywać dowolne cząstki, które nie mają nic wspólnego z tym, co chcemy badać.

Może coś jest w materiale źródłowym, ale ja jestem za leniwy...

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
Posted (edited)
Cytat

rejestrują zderzenia z cząstkami ciemnej materii. Jednak nie określają, z jakiego kierunku nadeszła cząstka. A to poważnie ogranicza możliwości badawcze.

Rejestrują? O - gdzie informacja o tym "rejestrowaniu"? Czyżbym przegapił takie epokowe odkrycie?
Niczego jeszcze nie zarejestrowały (związanego z DM, bo inne rzeczy tak). Ale to że nie określiły z jakiego kierunku to poważnie ogranicza możliwości badawcze.
:D
Ale na pewno:

W dniu 2.06.2021 o 17:38, KopalniaWiedzy.pl napisał:

który nie tylko wykryje obecność jej cząstek,

Tak, na pewno wykryje.
 

21 godzin temu, peceed napisał:

Śledzenie trasy ciemnej materii w detektorze jest niemożliwe. Już pojedyncza interakcja z detektorem jest zjawiskiem nadzwyczajnie rzadkim, śledzenie trasy wymagałoby skorelowanych pomiarów pochodzących od pojedynczej cząsteczki - to niewykonalne!

Najpierw pomyślałem że masz rację. Ale potem przeczytałem artykuł. Tobie to też polecam. Bo tu nie chodzi o skorelowane pomiary.
Oczywiście przy zastrzeżeniu - że ten model wykrywania ma jakikolwiek sens. Bo najpewniej nie ma. Miałby tylko wtedy gdyby DM spełniała warunki do jakich ten detektor zbudowano. A pewnie nie spełnia.
Ale jeśli rzeczywiście da się w ten sposób wykryć cząstkę DM to i dałoby się określić kierunek.

12 godzin temu, pogo napisał:

bo bez tego, możemy wykrywać dowolne cząstki, które nie mają nic wspólnego z tym, co chcemy badać.

1400 metrów pod górą.
Łapie dużo rzeczy, ale nic co zasługiwałoby na miarę odkrycia DM. W pierwotnej wersji nie wykrył nic. Potem zmienili metodologię i zaczęli szukać w szumach. 
Ocena jest ilościowa. Był nadmiar oddziaływań to mieli nadzieję że to aksjony. Ale nie ma na to żadnego dowodu. Jest kilka wyjaśnień. Dlatego do odkrycia wciąż nie doszło.

Edited by thikim

Share this post


Link to post
Share on other sites
4 godziny temu, thikim napisał:

Ale potem przeczytałem artykuł. Tobie to też polecam

Dzięki za zmarnowanie kawałka życia. Poziom śmieciowy. Tylko pretekst aby pomielić jakimiś obliczeniami w komputerze.

4 godziny temu, thikim napisał:

Bo tu nie chodzi o skorelowane pomiary.

Oczywiście że chodzi o skorelowane pomiary, tylko wtedy jest sens stosowania wysokiej precyzji. Inaczej informacja o tym w której cząsteczce/miejscu doszło do reakcji z ciemną materią jest zupełnie bezużyteczna. Ponieważ ciemna materia jest ciemna, szanse na wielokrotny pomiar tej samej cząsteczki wynoszą praktyczne zero.
Zatem siłą rzeczy musimy rozpatrywać oddziaływanie zwykłej materii po zderzeniu licząc że oddziaływanie było mało sprężyste.

 

A detektor ten nie będzie działał, bo to zlepek idei a nie projekt jakiegokolwiek realistycznego urządzenia. Nie przejmują się, że technologie którymi chcą się posłużyć dzielą rzędy wielkości dla których one działają, i mają pewne "detale" które zajmują miejsce w skali makro. Na szczęście gramatyka angielska zniesie wszystko. Takie czasy, że nawet w ścisłych dyscyplinach pisze się eseje a nie tworzy realne projekty inżynieryjne.

 

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Nowa mapa ciemnej materii ujawniła istnienie nieznanych wcześniej struktur łączących galaktyki. Mapa, stworzona za pomocą technik maszynowego uczenia, pomoże w badaniach nad ciemną materią oraz w opisaniu historii i przyszłości naszego lokalnego wszechświata. Jest ona dziełem międzynarodowego zespołu naukowego.
      Jako że nie potrafimy bezpośrednio obserwować ciemnej materii, o jej rozkładzie dowiadujemy się, badając wpływ grawitacyjny, jaki wywiera na inne obiekty we wszechświecie, np. na galaktyki.
      Co interesujące, łatwiej jest badać rozkład ciemnej materii znajdującej się znacznie dalej, gdyż pokazuje to daleką przeszłość, kiedy budowa wszechświata była mniej złożona. Z czasem wielkie struktury tylko się powiększyły, stopień złożoności wszechświata wzrósł, więc znacznie trudniej jest dokonywać lokalnych pomiarów ciemnej materii, mówi jeden z autorów badań, profesor Donghui Jeong z Pennsylvania State University.
      Już wcześniej próbowano tworzyć podobne mapy rozpoczynając od modelu wczesnego wszechświata i symulując jego ewolucję przez miliardy lat. Jednak to metoda wymagająca olbrzymich mocy obliczeniowych i dotychczas nie udało się za jej pomocą stworzyć mapy na tyle szczegółowej, by można było zobaczyć nasz lokalny wszechświat.
      Autorzy najnowszych badań wykorzystali inną metodę – za pomocą maszynowego uczenia się stworzyli model, który na podstawie znanych informacji o rozkładzie i ruchu galaktyk, przewiduje rozkład ciemnej materii.
      Naukowcy zbudowali i wyćwiczyli swój model na Illustris-TNG, wielkim zestawie symulacji galaktyk, który zawiera informacje o galaktykach, gazach, innej widzialnej materii oraz ciemnej materii. Szczególnie skupiono się na strukturach podobnych do Drogi Mlecznej. W końcu udało się określić, które dane są niezbędne do poznania rozkładu ciemnej materii.
      Do tak stworzonego modelu wprowadzono prawdziwe dane o lokalnym wszechświecie pochodzące z katalogu Cosmicflow-3. Zawiera on informacje o rozkładzie i ruchu ponad 17 000 galaktyk znajdujących się w odległości 200 megaparseków od Drogi mlecznej. Na tej podstawie powstała mapa rozkładu ciemnej materii.
      Model prawidłowo odtworzył w niej Lokalną Grupę Galaktyk, Gromadę w Pannie, puste przestrzenie i inne struktury. Pokazał też struktury, o których istnieniu nie wiedzieliśmy, w tym włókna łączące galaktyki.
      Możliwość stworzenia mapy lokalnej sieci kosmicznej otwiera nowy rozdział w kosmologii. Możemy teraz badać, jak rozkład ciemnej materii ma się do innych danych, co pozwoli nam na lepsze zrozumienie ciemnej materii. Możemy też bezpośrednio badać te włókna, tworzące wielkie pomocy pomiędzy galaktykami, mówi Jeong.
      Uczeni sądzą, że dodając informacje o mniejszych galaktykach, będą mogli poprawić rozdzielczość mapy. Bardzo więc liczą na dane z Teleskopu Kosmicznego Jamesa Webba.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół badaczy, w tym polscy specjaliści, odkrył, że gdy podmieni się jeden z głównych elementów DNA na substancję nieco zmienioną, naprawia ona uszkodzenia powodowane promieniowaniem UV. Może to wyjaśniać, jak powstawało życie na Ziemi, a w przyszłości także wspomóc syntetyczną biologię i nanotechnologię.
      DNA jest proste i skomplikowane zarazem. Składa się z czterech „liter” A,T,C,G pod którymi kryją się cztery substancje (adenina, tymina, cytozyna i guanina). Mogą się one jednak ustawiać w różnej kolejności i w bardzo długich cząsteczkach.
      Mechanizm kodowania jest więc prosty, ale informacje w DNA zawarte wyjątkowo obszerne.
      DNA może ulegać uszkodzeniom, co prowadzi czasami do utraty informacji i np. wadliwego działania pewnych genów. To z kolei może powodować nieprawidłową pracę komórki, a nawet jej śmierć.
      DNA nie lubi m.in. promieni UV, czego skrajne skutki można obserwować np. w postaci nowotworów skóry. Na szczęście komórki dysponują enzymami, które zwykle naprawiają większość uszkodzeń.
      Międzynarodowy zespół naukowców, na łamach prestiżowego periodyku „Nature” opisał właśnie, jak pewna cząsteczka może zastępować jedną z liter genetycznego alfabetu – adeninę.
      2,6-diaminopuryna, zwana też 2-aminoadeniną, zachowuje wiele funkcji potrzebnych DNA, jednak ma jeszcze jedną, unikalną zdolność. Otóż, podobnie jak komórkowe enzymy, naprawia uszkodzenia wywołane promieniowaniem ultrafioletowym.
      Ta cząsteczka mogła przyczynić się do rozwoju życia na Ziemi. W poprzednich pracach pokazywaliśmy, jak podstawowe cegiełki budujące DNA i RNA mogły powstawać na młodej Ziemi za pomocą promieniowania UV. To promieniowanie UV jest jednak szkodliwe dla łańcuchów tych polimerów niosących informację genetyczną. Np. UV jest jednym z czynników powodujących raka poprzez uszkodzenia nici DNA. Na młodej Ziemi nie było jeszcze skomplikowanej maszynerii, która jest w stanie naprawić wiele z tych uszkodzeń w organizmach żywych, więc naturalnym pytaniem było, jak polimery DNA lub RNA na młodej Ziemi mogły przetrwać te trudne warunki – wyjaśnia dr Rafal Szabla, chemik pracujący na University of Edinburgh.
      Nam udało się znaleźć alternatywną cegiełkę DNA, która jest w stanie sama te uszkodzenia naprawić, a jednocześnie jest w stanie pełnić wiele podstawowych funkcji biochemicznych – tłumaczy ekspert.
      Jednocześnie zupełnie niedawno w magazynie Science ukazały się trzy artykuły opisujące rolę 2,6-diaminopuryny w bakteriofagach, wirusach atakujących bakterie. Jak się okazuje, wiele z nich posiada całe genomy z adeniną kompletnie wymienioną na 2,6-diaminopurynę. Jej rola w tym przypadku jest jednak inna - chroni ona bakteriofagi przed zniszczeniem przez atakowane bakterie.
      Autorzy tego odkrycia też jednak wskazują na potencjalną rolę tej substancji w pochodzeniu życia na Ziemi.
      Być może związek ten znajdzie nawet praktyczne zastosowania.
      W biologii syntetycznej może on otworzyć kilka ciekawych ścieżek. DNA z tym genomem ma bardziej stabilne i odporne na ciepło podwójne helisy. My pokazaliśmy że jest też zdecydowanie bardziej odporne na UV – zwraca uwagę dr Szabla.
      Ponadto alternatywne zasady mogą np. pozwolić na budowę nieco innych białek (z niebiologicznymi komponentami). Może to mieć też zastosowanie w fagoterapii, w walce ze specyficznymi bakteriami. DNA jest też wykorzystywane w nanotechnologii i tego typu inżynieryjne usprawnienia mogą odgrywać istotną rolę, kiedy chcemy uzyskać materiały z DNA o usprawnionych właściwościach – kontynuuje badacz.
      W projekcie uczestniczyli też inni polscy specjaliści - dr Magdalena Zdrowowicz i jej koledzy z Uniwersytetu Gdańskiego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów zainstalowano nowe urządzenie o nazwie FASER (Forward Search Experiment), którego współtwórcą jest dr Sebastian Trojanowski. FASER będzie badał cząstki, co do których naukowcy mają podejrzenie, że wchodzą w interakcje z ciemną materią. Testy nowego urządzenia potrwają do końca roku.
      To krok milowy dla tego eksperymentu. FASER będzie gotowy do zbierania danych z Wielkiego Zderzacza Hadronów, gdy tylko na nowo podejmie on pracę wiosną 2022 roku, mówi profesor Shih-Chieh hsu z University of Washington, który pracuje przy FASER.
      Eksperyment będzie badał interakcje z wysokoenergetycznymi neutrinami i poszukiwał nowych lekkich słabo oddziałujących cząstek, które mogą wchodzić w interakacje z ciemną materią. Stanowi ona około 85% materii we wszechświecie. Zbadanie cząstek, które mogą z nią oddziaływać, pozwoli na określenie właściwości ciemnej materii.
      W pracach eksperymentu FASER bierze udział 70 naukowców z 19 instytucji w 8 krajach.
      Naukowcy sądzą, że podczas kolizji w Wielkim Zderzaczu Hadronów powstają słabo reagujące cząstki, które FASER będzie w stanie wykryć. Jak informowaliśmy przed dwoma laty, w LHC mogą powstawać też niewykryte dotąd ciężkie cząstki.
      FASER został umieszczony w nieużywanym tunelu serwisowym znajdującym się 480 metrów od wykrywacza ATLAS. Dzięki niewielkiej odległości FASER powinien być w stanie wykryć produkty rozpadu lekkich cząstek. Urządzenie ma 5 metrów długości, a na jego początku znajdują się dwie sekcje scyntylatorów. Będą one odpowiedzialne za usuwanie interferencji powodowanej przez naładowane cząstki. Za scyntylatorami umieszczono 1,5-metrowy magnes dipolowy, za którym znajduje się spektrometr, składający się z dwóch 1-metowych magnesów dipolowych. Na końcu, początku i pomiędzy magnesami znajdują się 3 urządzenia rejestrujące zbudowane z krzemowych detektorów. Na początku i końcu spektrometru znajdują się dodatkowe stacje scyntylatorów. Ostatnim elementem jest elektromagnetyczny kalorymetr. Będzie on identyfikował wysokoenergetyczne elektrony i fotony oraz mierzył całą energię elektromagnetyczną.
      Całość jest schłodzona do temperatury 15 stopni Celsjusza przez własny system chłodzenia. Niektóre z elementów FASERA zostały zbudowane z zapasowych części innych urządzeń LHC.
      FASER zostanie też wyposażony w dodatkowy detektor FASERv, wyspecjalizowany w wykrywaniu neutrin. Powinien być on gotowy do instalacji pod koniec bieżącego roku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astrofizycy uważają, że znaleźli potężne i unikatowe narzędzie do wykrywania ciemnej materii – egzoplanety. W opublikowanym przez siebie artykule naukowcy stwierdzają, że obecność ciemnej materii można wykryć, mierząc jej wpływ na temperaturę egzoplanet.
      Sądzimy, że istnieje 300 miliardów egzoplanet. Jeśli odkryjemy i przebadamy niewielki odsetek z nich, to zyskamy olbrzymią ilość informacji na temat ciemnej materii, stwierdził Juri Smironv z Ohio State University. Smirnov i Rebecca Lane ze SLAC National Accelerator Laboratory są autorami artykułu opublikowanego w Physical Review Letters.
      Uczony dodaje, że gdy ciemna materia zostaje przechwycona przez grawitację egzoplanet, jest wciągana do jądra planety, gdzie dochodzi do jej anihilacji, co wiąże się z uwolnieniem ciepła. Im więcej ciemnej materii, tym więcej ciepła jest w ten sposób emitowane. Ciepło to może zaś zostać zarejestrowane przez Teleskop Kosmiczny Jamesa Webba (James Webb Space Telescope – JWST), który ma zostać wystrzelony w październiku bieżącego roku. Jeśli egzoplanety będą wydzielały nadmiarowe ciepło związane z obecnością ciemnej materii, powinniśmy być w stanie to zauważyć, dodaje Smirnov.
      Zdaniem uczonych planety spoza Układu Słonecznego mogą być szczególnie pomocne w wykrywaniu lżejszej ciemnej materii, tej o niższej masie. Dotychczas nie prowadzono poszukiwań ciemnej materii w takich zakresach masy.
      Naukowcy uważają, że gęstość ciemnej materii rośnie w kierunku centrum Drogi Mlecznej. Jeśli to prawda, to powinniśmy zauważyć, że planety bliżej centrum galaktyki rozgrzewają się bardziej niż te na jej obrzeżach. Jeśli byśmy coś takiego zarejestrowali byłoby to niesamowite odkrycie. Wskazywałoby, że znaleźliśmy ciemną materię, mówi Smirnov.
      Smirnov i Lane proponują, by przyjrzeć się „gorącym Jowiszom” oraz brązowym karłom. To w tych obiektach najłatwiej będzie zauważyć nadmiarowe ciepło spowodowane obecnością ciemnej materii. Uczeni uważają też, że warto poszukać i badać swobodne planety, takie, które nie orbitują wokół gwiazd. W ich przypadku nadmiarowe ciepło powinno być jeszcze bardziej oczywistym sygnałem obecności ciemnej materii, gdyż nie dociera do nich energia z gwiazd macierzystych.
      Olbrzymią zaletą wykorzystania egzoplanet jako wykrywaczy ciemnej materii jest fakt, że nie potrzeba do tego nowych rodzajów urządzeń lub technologii czy przeprowadzania takich badań, jakich dotychczas nie wykonywano.
      Obecnie znamy ponad 4300 egzoplanet i niemal 6000 kandydatów na planety. W ciągu najbliższych lat misja Gaia, wysłana przez Europejską Agencję Kosmiczną, powinna wykryć dziesiątki tysięcy kolejnych egzoplanet. Będziemy więc mieli olbrzymią liczbę obiektów, które można badać w poszukiwaniu ciemnej materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dane z chińskiego detektora cząstek PandaX-II mogą wskazywać, że w ubiegłym roku eksperyment XENON1T zarejestrował sygnały świadczące o odkryciu nieznanych zjawisk fizycznych. Jak informowaliśmy, XENON1T zarejestrował dziesiątki nietypowych sygnałów, które można było interpretować na trzy sposoby. Najbardziej banalna z interpretacji to wystąpienie zanieczyszczenia, dwie pozostałe interpretacje to możliwe odkrycie nowych zjawisk, w tym przełomowe odkrycie cząstek ciemnej materii.
      Chińskie PandaX-II uzyskało właśnie dane, które mogą potwierdzać, że nie mamy do czynienia z zanieczyszczeniem, a rzeczywistym odkryciem.
      Znajdujący się we Włoszech XENON1T został zbudowany z myślą o poszukiwaniu słabo oddziałujących masywnych cząstek (WIMP), które mają stanowić ciemną materię. W czerwcu ubiegłego roku naukowcy pracujący przy tym eksperymencie poinformowali o zaobserwowaniu 53+/-15 sygnałów, których nie potrafili wyjaśnić. Jako że nie byli w stanie podać jednej możliwej interpretacji, zaproponowali cztery wyjaśnienia.
      Najbardziej banalne to rozpad beta trytu, który mógł zanieczyścić ksenon używany w detektorze. Trzy pozostałe interpretacje są już bardziej interesujące. Sygnały mogły być wywołane obecnością nowego typu neutrina, tworzących ciemną materię aksjonów ze Słońca albo też obecnością bozonowej ciemnej materii. Uczeni wyliczyli też prawdopodobieństwo dla wszystkich czterech interpretacji i uznali, że najmniej prawdopodobne, bo wynoszące 3,0 sigma, jest zarejestrowanie bozonowej ciemnej materii. Z kolei prawdopodobieństwo zanieczyszczenia trytem oraz odkrycia nowego neutrina wyliczono na 3,2 sigma. Najbardziej zaś prawdopodobne – szacowane na 3,4 sigma – jest odkrycie słonecznych aksjonów.
      Informacja o sygnałach z XENON1T wywołała spore poruszenie. Naukowcy zabrali się do pracy, próbując wyjaśnić obserwowane zjawiska. Na przykład fizycy teoretyczni zaproponowali kilka interesujących rozwiązań problemu dotyczącego aksjonów słonecznych. Gdyby bowiem rzeczywiście one istniały, to białe karły powinny mieć mniejszą jasność, niż mają.
      Jednymi z naukowców, którzy postanowili bliżej przyjrzeć się danym z XENON1T, byli uczeni z Uniwersytetu Jiao Tong z Szanghaju, na czele których stał Jianglai Liu. Chińczycy użyli do swoich badań detektora PandaX-II z Jinping Underground Laboratory w Syczuanie. Chociaż zawiera on nieco ponad 0,5 tony ksenonu (dla porównania, XENON1T korzysta z 3,2 tony), to uczeni z Państwa Środka prowadzili swoje badania dłużej, dzięki czemu uzyskali tylko o połowę danych mniej niż uczeni pracujący przy XENON1T.
      Naukowcy pracujący przy PandaX-II mają pewną przewagę. Dzięki przeprowadzonej w odstępie 3 lat kalibracji z użyciem metanu, są w stanie lepiej scharakteryzować sygnały generowane w ich urządzeniu przez tryt zanieczyszczający ksenon.
      Przeprowadzony przez nich eksperyment zwiększył prawdopodobieństwo, że XENEN1T dokonał rzeczywistego odkrycia. Wciąż nie wiadomo, czym jest to odkrycie. Ponadto Chińczycy nie byli w stanie z całą pewnością wykluczyć, że nie doszło do zanieczyszczenia.
      Obecnie w Chinach trwają prace nad zwiększeniem czułości PandaX-II. Masa urządzenia zostanie zwiększona do 6 ton, w tym masa samego ksenonu wyniesie 4 tony. Nowe urządzenie, PandaX-4%, rozpocznie pracę jeszcze w bieżącym roku. Również w bieżącym roku ma ruszyć zmodernizowany 8,3-tonowy XENOnT, a w USA rozpoczyna właśnie pracę 10-tonowy LUX-ZEPLIN.
      Dzięki nowym, większym i bardziej czułym detektorom powinniśmy w niedługim czasie dowiedzieć się, co tak naprawdę zarejestrował XENON1T.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...