Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Rak prostaty to obecnie jeden z dwóch najczęściej rozpoznawanych nowotworów złośliwych u mężczyzn. Zapadalność na raka gruczołu krokowego rośnie z wiekiem. To poważna choroba, jednak wcześnie wykryta jest uleczalna. Szybka, właściwa diagnostyka pozwala odpowiednio dobrać terapię i zwiększyć szansę pacjenta na przeżycie.

Najdokładniej zmiany nowotworowe powala zobrazować rezonans magnetyczny (MRI). Niestety, badanie raka prostaty za pomocą tej metody jest skomplikowane. Niezbędne jest badanie wielu cech nowotworu, co utrudnia i znacznie wydłuża interpretację wyniku. Każdy otrzymany obraz musi być przeanalizowany osobno. Diagnostyka ta jest skomplikowana i trudniejsza niż w przypadku większości nowotworów złośliwych. Otrzymane wyniki są oceniane według skali PI-RADS (Prostate Imaging-Reporting and Data System), która umożliwia rozróżnienie zmian istotnych klinicznie. Analiza ta wymaga specjalistycznej wiedzy radiologów, którzy stanowią w Polsce zaledwie ok. 2 proc. lekarzy, co dodatkowo wydłuża czas oczekiwania na badanie i właściwą diagnozę. Interpretacja wyników jest subiektywna i zauważalne są różnice pomiędzy specjalistami doświadczonymi a początkującymi. Badania wykazały, że radiolodzy różnie interpretują, czy potencjalna zmiana nowotworowa jest inwazyjna.

W Ośrodku Przetwarzania Informacji – Państwowym Instytucie Badawczym (OPI PIB) prowadzimy interdyscyplinarne badania, których wyniki mają praktyczne zastosowanie w wielu dziedzinach. Jednym z obszarów jest wykorzystanie najnowszych technologii IT w medycynie i ochronie zdrowia. Z naszych badań wynika, że sztuczna inteligencja może skutecznie usprawnić pracę lekarzy. Rezultaty są bardzo obiecujące i jestem przekonany, że także pomogą one innym naukowcom opracować nowoczesne narzędzia technologiczne, mające zastosowanie w diagnostyce nie tylko raka prostaty, ale także i innych chorób – mówi dr inż. Jarosław Protasiewicz, dyrektor Ośrodka Przetwarzania Informacji – Państwowego Instytutu Badawczego (OPI PIB).

Ograniczenie liczby bolesnych biopsji

Naukowcy z Laboratorium Stosowanej Sztucznej Inteligencji w OPI PIB opracowali platformę badawczą eRADS, która służy do standaryzacji opisów raportów medycznych. Narzędzie to pozwala obiektywnie ocenić istotność kliniczną zmiany na podstawie pięciostopniowej skali PI-RADS. Platforma umożliwia także zbieranie danych z badań, co w przyszłości pomoże stworzyć rozwiązania, które automatycznie będą szacowały cechy istotne klinicznie. W tym przypadku sztuczną inteligencję zastosowano do wspomagania procesów decyzyjnych.

Badacze OPI PIB przeprowadzili badania pilotażowe z udziałem 16 pacjentów, diagnozowanych przez dwóch radiologów podczas ich dyżuru w Centralnym Szpitalu Klinicznym MSWiA w Warszawie. Specjaliści ci różnili się stażem pracy w zawodzie. Ich celem była ocena rzetelności oraz wstępnej użyteczności klinicznej systemu eRADS. Wyniki badania pilotażowego są obiecujące. Oceny istotności klinicznej zmiany przez radiologów z wykorzystaniem narzędzia opracowanego przez naukowców OPI PIB są bardziej zgodne, niż gdy dokonują oni analizy bez użycia platformy. Zastosowanie eRADS pomaga zmniejszyć różnice między jakością diagnozy lekarzy doświadczonych i niedoświadczonych. Precyzyjna ocena zmian pozwoli znacznie ograniczyć liczbę pacjentów, którzy są wysyłani na biopsję. W przypadku badania prostaty wiąże się ona z dyskomfortem pacjenta. Polega na pobraniu materiału z kilku do kilkunastu wkłuć.

Sieci neuronowe zastąpią lekarzy?

W naszym laboratorium badaliśmy także wykorzystanie w diagnostyce raka prostaty innych obszarów sztucznej inteligencji. Analizowaliśmy zastosowanie narzędzi wykorzystujących uczenie maszynowe i głębokie. Naszym celem było porównanie otrzymanych wyników z diagnozami postawionymi przez doświadczonych i niedoświadczonych radiologów. Model predykcyjny istotności klinicznej zmian, oparty o narzędzia uczenia maszynowego, bazował na cechach obrazu (np. jednorodności) w badanych komórkach i ich otoczeniu. Uzyskaliśmy model trafnie klasyfikujący istotne klinicznie zmiany z prawdopodobieństwem 75 proc., co można porównać do diagnozy niedoświadczonego lekarza. Najbardziej obiecujące rezultaty otrzymaliśmy jednak z zastosowania wiedzy domenowej w architekturze sieci neuronowych. Opracowane modele dają lepszą jakość diagnozy zmian nowotworowych w porównaniu z ocenami niedoświadczonych i doświadczonych radiologów, stawiając trafną diagnozę z prawdopodobieństwem 84 proc. – mówi Piotr Sobecki, kierownik Laboratorium Stosowanej Sztucznej Inteligencji w OPI PIB.

Podsumowując, zastosowanie wiedzy domenowej w architekturze sieci neuronowych wpływa na szybkość uczenia modelu w przypadku diagnostyki raka prostaty. Analizowano efekt lokalizacji zmiany w prostacie i niezależnie od tego czynnika, wyniki otrzymane za pomocą modeli wykorzystujących sieci neuronowe były takie same lub lepsze od diagnozy postawionej przez doświadczonych radiologów. Potwierdziły to wyniki badania OPI PIB z użyciem danych historycznych od 6 radiologów oceniających 32 zmiany nowotworowe.

Sztuczna inteligencja wykorzystująca uczenie głębokie nie zastąpi jednak lekarzy, ale ułatwi im pracę i przyspieszy rozpoczęcie leczenia pacjenta. Wciąż jednak mało jest otwartych zbiorów baz danych, które można wykorzystać do usprawnienia algorytmów sztucznej inteligencji. Należy pamiętać, że modele te są tak dobre, jak dane, na których zostały wyuczone. Chodzi zarówno o ich liczebność, jak i o jakość.

1) W Polsce z powodu raka prostaty codziennie umiera około 15 pacjentów, a choroba ta jest diagnozowana u co 8. mężczyzny
2) Ważne jest szybkie wykrycie choroby i podjęcie odpowiedniego leczenia.
3) Niestety, diagnostyka raka prostaty jest skomplikowana i trudna w porównaniu do metod wykrywania innych nowotworów.
4) Badacze z Laboratorium Stosowanej Sztucznej Inteligencji w Ośrodku Przetwarzania Informacji – Państwowym Instytucie Badawczym (OPI PIB) wykorzystali sztuczną inteligencję (SI) do usprawnienia diagnostyki obrazowej raka prostaty.
5) Najlepsze rezultaty uzyskali z zastosowaniem sieci neuronowych. Jakość otrzymanej diagnozy była na poziomie doświadczonego lekarza specjalisty lub wyższa.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      W sytuacji, gdy dochodzi do wykrycia uwolnienia substancji niebezpiecznych, najważniejsze jest szybkie i precyzyjne zlokalizowanie źródła uwolnienia oraz przewidzenie kierunku rozchodzenia się substancji. Używane obecnie modele dyspersyjne wymagają bardzo dużych zasobów obliczeniowych. Mogą jednak zostać zastąpione przez modele bazujące na Sztucznych Sieciach Neuronowych, SSN (ang. Artificial Neutral Networks, ANN), co pozwoli na monitorowanie skażenia w czasie rzeczywistym. W badaniu możliwości wykorzystania takich modeli uczestniczą naukowcy z Departamentu Układów Złożonych NCBJ.
      Obszar odpowiadający części centralnego Londynu, będący podstawą do przygotowania danych dla SSN, jak również wykorzystany w eksperymencie DAPPLE (skrzyżowanie Marylebone Road i Gloucester Place, 51.5218N 0.1597W)
      Od kilku lat w Centrum Analiz Zagrożeń MANHAZ prowadzone są prace nad algorytmami umożliwiającymi lokalizację źródła skażenia, w oparciu o, pochodzące z sieci detektorów, dane na temat stężeń uwolnionej substancji. Głównym zadaniem istniejących we wszystkich miastach grup reagowania kryzysowego, jest szybkie odpowiadanie na wszelkie zagrożenia dla ludzi i środowiska. Podstawowym czynnikiem decydującym o powodzeniu lub niepowodzeniu danego działania jest czas reakcji.
      Obecnie różne substancje chemiczne są używane w większości dziedzin przemysłu, co sprawia, że transport i przechowywanie materiałów toksycznych wiąże się z ciągłym ryzykiem uwolnienia ich do atmosfery i do zajścia skażenia. Dużym wyzwaniem są sytuacje, w których czujniki rozmieszczone na terenie miasta zgłaszają niezerowe stężenie niebezpiecznej substancji, której źródło nie jest znane. W takich przypadkach ważne jest, aby system był w stanie w czasie rzeczywistym oszacować najbardziej prawdopodobną lokalizację źródła zanieczyszczenia, wyłącznie w oparciu o dane o stężeniu, pochodzące z sieci czujników.
      Algorytmy, które radzą sobie z zadaniem można podzielić na dwie kategorie. Pierwszą są algorytmy opierające się na podejściu wstecznym, czyli analizie problemu zaczynając od jego ostatniego etapu, ale są one dedykowane obszarom otwartym lub problemowi w skali kontynentalnej. Drugą kategorię stanowią algorytmy, które bazują na próbkowaniu parametrów odpowiedniego modelu dyspersji (parametrów takich, jak lokalizacja źródła), aby wybrać ten, który daje najmniejszą różnicę między danymi wyjściowymi, a rzeczywistymi pomiarami stężeń, wykonywanymi przez sieć detektorów. Podejście to sprowadza się do wykorzystania algorytmów próbkowania, w celu znalezienia optymalnych parametrów modelu dyspersji, na podstawie porównania wyników modelu i detekcji zanieczyszczeń.
      Ze względu na efektywność zastosowanego algorytmu skanowania parametrów, każda rekonstrukcja wymaga wielokrotnych uruchomień modelu. Rekonstrukcja w terenie zurbanizowanym, która jest głównym przedmiotem zainteresowania badaczy, wymaga zaawansowanych modeli dyspersji, uwzględniających turbulencje pola wiatru wokół budynków. Najbardziej niezawodne i dokładne są modele obliczeniowej dynamiki płynów (ang. Computational Fluid Dynamics, CFD). Stanowią one jednak bardzo wymagające obliczeniowo wyzwanie. Musimy zdawać sobie sprawę z tego, że aby znaleźć najbardziej prawdopodobne źródło skażenia, model dyspersji trzeba uruchomić dziesiątki tysięcy razy. Oznacza to, że użyty model musi być szybki, aby można go było zastosować w systemie awaryjnym, pracującym w czasie rzeczywistym. Zakładając na przykład, że średni czas potrzebny na wykonanie samych obliczeń modelu dyspersji w terenie zurbanizowanym wynosi 10 minut, pełna rekonstrukcja z jego wykorzystaniem będzie trudna do przeprowadzenia w dopuszczalnie krótkim czasie.
      Rozwiązaniem tego problemu, nad którym pracuje dr Anna Wawrzyńczak-Szaban z Centrum Analiz Zagrożeń MANHAZ w NCBJ, przy współpracy z Instytutem Informatyki UPH w Siedlcach, jest wykorzystanie w systemie rekonstrukcji sztucznej sieci neuronowej, zamiast modelu dyspersji, w terenie zurbanizowanym. Chodzi o to, by sztuczna sieć neuronowa była skuteczna w symulacji transportu zanieczyszczeń w powietrzu, na terenie zurbanizowanym. Jeśli to się powiedzie, SSN może działać jako model dyspersji w systemie lokalizującym w czasie rzeczywistym źródło skażenia. Podstawową zaletą SSN jest bardzo krótki czas odpowiedzi – opisuje dr Anna Wawrzyńczak-Szaban. Oczywiście SSN musi być wytrenowana w stałej topologii miasta, przy użyciu rzeczywistych warunków meteorologicznych z wykorzystaniem odpowiedniego i zwalidowanego modelu dyspersji. Proces ten wymaga wielu symulacji, służących jako zestawy danych treningowych dla SSN. Proces uczenia sieci SSN jest kosztowny obliczeniowo, ale po przeszkoleniu, metoda byłaby szybkim narzędziem do szacowania stężeń punktowych dla danego źródła zanieczyszczenia.
      W pracy opublikowanej przez naukowców1) przedstawiono wyniki trenowania sieci neuronowej w oparciu o dane, uczące rozprzestrzeniania się toksyn w powietrzu w centrum Londynu, wykorzystując domenę testową eksperymentu polowego DAPPLE2). Dane uczące SSN wygenerowano za pomocą modelu dyspersji Quick Urban & Industrial Complex (QUIC). Przetestowaliśmy różne struktury SSN, czyli liczby jej warstw, neuronów i funkcji aktywacji. Wykonane testy potwierdziły, że wyszkolona SSN może w wystarczającym stopniu symulować turbulentny transport toksyn, unoszących się w powietrzu na obszarze silnie zurbanizowanym – objaśnia dr Anna Wawrzyńczak-Szaban. Ponadto pokazaliśmy, że wykorzystując SSN można skrócić czas odpowiedzi systemu rekonstrukcji. Czas wymagany, przez prezentowaną w pracy SSN, do oszacowania trzydziestominutowych stężeń gazu w 196 000 punktów sensorowych wyniósł 3 s W przypadku modelu QUIC, czas został oszacowany jako co najmniej 300 s, co daje nam 100-krotne przyspieszenie obliczeń. Biorąc to pod uwagę, czas rekonstrukcji w rzeczywistej sytuacji awaryjnej może być krótki, co skutkuje szybką lokalizacją źródła zanieczyszczenia.
      W trakcie badań okazało się, że zapewnienie trenowanej SSN pełnej informacji prowadzi czasami do pewnych wyzwań obliczeniowych. Na przykład w pojedynczej symulacji rozproszenia toksyn w powietrzu, na obszarze miejskim, nawet 90% odczytów z czujników może mieć wartość zerową. Prowadzi to do sytuacji, w której postać docelowa SSN obejmuje kilka procent wartości dodatnich i większość zer. W efekcie SSN skupia się na tym, czego jest więcej – na zerach, co sprawia, że nie dostosowuje się do szukanych elementów badanego problemu. Uwzględniając zerową wartość koncentracji w danych treningowych, musimy zmierzyć się z kilkoma pytaniami: jak uwzględnić zero? Jak przeskalować dany przedział, aby „ukryć” zera? Czy w ogóle uwzględniać zera? Czy ograniczyć ich liczbę? – podkreśla dr Wawrzyńczak-Szaban.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele trapiących nas chorób ma związek z nieprawidłowo działającymi komórkami. Być może udało by się je skuteczniej leczyć, ale najpierw naukowcy muszą szczegółowo poznać budowę i funkcjonowanie komórek. Dzięki połączeniu sztucznej inteligencji oraz technik mikroskopowych i biochemicznych uczeni z Wydziału Medycyny Uniwersytetu Kalifornijskiego w San Diego (UCSD) dokonali ważnego kroku w kierunku zrozumienia komórek ludzkiego organizmu.
      Dzięki mikroskopom możemy dojrzeć struktury komórkowe wielkości pojedynczych mikrometrów. Z kolei techniki biochemiczne, w których wykorzystuje się pojedyncze proteiny, pozwalają na badanie struktur wielkości nanometrów, czyli 1/1000 mikrometra. Jednak poważnym problemem w naukach biologicznych jest uzupełnienie wiedzy o tym, co znajduje się w komórce pomiędzy skalą mikro- a nano-. Okazuje się, że można to zrobić za pomocą sztucznej inteligencji. Wykorzystując dane z wielu różnych źródeł możemy ją poprosić o ułożenie wszystkiego w kompletny model komórki, mówi profesor Trey Ideker z UCSD.
      Gdy myślimy o komórce, prawdopodobnie przyjdzie nam do głowy schemat ze szkolnych podręczników do biologii, z jego mitochondrium, jądrem komórkowym i retikulum endoplazmatycznym. Jednak czy jest to pełny obraz? Zdecydowanie nie. Naukowcy od dawna zdawali sobie sprawę z tego, że więcej nie wiemy niż wiemy. Teraz w końcu możemy przyjrzeć się komórce dokładniej, dodaje uczony. Ideker i Emma Lundberg ze szwedzkiego Królewskiego Instytutu Technicznego stali na czele zespołu, który jest autorem najnowszego osiągnięcia.
      Wykorzystana przez naukowców nowatorska technika nosi nazwę MuSIC (Multi-Scale Integrated Cell). Podczas pilotażowych badań MuSIC ujawniła istnienie około 70 struktur obecnych w ludzkich komórkach nerek. Połowa z nich nie była dotychczas znana. Zauważono np. grupę białek tworzących nieznaną strukturę. Po bliższym przyjrzeniu się naukowcy stwierdzili, że wiąże ona RNA. Prawdopodobnie struktura ta bierze udział w splicingu, czyli niezwykle ważnym procesie składania genu.
      Twórcy MuSIC od lat próbowali stworzyć mapę procesów zachodzących w komórkach. Tym, co różni MuSIC od podobnych systemów jest wykorzystanie technik głębokiego uczenia się do stworzenia mapy komórki bezpośrednio z obrazów mikroskopowych. System został wyćwiczony tak, by bazując na dostępnych danych stworzył model komórki. Nie mapuje on specyficznych struktur w konkretnych lokalizacjach, tak jak mamy to w schematach uczonych w szkole, gdyż niekoniecznie zawsze znajdują się one w tym samym miejscu.
      Na razie w ramach badań pilotażowych uczeni opracowali za pomocą MuSIC 661 protein i 1 typ komórki. Następnym celem badań będzie przyjrzenie się całej komórce, a później innym rodzajom komórek, komórkom u różnych ludzi i u różnych gatunków zwierząt. Być może z czasem będziemy w stanie lepiej zrozumieć molekularne podstawy różnych chorób, gdyż będziemy mogli wyłapać różnice pomiędzy zdrowymi a chorymi komórkami, wyjaśnia Ideker.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Hormony z grupy androgenów mogą wpływać na rozwój raka prostaty. Dlatego też w leczeniu tej choroby stosuje się metody zmniejszenia produkcji androgenów metodami operacyjnymi (kastracja) lub farmakologicznymi (leczenie hormonalne). Nowotwór może jednak zyskać oporność na terapie hormonalne. Jak się okazuje, mogą być za to odpowiedzialne bakterie mikrobiomu.
      Naukowcy z londyńskiego Institute of Cancer Research oraz Institute of Oncology Research w Bellizonie i ETH Zurich wykorzystali myszy oraz próbki pobrane od ludzi do zbadania roli żyjących w jelitach mikroorganizmów w rozwoju raka prostaty. Gdy u myszy cierpiących na nowotwór prostaty usunięto cały mikrobiom, okazało się, że choroba postępuje wolniej, a oporność na terapie hormonalne pojawia się później. Naukowcy odkryli też, że gdy myszy o niskim poziomie androgenu, u której nie rozwinęła się jeszcze odporność na leczenie hormonalne, przeszczepi się kał od myszy z odpornym na terapie rakiem prostaty, dochodzi do przyspieszenia postępów choroby.
      Bliższa analiza wykazała, że u pacjentów z opornym na kastrację rakiem gruczołu krokowego dochodzi do wzbogacenia bakterii komensalnych – a zatem bakterii chroniących nas przed patogenami – o gatunki zdolne do przekształcania prekursorów androgenów w aktywne androgeny. Hormony te trafiają następnie do układu krążenia i, jak się wydaje, wspomagają rozwój nowotworu i pojawienie się oporności na leczenie
      Nasze badania wykazały, że po zapoczątkowaniu hormonalnego leczenia raka prostaty „dobre mikroorganizmy” mogą prowadzić do zwiększenia produkcji androgenów. Z kolei androgeny mogą podtrzymywać rozwój guza i prowadzić do pojawienia się oporności na leczenie, mówi profesor Johann de Bono z Londynu. To pierwsze badania, które ujawniły istnienie mechanizmu, za pomocą którego mikrobiom jelit może napędzać rozwój nowotworu prostaty i pojawienie się oporności na terapie polegające na zmniejszeniu ilości androgenów, dodaje Kristian Helin, dyrektor Institute of Cancer Research.
      Dzięki zrozumieniu, jak pożyteczne bakterie, które odgrywają ważną rolę w utrzymaniu nas w dobrym zdrowiu, mogą wpływać na metabolizm hormonów u mężczyzn cierpiących na raka prostaty, możemy opracować nowe strategie leczenia raka prostaty. Być może do skutecznej walki z tą chorobą konieczne okaże się odpowiednie manipulowanie składem mikrobiomu.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytmy sztucznej inteligencji mogą skrócić czas badań cytologicznych i tym samym pozwolić na szybsze diagnozowanie nowotworów u zwierząt. Narzędzie CyfroVet powstaje właśnie w Akademickim Centrum Komputerowym CYFRONET AGH.
      Jak podano w przesłanym PAP komunikacie, obecnie czas oczekiwania na wynik badania cytologicznego wynosi od kilku dni do 2 tygodni, a jego cena to około kilkaset złotych.
      Naukowcy z AHG przekonują, że istnieje możliwość znaczącego skrócenia tego czasu poprzez zastosowanie zautomatyzowanego systemu. Narzędzie takie pozwala na wykonanie zdjęcia próbki materiału cytologicznego, a następnie przeanalizowanie go z wykorzystaniem algorytmów sztucznej inteligencji. Dzięki temu można ocenić zmiany patologiczne w preparacie.
      Dyrektor ACK Cyfronet AGH prof. Kazimierz Wiatr wskazał, że wyzwaniem jest zgromadzenie odpowiedniej liczby zdjęć preparatów cytologicznych o różnorodnym charakterze, które pozwolą na wytrenowanie algorytmu sztucznej inteligencji do rozpoznawania zmian nowotworowych z dużą dokładnością.
      Czasochłonny jest również proces oznaczania tzw. danych uczących, który wiąże się z ręcznym oznaczeniem zmian patologicznych przez lekarza eksperta oraz ich weryfikacji przez dyplomowanego patologa.
      Obecnie w ramach prac prowadzonych w projekcie CyfroVet opracowane zostało rozwiązanie pozwalające na klasyfikację wybranych zmian patologicznych z wykorzystaniem sieci neuronowych. Opracowane zostały również architektury sieci pozwalające na szczegółową detekcję pojedynczych komórek nowotworowych, która pozwala na bardziej dokładną analizę zachodzących zmian patologicznych. Zaprojektowane rozwiązanie pozwala uzyskać dokładności klasyfikacji na poziomie nawet 96 proc. System działa dla wybranych trzech zmian nowotworowych: mastocytomy, histiocytomy oraz chłoniaka – wskazał inicjator prac dr hab. inż. Maciej Wielgosz.
      W ostatnim czasie zespół prowadzi również badania nad holistycznym podejściem do diagnostyki weterynaryjnej, które dotyczy nie tylko zbadania zmian na zdjęciach preparatów cytologicznych pod mikroskopem, ale również informacji o zwierzęciu zebranych przez weterynarza w trakcie wstępnego wywiadu. Wywiad taki dotyczy wieku zwierzęcia, chorób czy lokalizacji zmian na powierzchni skóry. Są to tak zwane dane kategoryczne, które mogą w znaczący sposób wpłynąć na podjęcie przez lekarza decyzji diagnostycznej. Uwzględnienie tych danych w algorytmie sztucznej inteligencji pozwoli potencjalnie podnieść skuteczność jego działania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nasze badania wykazały, że u ozdrowieńców w ciągu sześciu miesięcy od zdiagnozowania COVID-19 ryzyko zgonu jest większe i rośnie wraz z cięższym przebiegiem choroby, mówi profesor Ziyad Al-Aly. Do takich wniosków naukowcy z Washington University of St. Louis doszli na podstawie analizy danych ponad 87 000 osób, które chorowały na COVID-19 i grupy kontrolnej składającej się z 5 000 000 osób z federalnej bazy danych. To najszerzej zakrojone badania nad długoterminowymi skutkami COVID-19.
      Nie jest przesadą stwierdzenie, że długoterminowe skutki COVID-19 będą w przyszłości stanowiły poważny kryzys zdrowotny w USA. Biorąc pod uwagę fakt, że chorowało ponad 30 milionów osób, a długoterminowe skutki choroby są znaczące, efekty pandemii będziemy odczuwali przez lata, a nawet dekady. Lekarze muszą lepiej przyglądać się osobom, które przechorowały COVID-19, dodaje uczony.
      Badacze wykazali, że po przetrwaniu początkowej infekcji COVID-19 – za taki stan uznano okres rozpoczynający się 30 dni po diagnozie – ryzyko zgonu w ciągu kolejnych 6 miesięcy jest o 60% wyższe niż w reszcie populacji. Okazało się, że w tym czasie liczba zgonów wśród ozdrowieńców jest wyższa o 8 osób na 1000. Znacznie gorzej jest w grupie, która była na tyle chora, że w związku z COVID-19 trafiła do szpitala. Tam umiera aż 29 osób na 1000 więcej, niż w całej populacji.
      Te zgony, spowodowane długoterminowymi skutkami infekcji, niekoniecznie są zaliczane do zgonów z powodu COVID-19. Wydaje się zatem, że obecnie podawana liczba zgonów, do których zalicza się jedynie zgony bezpośrednio po infekcji, to wierzchołek góry lodowej, dodaje Al-Aly.
      Na potrzeby badań przeanalizowano dane zdrowotne 73 435 osób z bazy danych Departamentu ds. Weteraów (VHA). Wszystkie te osoby przeszły COVID-19 ale żadna z nich nie była z tego powodu hospitalizowana. Dane te porównano z informacjami o niemal 5 milionach osób z bazy VHA, u których nie zdiagnozowano COVID-19. Ponadto, by lepiej zrozumieć ciężki przebieg COVID-19 naukowcy porównali też informacje o 13 654 osobach, które były hospitalizowane z powodu koronawirusa, z danymi 13 997 osób hospitalizowanych z powodu sezonowej grypy. Wszyscy pacjenci przeżyli pierwszych 30 dni od infekcji,a ich losy były śledzone przez kolejnych 6 miesięcy.
      W trakcie analizy potwierdzono, że mimo iż COVID-19 początkowo atakuje układ oddechowy, to wirus może wpłynąć niemal na każdy organ. Po szczegółowej analizie 379 przypadków, 380 klas przepisanych leków i 62 testów laboratoryjnych, badacze zauważyli, że wirus SARS-CoV-2 ma wpływ na cały organizm i wymienili długoterminowe skutki jego działalności, które były widoczne po ponad sześciu miesiącach od diagnozy.
      I tak stwierdzono, że COVID-19 pozostawia długotrwałe skutki w następujących elementach organizmu:
      – układzie oddechowym (długotrwały kaszel, krótki oddech, niski poziom tlenu we krwi),
      – układzie nerwowym (wylewy, bóle głowy, problemy z pamięcią, problemy ze smakiem i węchem),
      – zdrowiu umysłowym (depresja, problemy ze snem, niepokój, nadużywanie różnych substancji),
      – układzie metabolicznym (cukrzyca, otyłość, wysoki poziom cholesterolu),
      – układzie krążenia (ostre zespoły wieńcowe, uszkodzenia serca, palpitacje, nierównomierny rytm),
      - nerkach (ciężkie uszkodzenie nerek, chroniczne uszkodzenie nerek, mogące prowadzić do konieczności dializowania),
      – układzie krwionośnym (zakrzepy w nogach i płucach),
      – skórze (wysypka, utrata włosów),
      – układzie mięśniowo-szkieletowym (bóle stawów, osłabienie mięśni),
      – ogólnym stanie zdrowia (anemia, zmęczenie, ogólne złe samopoczucie).
      Żaden z badanych nie wykazywał wszystkich tych objawów, jednak u wielu pojawiło się po kilka z nich.
      Wśród analizowanych przypadków osób, które trafiły do szpitala, ci, którzy byli hospitalizowani z powodu COVID-19 radzili sobie zdecydowanie gorzej, niż ci, których hospitalizowano z powodu grypy. Ryzyko zgonu wśród hospitalizowanych ozdrowieńców z COVID-19 było o 50% wyższe niż u hospitalizowanych ozdrowieńców z grypy. Ozdrowieńcy z COVID-19 ze znacznie większym prawdopodobieństwem wykazywali też długoterminowe negatywne skutki choroby.
      W porównaniu z grypą COVID-19 znacznie częściej pozostawia ślady w organizmie, zarówno jeśli chodzi o rozmiary ryzyka jak i skutki dla organizmu. Długoterminowe skutki COVID-19 zdecydowanie odbiegają od typowych objawów przechorowania zakażenia wirusem. Zarówno ryzyko uszkodzeń i śmierci, jak i zakres organów i układów dotkniętych chorobą dalece wykraczają poza to, co obserwujemy w przypadku innych wirusowych chorób układu oddechowego, w tym grypy, wyjaśnia Al-Aly.
      Uczeni dodają, że niektóre z długoterminowych objawów – jak np. kaszel czy krótki oddech – mogą z czasem ustępować. Inne zaś mogą się pogarszać. Będziemy nadal śledzić losy pacjentów, by lepiej zrozumieć wpływ wirusa na czas po pierwszych 6 miesiącach od infekcji. Na razie minął nieco ponad rok od wybuchu pandemii, zatem niektóre konsekwencje zachorowania mogły się jeszcze nie ujawnić, stwierdzają naukowcy.
      W przyszłych analizach tej samej grupy pacjentów naukowcy chcą sprawdzić, czy istnieje różnica w długoterminowych skutkach przechorowania COVID-19 w zależności od wieku, płci i rasy.
      Szczegóły badań zostały opublikowane na łamach Nature.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...