Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Wewnątrz Ziemi tkwią pozostałości innej planety?

Recommended Posts

Naukowcy są niemal pewni, że nasza planeta zyskała Księżyc po tym, jak przed 4,5 miliardami lat w proto-Ziemię uderzyła inna planeta, Theia. Nie wiemy, co się stało z Theią, czy po uderzeniu oddaliła się od powstającej Ziemi czy też obie planety się połączyły. Qian Yuan i jego koledzy z Arizona State University nie tylko sądzą, że doszło do połączenia, ale że resztki Thei tkwią we wnętrzu Ziemi, a oni wiedzą, gdzie ich szukać.

Pierwsze szacunki dotyczące Thei mówiły, że była to planeta wielkości mniej więcej Marsa. Jednak ostatnio pojawiają się badania, których autorzy twierdzą, że była czterokrotnie większa – wielkości proto-Ziemi. Autorzy obu tych modeli zgadzają się w jednym, że do połączenia jąder Ziemi i Thei doszło błyskawicznie, w ciągu godzin.

Płaszcz Ziemi czyli położona między jądrem a skorupą warstwa o grubości około 2900 kilometrów, nie jest jednorodny. Około 8% jest wyraźnie inna od reszty. Ta inna część tworzy dwa olbrzymie stosy w pobliżu graniczy płaszcza i jądra. Stosy te zwane są wielkimi prowincjami obniżonych prędkości fal poprzecznych (Large Low Shear Velocity Provinces). Nazwano je tak, gdyż w miejscach tych fale sejsmiczne podróżują nawet 2% wolniej. Jedna z tych prowincji znajduje się pod Afryką, druga zaś pod Pacyfikiem.

Część naukowców sądzi, że spowalnianie fal w LLSVP wynika z faktu, że mają one wyższą temperaturę niż reszta płaszcza. Yuan i jego koledzy uważają, że nie tylko są cieplejsze, ale również gęstsze i mają inny skład.

Yuan mówi, że na pomysł, iż LLSVP mogą być pozostałościami Thei wpadł podczas wykładu profesora Miszy Zołotowa, który mówił, iż najsłabszym elementem hipotezy o zderzeniu z Theią jest brak bezpośrednich dowodów na jej istnienie. Wówczas Yuan zaczął się zastanawiać, czy pozostałościami po niej nie mogą być LLSVP.

Uczony dokonał prostych obliczeń. Najpierw porównał łączną wielkość LLSVP z płaszczem Marsa. Okazało się, że ich wielkość to 80–90 procent płaszcza Czerwonej Planety. Następnie do tej wielkości dodał wielkość Księżyca. Okazało się, że płaszcz Marsa jest niemal identycznej wielkości co LLSVP dodane do wielkości Księżyca. Yuan sięgnął do pracy geochemika Sujoya Mukhopadhyaya z 2012 roku, który na podstawie izotopów gazów szlachetnych z islandzkich bazaltów wykazał, iż w ziemskim płaszczu istnieją dwa źródła takich izotopów i że liczą sobie one to najmniej 4,5 miliarda lat. Są więc starsze od Księżyca. To pasowało do naszej hipotezy, mówi Yuan. Jednym z tych źródeł mogą być pozostałości płaszcza Thei znajdujące się w płaszczu Ziemi.

Następnie zwrócił się o pomoc do astrofizyka Stevena Descha, który niedawno opublikował pracę nt. prawdopodobnego składu Thei. Wynikało z niej, że płaszcz Thei był bogatszy w tlenek żelaza niż płaszcz Ziemi. To oznacza, że był gęstszy, zatem po zderzeniu mógł zatonąć w płaszczu Ziemi. Yuan i Desch przeprowadzili nowe obliczenia, w których założyli, że płaszcz Thei był nieco bardziej gęsty, niż wynikało to z wcześniejszych obliczeń Descha. Okazało się, że gdyby tak było, to po zderzeniu powstałaby jedna globalna warstwa, a nie dwa stosy. To sugerowało, że pierwotne obliczenia Descha są właściwe.

Yuan podkreśla, że to hipoteza. Proponujemy ją po raz pierwszy. To coś nowego. Uczony wyraził nadzieję, że inni naukowcy będą chcieli sprawdzić tę hipotezę i poszukają dowodów, na jej potwierdzenie lub obalenie. Dodaje, że kolejnym logicznym krokiem badań byłoby porównanie składu izotopowego LLSVP ze składem izotopowym Księżyca.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astronauci z misji Apollo przywieźli próbki księżycowej gleby. Była to część wizjonerskiego planu, w ramach którego regolit trafił na Ziemię i został zapieczętowany, by w przyszłości mogli go zbadań naukowcy dysponujący nowoczesnymi narzędzi. Teraz, 50 lat później, próbki z Księżyca zostały użyte do uprawy roślin. Pierwszą rośliną wyhodowaną na księżycowym gruncie jest rzodkiewnik pospolity.
      To krytyczne badania dla długotrwałej załogowej eksploracji kosmosu, gdyż będziemy potrzebowali zasobów z Księżyca i Marsa, by pozyskać żywność dla astronautów żyjących i pracujących w dalszych regionach kosmosu, mówi Bill Nelson, dyrektor NASA. To również przykład prowadzonych przez NASA badań, które można wykorzystać do usprawnienia rolnictwa na Ziemi. Pozwalają nam one bowiem zrozumieć, jak rośliny mogą poradzić sobie w niekorzystnych warunkach w regionach, gdzie brakuje żywności, dodaje.
      Pierwsze pytanie, które zadali sobie autorzy najnowszych badań, brzmiało: czy rośliny mogą rosnąć na regolicie. Okazało się, że tak. Co prawda nie rosły tak dobrze, jak na Ziemi, nie dorównywały też roślinom stanowiącym grupę kontrolną, które hodowano na popiołach wulkanicznych, ale rosły.
      W ramach kolejnych badań uczeni chcą zaś odpowiedzieć na drugie pytanie: w jaki sposób może to pomóc podczas długotrwałego pobytu ludzi na Księżycu.
      Żeby badać dalsze obszary kosmosu i dowiedzieć się więcej o Układzie Słonecznym, powinniśmy korzystać z zasobów Księżyca, żebyśmy nie musieli zabierać wszystkiego ze sobą z Ziemi. Chcielibyśmy uprawiać rośliny na Księżycu. Nasze badania na Ziemi są krokiem w tym kierunku, wyjaśnia Jacob Bleacher, który pracuje przy programie Artemis na stanowisku Chief Exploration Scientist.
      Naukowcy użyli próbek przywiezionych w ramach misji Apollo 11, 12 i 17. Na każdą z roślin przypadał zaledwie gram regolitu. Naukowcy dodali do księżycowej gleby wodę i wsadzili nasiona. Codziennie dodawali też nawóz. Po dwóch dniach wszystkie nasiona wykiełkowały. "Wszystko wykiełkowało! Byliśmy niesamowicie zaskoczeni. Każda roślina – te z regolitu i grupy kontrolnej – wyglądała tak samo do mniej więcej szóstego dnia", mówi profesor Anna-Lisa Paul z Wydziału Nauk Ogrodniczych University of Floryda.
      Po sześciu dniach stało się jednak jasne, że rośliny rosnące na regolicie nie są tak silne, jak grupa kontrolna rosnąca na popiele wulkanicznym. Te z regolitu rosły wolniej, miały słabiej rozbudowany system korzeniowy, niektórym słabiej rosły liście i pojawiło się na nich czerwonawe zabarwienie.
      Po 20 dniach, na krótko przed kwitnięciem, rośliny zebrano i zbadano ich RNA. Sekwencjonowanie RNA pozwoliło na określenie wzorców ekspresji genów. Okazało się, że u roślin z regolitu dochodziło do takiej ekspresji genów, jaką obserwowano u rzodkiewnika pospolitego w eksperymentach laboratoryjnych, w których rośliny poddawano czynnikom stresowym, jak zasolona gleba lub gleba zawierająca metale ciężkie.
      Rośliny reagowały też różnie w zależności od próbki, w której rosły. Te z próbek zebranych przez Apollo 11 były najsłabsze. Pamiętajmy, że każda z misji zbierała próbki regolitu z innego miejsca.
      Eksperyment stanowi przyczynek do zadania sobie kolejnych pytań. Czy możliwe jest wprowadzenie takich zmian genetycznych w roślinach, by lepiej radziły sobie w księżycowej glebie? Czy regolit z różnych miejsc Księżyca lepiej lub gorzej nadaje się pod uprawy? Czy badania księżycowego regolitu powiedzą nam coś o regolicie marsjańskim i możliwości uprawy roślin na Marsie? Na wszystkie te badania naukowcy chcieliby w przyszłości poznać odpowiedź.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po 50 latach NASA otwiera jedną z nienaruszonych dotychczas próbek księżycowego gruntu zebranych w czasie misji Apollo. Jej badania prowadzone są w ramach programu Artemis, powrotu człowieka na Srebrny Glob. Zrozumienie historii i ewolucji Księżyca w miejscach lądowania misji Apollo pozwoli nam przygotować się na próbki, które zostaną zebrane w miejscach lądowania misji Artemis, powiedział Thomas Zurbuchen, dyrektor Dyrektoriatu Misji Naukowych NASA.
      Otwierana właśnie próbka to ANGSA 73001, zebrana w grudniu 1972 roku przez Eugene'a Cernana i Harrisona Schmitta, uczestników misji Apollo 17. Pochodzi ona z doliny Taurus-Littrow. Pojemnik z zebranym materiałem został następnie zapieczętowany jeszcze na Księżycu w warunkach próżniowych. To jedna z dwóch próbek, które zostały zabezpieczone w ten sposób przed zabraniem ich na Ziemię. I pierwsza z otwartych. Druga partia zebranego wówczas materiału została zabezpieczone w sposób standardowy i oznaczona numerem 73002. Otwarto ją w roku 2019, a badania ujawniły interesujący wzorzec ziaren. Próbka ANGSA 73001 była przez ostatnich 50 lat przechowywana w specjalnej tubie próżniowej w kontrolowanym środowisku.
      Teraz uczeni chcą zbadać 73001. Podczas jej zbierania na Księżycu panowały niezwykle niskie temperatury, więc naukowcy mają nadzieję, że w próbce zachowały się substancje lotne. Ilość gazów w próbce jest prawdopodobnie bardzo mała. Jeśli uda się je odzyskać, uczeni będą chcieli zbadać je za pomocą nowoczesnych metod spektrometrii mas. Są one obecnie niezwykle czułe. Ponadto specjaliści z NASA będą mogli też podzielić gaz na mniejsze porcje i dostarczyć je różnym zespołom naukowym, prowadzącym inne rodzaje badań.
      Cały zaplanowany na wiele miesięcy proces otwierania próbki rozpoczął się 11 lutego. Najpierw ostrożnie otwarto tubę próżniową zawierającą pojemnik z próbką. W tubie nie stwierdzono obecności gazów, co daje nadzieję, że pojemnik pozostał szczelny. Przed dwoma tygodniami, 23 lutego, rozpoczęto zaś kilkutygodniowy proces powolnego przebijania pojemnika z próbką i zbierania znajdujących się tam gazów. Gdy gazy zostaną zebrane, naukowcy rozpoczną wydobywanie z pojemnika próbek skał i gleby.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Reintrodukcja bobrów, niedźwiedzi czy żubrów znacząco poprawiłaby stan światowych ekosystemów. Zamówiony przez ONZ raport wykazał, że przywrócenie dużych ssaków może pomóc w walce z ociepleniem klimatu, poprawi stan zdrowia ekosystemów i przywróci bioróżnorodność. By osiągnąć ten cel w skali świata wystarczy reintrodukcja zaledwie 20 gatunków, których historyczne zasięgi zostały dramatycznie zredukowane przez człowieka.
      Jeśli pozwolimy powrócić tym zwierzętom, to dzięki ich obecności pojawią się warunki, które z czasem spowodują, że gatunki te pojawią się na 1/4 powierzchni planety, a to z kolei rozszerzy zasięgi innych gatunków i odbuduje ekosystemy, dzięki czemu zwiększy się ich zdolność do wychwytywania i uwięzienia węgla atmosferycznego.
      Przywracanie gatunków nie jest jednak proste. Pojawia się bowiem zarówno pytanie, który z historycznych zasięgów gatunku należy uznać za pożądany. Niektórzy obawiają się też reintrodukcji dużych drapieżników, jak np. wilki, twierdząc, że niesie to ze sobą zagrożenie dla ludzi i zwierząt hodowlanych. Badania pokazują jednak, że duże drapieżniki, wpływając na roślinożerców, doprowadzają do zwiększenia zarówno pokrywy roślinnej, jak i innych gatunków. Z kolei przywracanie historycznych zasięgów roślinożerców powoduje, że roznoszą oni nasiona, pomagają w obiegu składników odżywczych oraz zmniejszają zagrożenie pożarowe poprzez wyjadanie roślinności.
      Autorzy najnowszych badań postanowili sprawdzić, gdzie przywrócenie dużych ssaków przyniosłoby największe korzyści i w jaki sposób można to osiągnąć. Okazało się, że wystarczy reintrodukcja 20 gatunków – 13 roślinożerców i 7 drapieżników – by na całej planecie odrodziła się bioróżnorodność. Te 20 gatunków to niewiele jak na 298 gatunków dużych ssaków żyjących na Ziemi.
      Badania wykazały, że obecnie jedynie w 6% obszarów zasięg dużych ssaków jest taki, jak przed 500 laty. Okazuje się również, że tylko w odniesieniu do 16% planety można stwierdzić, że znajdują się tam gatunki ssaków, na których zasięg nie mieliśmy większego wpływu.
      Naukowcy przyjrzeli się następnie poszczególnym regionom, by określić, ile pracy trzeba włożyć, by przywrócić w nich bioróżnorodnośc. Okazało się, że w większości Azji północnej, północnej Kanady oraz w częściach Ameryki Południowej i Afryki wystarczyłoby wprowadzić jedynie po kilka gatunków dużych ssaków, by przywrócić bioróżnorodność z przeszłości.
      I tak Europie przywrócenie bobra, wilka, rysia, renifera i żubra pozwoliłoby na powrót bioróżnorodności w 35 regionach, w których gatunki te zostały wytępione. Podobnie jest w Afryce, gdzie reintrodukcja hipopotama, lwa, sasebiego właściwego, likaona i geparda doprowadziłaby do dwukrotnego zwiększenia obszarów o zdrowej populacji ssaków w 50 ekoregionach. W Azji, po reintrodukcji tarpana dzikiego oraz wilka w Himalajach doszłoby do zwiększenia zasięgów zdrowych populacji o 89% w 10 ekoregionach. Z kolei w Ameryce Północnej do znacznego poprawienia stanu ekosystemów wystarczyłaby reintrodukcja niedźwiedzia brunatnego, bizona, rosomaka oraz niedźwiedzia czarnego.
      Reintrodukcja gatunków miałaby olbrzymie znaczenie nie tylko dla ekosystemu, ale i dla uratowania ich samych. Na przykład jednym ze zidentyfikowanych 20 kluczowych gatunków jest gazelka płocha, występująca na Saharze. Obecnie to gatunek krytycznie zagrożony, na świecie pozostało zaledwie około 200–300 osobników. Największym zagrożeniem dla niej są zaś działania człowieka – polowania i utrata habitatów.
      Przywrócenie wielu ze wspomnianych gatunków nie będzie jednak proste. Trzeba by np. zabronić polowań na nie i zapobiegać dalszej utracie habitatu. Ponadto wiele z ekoregionów poprzedzielanych jest granicami państwowymi, więc przywracanie gatunków i bioróżnorodności wymagałoby współpracy międzynarodowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fragment rakiety SpaceX uderzy w marcu w Księżyc, przewidują eksperci. Rakieta została wystrzelona w 2015 roku i wyniosła na orbitę satelitę NASA Deep Space Climate Observatory (DSCOVR). Po wypełnieniu misji jej drugi stopień znajdował się na chaotycznej orbicie. Astronom Bill Gray obliczył, że obecnie znajduje się on na kursie kolizyjnym ze Srebrnym Globem. Już w styczniu ten kosmiczny śmieć przeleciał blisko Księżyca, co zmieniło jego orbitę, mówi Gray.
      Uczony pracuje nad Project Pluto, oprogramowaniem, które pozwala na obliczanie trajektorii asteroidów i innych obiektów. Program ten jest używany w wielu finansowanych przez NASA projektach.
      Niedługo po tym, gdy okazało się, że fragment rakiety przeleciał w pobliżu Księżyca, Gray obliczył, że 4 marca rozbije się on po jego niewidocznej stronie, pędząc z prędkością 9000 km/h. Obliczenia Graya zostały potwierdzone obserwacjami astronomów-amatorów. Śledzę kosmiczne odpadki od około 15 lat. Tutaj będziemy mieli do czynienia z pierwszym przypadkiem, w którym stworzony przez człowieka obiekt uderzy w Księżyc w sposób niezaplanowany, mówi Gray.
      Astronom Jonathan McDowell nie wyklucza jednak, że do takich zdarzeń już dochodziło. W latach 60., 70. i 80. ludzkość pozostawiła na odległych orbitach okołoziemskich co najmniej 50 obiektów, których nie śledziliśmy. Teraz obserwujemy niektóre z nich. Ale wielu nie możemy znaleźć, nie ma ich tam, gdzie je zostawiliśmy, dodaje.
      Nie będziemy mogli obserwować w czasie rzeczywistym upadku fragmentu rakiety SpaceX na Księżyc. Jednak ważący cztery tony odpadek wybije w powierzchni Srebrnego Globu krater, który będzie można zauważyć za pomocą należącego do NASA Lunar Reconnaissance Orbitera lub indyjskeigo Chandrayaana-2. Jego zbadanie powie nam więcej o geologii Księżyca.
      Dotychczas ludzie celowo rozbijali obiekty na Srebrnym Globie. Robiono tak w ramach misji Apollo, by testować sejsmometry. W 2009 roku NASA celowo skierowała jeden ze stopni rakiety nośnej na biegun południowy Księżyca, szukając tam wody.
      Zdecydowana większość rakiet nie dociera jednak tak daleko. SpaceX odzyskuje pierwszy stopień rakiety nośnej, a drugi kieruje w stronę Ziemi, by rozpadł się i spłonął w atmosferze. Jednak specjaliści spodziewają się, że w przyszłości coraz więcej śmieci będzie opadało na powierzchnię Księżyca. USA i Chiny przygotowują się bowiem do coraz bardziej intensywnych prac na orbicie Srebrnego Globu i na jego powierzchni. Stany Zjednoczone już teraz planują budowę stacji na orbicie Księżyca.
      Specjaliści coraz częściej apelują o sprzątanie kosmicznych śmieci. Zwracają też uwagę, że odpadów pozostawionych na dalszych orbitach nikt nawet nie śledzi. W tej chwili nikt się tym nie zajmuje. Myślę, że najwyższy czas, by uregulować tę kwestię, mówi McDowell.
      Kosmiczne śmieci już stanowią poważny problem na niskich orbitach. Tylko należący do amerykańskiego Departamentu Obrony Space Surveillance Network śledzi obecnie ponad 27 000 odpadków krążących ponad naszymi głowami. A to tylko duże odpadki. Szacuje się, że na w pobliżu Ziemi krąży też około 500 tysięcy odpadków wielkości około centymetra oraz 100 milionów fragmentów wielkości pomiędzy milimetrem a centymetrem.
      Większość z tych pozostałości jest zbyt małych, by je śledzić. Są jednak na tyle duże i poruszają się z tak olbrzymią prędkością – na niskiej orbicie okołoziemskiej wynosi ona ponad 25 000 km/h – że stanowią coraz poważniejsze zagrożenie dla misji kosmicznych. We wrześniu 2020 roku na Międzynarodowej Stacji Kosmicznej ogłoszono alarm i została ona przesunięta, by uniknąć zderzenia z takim odpadkiem. To nie był zresztą pierwszy raz, gdy na ISS przeprowadzano taką operację.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Historia naszej planety, to historia 4,5 miliarda lat schładzania się. Dzięki temu, że Ziemia stygnie, uformowała się jej sztywna skorupa i mogło powstać życie. Jednocześnie dzięki temu, że nie wystygła, istnieją takie procesy jak tektonika płyt i wulkanizm. Gdy wnętrze planety wystygnie, te kluczowe procesy zatrzymają się. Nie wiemy jednak, jak szybko nasza planeta się wychładza i kiedy procesy przebiegające w jej wnętrzu zatrzymają się.
      Odpowiedzią na te pytania może dać zbadanie przewodnictwa cieplnego minerałów znajdujących się na granicy między jądrem a płaszczem Ziemi. To bardzo ważne miejsce, w którym lepkie skały mają bezpośredni kontakt z płynnym zbudowanym głównie z niklu i żelaza zewnętrznym jądrem. Gradient temperatury pomiędzy jądrem zewnętrznym a płaszczem jest bardzo duży, zatem potencjalnie może tam przepływać sporo ciepła. Warstwa graniczna zbudowana jest głownie z bridgmanitu.
      Profesor Motohiko Murakami ze Szwajcarskiego Instytutu Technologicznego w Zurichuy (ETH Zurich) wraz z naukowcami z Carnegie Institute for Science opracowali złożony system pomiarowy, który pozwolił im na wykonanie w laboratorium oceny przewodnictwa cieplnego bridgmanitu w warunkach ciśnienia i temperatury, jakie panują we wnętrzu Ziemi. Wykorzystali przy tym niedawno opracowaną technikę optycznego pomiaru absorpcji diamentu podgrzewanego impulsami laserowymi.
      Dzięki tej nowej technice wykazaliśmy, że przewodnictwo cieplne bridgmanitu jest około 1,5-razy większe niż się przyjmuje, mówi profesor Murakami. To zaś wskazuje, że przepływ ciepła pomiędzy jądrem a płaszczem jest większy. A większy przepływ ciepła oznacza, że konwekcja w płaszczu zachodzi szybciej i Ziemia szybciej się ochładza. Tektonika płyt może więc w rzeczywistości spowalniać szybciej, niż się obecnie przyjmuje.
      Grupa Murakami wykazała jednocześnie, że szybsze wychładzanie się płaszcza zmieni fazy minerałów na granicy jądra i płaszcza. Schładzający się bridgmanit zmieni się w minerał, który będzie jeszcze efektywniej przewodził ciepło, zatem stygnięcie Ziemi jeszcze bardziej przyspieszy.
      Wyniki naszych badań rzucają nowe światło na ewolucję dynamiki Ziemi. Wskazują, że Ziemia, podobnie jak Merkury czy Mars, schładza się szybciej i stanie się szybciej nieaktywna, wyjaśnia Murakami.
      Trudno jednak powiedzieć, ile czasu minie zanim ruchy konwekcyjne w płaszczu ustaną. Wciąż wiemy zbyt mało, by określić, kiedy do tego dojdzie, przyznają naukowcy. Żeby się tego dowiedzieć, uczeni muszą najpierw lepiej rozpoznać w czasie i przestrzeni procesy konwekcyjne w płaszczu. Ponadto muszą wiedzieć, jak rozpad pierwiastków radioaktywnych we wnętrzu Ziemi, który jest jednym z głównych źródeł ciepła, wpływa na dynamikę procesów płaszcza.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...