Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Na ostatnim zjeździe Society for General Microbiology, międzynarodowej organizacji zrzeszającej mikrobiologów, egipscy naukowcy ogłosili bardzo ciekawe wyniki badań, które mogą znacząco poprawić nasze szanse w walce z infekcjami bakteryjnymi. Odkryli oni bowiem, że zielona herbata jest doskonałym środkiem wzmacniającym działanie antybiotyków.

Zielona herbata jest w Egipcie napojem bardzo popularnym. Skłoniło to tamtejszych naukowców do zbadania, czy wchodzi ona w interakcje z antybiotykami. Testowaliśmy zieloną herbatę w kombinacji z antybiotykami na dwudziestu ośmiu różnych mikroorganizmach chorobotwórczych - mówi dr Mervat Kassem, pracujący na Wydziale Farmacji Uniwerstetu Aleksandryjskiego. Badane bakterie należały do wielu różnych grup, dzięki czemu uzyskane rezultaty z dużym prawdopodobieństwem można odnieść do znacznie większej grupy mikroorganizmów.

We wszystkich przeprowadzonych analizach zielona herbata znacząco podnosiła bakteriobójczą aktywność leków. Dodatkowo w dwudziestu procentach przypadków pozwalała wywołać wrażliwość bakterii na preparaty, na które były one wcześniej oporne. Inne substancje wykazywały dwu-, a nawet trzykrotnie wyższą skuteczność w zabijaniu bakterii. Dotyczyło to nawet tzw. superbakterii (ang. superbugs), które nie wykazują wrażliwości na praktycznie żaden antybiotyk stosowany powszechnie w lecznictwie.

Nasze wyniki pokazują, że powinniśmy docenić naturalne produkty, które spożywamy na co dzień - mówi dr Kassem. W przyszłości planujemy zbadać inne rośliny, takie jak majeranek i tymianek, aby sprawdzić, czy również one zawierają środki zdolne do poprawy skuteczności antybiotyków.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawe czy każda zielona herbata ze sklepu tak działa czy to musi być jakaś szlachetna herbatka.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mało kto miał pomysł popijania leków zieloną herbatą, więcej zaś osób wpadło na popijanie herbatą czarną, sokami :]

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No u nas w Polsce to tak. Ale ciekawe jak jest np. w Japonii. Tam się podobno więcej zieleniny pije. ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Aby sama zielona herbata zadziałała trzeba byłoby wypijać dziennie kilkadziesiat filiżanek, dlatego dobrze jest przyjmować ją w dodatkach żywieniowych w odpowiedniej ilości, a jeszcze lepiej w zestawieniu z innymi składnikami- antyutleniaczami i niektórymi aminokwasami. Bardzo dobrze działają przy wszelkich stanach zapalnych, leczeniu raka itp. Pozdrawiam-Barbara

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W 2010 roku japońska ekspedycja naukowa wybrała się do Wiru Południowopacyficznego (South Pacyfic Gyre). Pod nim znajduje się jedna z najbardziej pozbawionych życia pustyń na Ziemi. W pobliżu centrum SPG znajduje się oceaniczny biegun niedostępności. A często najbliżej znajdującymi się ludźmi są... astronauci z Międzynarodowej Stacji Kosmicznej. Tutejsze wody są tak pozbawione życie, że 1 metr osadów tworzy się tutaj przez milion lat.
      Centrum SPG jest niemal nieruchome, jednak wokół niego krążą prądy oceaniczne, przez które do centrum dociera niewiele składników odżywczych. Niewiele więc tutaj organizmów żywych.
      Japońscy naukowcy pobrali z dna, znajdującego się 6000 metrów pod powierzchnią, rdzeń o długości 100 metrów. Mieli więc w nim osady, które gromadziły się przez 100 milionów lat.
      Niedawno poinformowali o wynikach badań rdzenia. Tak, jak się spodziewali, znaleźli w osadach bakterie, było ich jednak niewiele, od 100 do 3000 na centymetr sześcienny osadów. Później jednak nastąpiło coś, czego się nie spodziewali. Po podaniu pożywienia bakterie ożyły.
      Ożyły i zaczęły robić to, co zwykle robią bakterie, mnożyć się. Dwukrotnie zwiększały swoją liczbę co mniej więcej 5 dni. Powoli, gdyż np. bakterie E.coli dwukrotnie zwiększają w laboratorium swoją liczbę co około 20 minut). Jednak wystarczyło to, by po 68 dniach bakterii było 10 000 razy więcej niż pierwotnie.
      Weźmy przy tym pod uwagę, że mówimy o bakteriach sprzed 100 milionów lat. O mikroorganizmach, które żyły, gdy planeta była opanowana przez dinozaury. Minęły cztery ery geologiczne, a one – chronione przed promieniowaniem kosmicznym i innymi wpływami środowiska przez kilometry wody – czekały w uśpieniu.
      Jeśli teraz uświadomimy sobie, że 70% powierzchni planety jest pokryte osadami morskimi, możemy przypuszczać, że znajduje się w nich wiele nieznanych nam, uśpionych mikroorganizmów sprzed milionów lat.
      Kolejną niespodzianką był fakt, że znalezione przez Japończyków bakterie korzystają z tlenu. Osady, z których je wyodrębniono, są pełne tlenu. Problemem w SPG nie jest zatem dostępność tlenu, a pożywienia.
      To jednak nie koniec zaskoczeń. Okazało się, że wydobyte z osadów bakterie nie tworzą przetrwalników (endosporów). Bakterie przetrwały w inny sposób. Jeszcze większą niespodzianką było znalezienie w jednej z próbek dobrze funkcjonującej populacji cyjanobakterii z rodzaju Chroococcidiopsis. To bakterie potrzebujące światłą, więc zagadką jest, jak przetrwały 13 milionów lat w morskich osadach na głębokości 6000 metrów. Z drugiej strony wiemy, że jest niektórzy przedstawiciele tego rodzaju są wyjątkowo odporni. Tak odporny, że niektórzy mówią o wykorzystaniu ich do terraformowania Marsa.
      Biorąc uwagę niewielkie przestrzenie z powietrzem wewnątrz osadów, brak endosporów i szybkie ożywienie, naukowcy przypuszczają, że bakterie pozostały żywe przez 100 milionów lat, jednak znacząco spowolniły swój cykl życiowy. To zaś może oznaczać, że... są nieśmiertelne.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył wielką bazę danych wszystkich znanych genomów bakteryjnych obecnych w mikrobiomie ludzkich jelit. Baza umożliwia specjalistom badanie związków pomiędzy genami bakterii a proteinami i śledzenie ich wpływu na ludzkie zdrowie.
      Bakterie pokrywają nas z zewnątrz i od wewnątrz. Wytwarzają one proteiny, które wpływają na nasz układ trawienny, nasze zdrowie czy podatność na choroby. Bakterie są tak bardzo rozpowszechnione, że prawdopodobnie mamy na sobie więcej komórek bakterii niż komórek własnego ciała. Zrozumienie wpływu bakterii na organizm człowieka wymaga ich wyizolowania i wyhodowania w laboratorium, a następnie zsekwencjonowania ich DNA. Jednak wiele gatunków bakterii żyje w warunkach, których nie potrafimy odtworzyć w laboratoriach.
      Naukowcy, chcąc zdobyć informacje na temat tych gatunków, posługują się metagenomiką. Pobierają próbkę interesującego ich środowiska, w tym przypadku ludzkiego układu pokarmowego, i sekwencjonują DNA z całej próbki. Następnie za pomocą metod obliczeniowych rekonstruują indywidualne genomy tysięcy gatunków w niej obecnych.
      W ubiegłym roku trzy niezależne zespoły naukowe, w tym nasz, zrekonstruowały tysiące genomów z mikrobiomu jelit. Pojawiło się pytanie, czy zespoły te uzyskały porównywalne wyniki i czy można z nich stworzyć spójną bazę danych, mówi Rob Finn z EMBL's European Bioinformatics Institute.
      Naukowcy porównali więc uzyskane wyniki i stworzyli dwie bazy danych: Unified Human Gastrointestinal Genome i Unified Gastrointestinal Protein. Znajduje się w nich 200 000 genomów i 170 milionów sekwencji protein od ponad 4600 gatunków bakterii znalezionych w ludzkim przewodzie pokarmowym.
      Okazuje się, że mikrobiom jelit jest nie zwykle bogaty i bardzo zróżnicowany. Aż 70% wspomnianych gatunków bakterii nigdy nie zostało wyhodowanych w laboratorium, a ich rola w ludzkim organizmie nie jest znana. Najwięcej znalezionych gatunków należy do rzędu Comentemales, który po raz pierwszy został opisany w 2019 roku.
      Tak olbrzymie zróżnicowanie Comentemales było wielkim zaskoczeniem. To pokazuje, jak mało wiemy o mikrobiomie jelitowym. Mamy nadzieję, że nasze dane pozwolą w nadchodzących latach na uzupełnienie luk w wiedzy, mówi Alexancre Almeida z EMBL-EBI.
      Obie imponujące bazy danych są bezpłatnie dostępne. Ich twórcy uważają, że znacznie się one rozrosną, gdy kolejne dane będą napływały z zespołów naukowych na całym świecie. Prawdopodobnie odkryjemy znacznie więcej nieznanych gatunków bakterii, gdy pojawią się dane ze słabo reprezentowanych obszarów, takich jak Ameryka Południowa, Azja czy Afryka. Wciąż niewiele wiemy o zróżnicowaniu bakterii pomiędzy różnymi ludzkimi populacjami, mówi Almeida.
      Niewykluczone, że w przyszłości katalogi będą zawierały nie tylko informacje o bakteriach żyjących w naszych jelitach, ale również na skórze czy w ustach.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W budownictwie od dawna wykorzystuje się materiały pochodzenia biologicznego, np. drewno. Gdy się ich używa, nie są już jednak żywe. A gdyby tak stworzyć żyjący budulec, który jest w stanie się rozrastać, a przy okazji ma mniejszy ślad węglowy? Naukowcy nie poprzestali na zadawaniu pytań i zabrali się do pracy, dzięki czemu uzyskali beton i cegły z bakteriami.
      Zespół z Uniwersytetu Kolorado w Boulder podkreśla, że skoro udało się utrzymać przy życiu pewną część bakterii, żyjące, i to dosłownie, budynki nie są wcale tylko i wyłącznie pieśnią przyszłości.
      Pewnego dnia takie struktury będą mogły, na przykład, same zasklepiać pęknięcia, usuwać z powietrza niebezpieczne toksyny, a nawet świecić w wybranym czasie.
      Na razie technologia znajduje się w powijakach, ale niewykluczone, że kiedyś żyjące materiały poprawią wydajność i ekologiczność produkcji materiałów budowlanych, a także pozwolą im wyczuwać i wchodzić w interakcje ze środowiskiem - podkreśla Chelsea Heveran.
      Jak dodaje Wil Srubar, obecnie wytworzenie cementu i betonu do konstruowania dróg, mostów, drapaczy chmur itp. generuje blisko 6% rocznej światowej emisji dwutlenku węgla.
      Wg Srubara, rozwiązaniem jest "zatrudnienie" bakterii. Amerykanie eksperymentowali z sinicami z rodzaju Synechococcus. W odpowiednich warunkach pochłaniają one CO2, który wspomaga ich wzrost, i wytwarzają węglan wapnia (CaCO3).
      Naukowcy wyjaśnili, w jaki sposób uzyskali LBMs (od ang. living building material, czyli żyjący materiał), na łamach pisma Matter. Na początku szczepili piasek żelatyną, pożywkami oraz bakteriami Synechococcus sp. PCC 7002. Wybrali właśnie żelatynę, bo temperatura jej topnienia i przejścia żelu w zol wynosi ok. 37°C, co oznacza, że jest kompatybilna z temperaturami, w jakich sinice mogą przeżyć. Poza tym, schnąc, żelatynowe rusztowania wzmacniają się na drodze sieciowania fizycznego. LBM trzeba schłodzić, by mogła się wytworzyć trójwymiarowa hydrożelowa sieć, wzmocniona biogenicznym CaCO3.
      Przypomina to nieco robienie chrupiących ryżowych słodyczy, gdy pianki marshmallow usztywnia się, dodając twarde drobinki.
      Akademicy stworzyli łuki, kostki o wymiarach 50x50x50 mm, które były w stanie utrzymać ciężar dorosłej osoby, i cegły wielkości pudełka po butach. Wszystkie były na początku zielone (sinice to fotosyntetyzujące bakterie), ale stopniowo brązowiały w miarę wysychania.
      Ich plusem, poza wspomnianym wcześniej wychwytem CO2, jest zdolność do regeneracji. Kiedy przetniemy cegłę na pół i uzupełnimy składniki odżywcze, piasek, żelatynę oraz ciepłą wodę, bakterie z oryginalnej części wrosną w dodany materiał. W ten sposób z każdej połówki odrośnie cała cegła.
      Wyliczenia pokazały, że w przypadku cegieł po 30 dniach żywotność zachowało 9-14% kolonii bakteryjnych. Gdy bakterie dodawano do betonu, by uzyskać samonaprawiające się materiały, wskaźnik przeżywalności wynosił poniżej 1%.
      Wiemy, że bakterie rosną w tempie wykładniczym. To coś innego niż, na przykład, drukowanie bloku w 3D lub formowanie cegły. Gdybyśmy mogli uzyskiwać nasze materiały [budowlane] na drodze biologicznej, również bylibyśmy w stanie produkować je w skali wykładniczej.
      Kolejnym krokiem ekipy jest analiza potencjalnych zastosowań platformy materiałowej. Można by dodawać bakterie o różnych właściwościach i uzyskiwać nowe materiały z funkcjami biologicznymi, np. wyczuwające i reagujące na toksyny w powietrzu.
      Budowanie w miejscach, gdzie zasoby są mocno ograniczone, np. na pustyni czy nawet na innej planecie, np. na Marsie? Czemu nie. W surowych środowiskach LBM będą się sprawować szczególnie dobrze, ponieważ do wzrostu wykorzystują światło słoneczne i potrzebują bardzo mało materiałów egzogennych. [...] Na Marsa nie zabierzemy ze sobą worka cementu. Kiedy wreszcie się tam wyprawimy, myślę, że naprawdę postawimy na biologię.
      Badania sfinansowała DARPA (Agencja Badawcza Zaawansowanych Projektów Obronnych).

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zielona herbata zaparzona w wodzie butelkowanej ma bardziej gorzki smak, ale zawiera też więcej przeciwutleniaczy niż herbata zaparzona z użyciem wody z kranu.
      Podczas testów przeprowadzonych w Sensory Evaluation Center Uniwersytetu Cornella ludziom bardziej smakowała herbata zaparzona w wodzie z kranu. Działo się tak przez słodszy smak. Herbata zaparzona z wykorzystaniem wody butelkowanej zawierała jednak prawie 2-krotnie więcej galusanu epigallokatechiny (EGCG). To on sprawiał, że napar był bardziej gorzki niż przyrządzony na bazie wody z kranu - opowiada prof. Robin Dando.
      Jeśli pijesz zieloną herbatę z powodu jej walorów zdrowotnych, powinieneś/powinnaś używać wody butelkowanej. Jeśli zależy ci na walorach smakowych, woda z kranu jest lepsza.
      Panel 103 konsumentów nie wyczuwał różnicy między czarną herbatą zaparzaną w wodzie z kranu i z butelki.
      Przeciętny konsument czarnej herbaty nie był w stanie poczuć różnicy. Różnice smakowe dla wód z kranu i butelkowanej były zbyt subtelne - podkreśla studentka Melanie Franks, główna autorka badania, która jako specjalistka od herbaty uczyła kiedyś w Międzynarodowym Instytucie Kulinarnym.
      Dando uważa, że to składniki mineralne wody z kranu - wapń, żelazo, magnez, sód i miedź - prowadzą do niższych poziomów EGCG w herbacie. Butelkowana woda, w której wapń czy magnez są odfiltrowywane, a poziom żelaza obniżany, pozwala wydajniej wyekstrahować galusan epigallokatechiny.
      Podczas testów czarną i zieloną herbatę zaparzano wodą butelkowaną, z kranu i demineralizowaną (dejonizowaną). Dopasowywano temperaturę zaparzania, naczynie, czas zaparzania oraz stosunek ilości wody do ilości liści. Napary były oceniane przez panelistów i za pomocą aparatury (badano kolor, mętność i zawartość EGCG); wszyscy testerzy przyznali się do picia herbaty 3-5 razy w tygodniu lub częściej; pijali zarówno herbatę zieloną, jak i czarną.
      W testach wykorzystano wodę z kranu z miasta Ithaca, butelkowaną wodę Poland Spring oraz wodę demineralizowaną. Ich skład mineralny zbadano w Community Science Institute. Zaparzano herbatę zieloną Zhejiang i czarną Mao Feng (obie pochodziły z prowincji Zhejiang w Chinach). Dwa i pół grama zielonej herbaty odważano w podgrzanych gaiwanach. Później do naczynia wlewano 125 ml wody o temperaturze 80°C. Po 2,5 min napar przecedzano przez gęste sitko. Próbki czarnej herbaty zaparzano przez 5 min (woda miała temperaturę 100°C). Później napar również przecedzano. Do analiz fizykochemicznych ekstrakt schładzano do temperatury pokojowej, a do testów serwowano świeży w podgrzanych białych czarkach. Po każdej próbce trzeba było oczyścić podniebienie za pomocą wody i niesolonych krakersów.
      Rodzaj wody użytej do zaparzania wywierał drastyczny wpływ na właściwości sensoryczne zielonej herbaty. Wiązało się to, jak wspomnieliśmy, z większym stopniem ekstrakcji gorzkich katechin w herbatach przygotowanych z użyciem bardziej oczyszczonych wód butelkowych/dejonizowanych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Podczas syntezy grafenu wykorzystuje się proces chemicznej redukcji tlenku grafenu (GO). Wymaga on wystawienia GO na działanie hydrazyny. Ten sposób produkcji ma jednak poważne wady, które czynią jego skalowanie bardzo trudnym. Opary hydrazyny są bowiem niezwykle toksyczne, zatem produkcja na skalę przemysłową byłaby niebezpieczna zarówno dla ludzi jak i dla środowiska naturalnego.
      Naukowcy z japońskiego Uniwersytetu Technologicznego Toyohashi zaprezentowali bezpieczne, przyjazne dla środowiska rozwiązanie problemu. Zainspirowały ich wcześniejsze badania wskazujące, że tlenek grafenu może działać na bakterie jak akceptor elektronów. Wskazuje to, że bakterie w procesie oddychania lub transportu elektronów mogą redukować GO.
      Japońscy uczeni wykorzystali mikroorganizmy żyjące na brzegach pobliskiej rzeki. Badania przeprowadzone przy wykorzystaniu zjawiska Ramana wykazały, że obecność bakterii rzeczywiście doprowadziła do zredukowania tlenku grafenu. Zdaniem Japończyków pozwala to na opracowanie taniej, bezpiecznej i łatwo skalowalnej przemysłowej metody produkcji grafenu o wysokiej jakości.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...