Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
CERN pochwalił się osiągnięciem przez Wielki Zderzacz Hadronów (LHC) rekordowej świetlności. Obok energii wiązki, w przypadku LHC maksymalna energia każdej z wiązek ma wynieść 7 TeV (teraelektronowoltów), to właśnie świetlność jest najważniejszym parametrem akceleratora. Zintegrowana świetlność to najbardziej interesujący fizyka parametr urządzenia. Oznacza ona liczbę zderzeń zachodzących w urządzeniu. A im więcej zderzeń, tym więcej danych dostarcza akcelerator.
Jednostką świetlności jest odwrócony barn (b-1) lub jego jednostki pochodne, jak femtobarny (fb-1). W trakcie pierwszej kampanii naukowej (Run 1), która prowadzona była w latach 2010–2012 średnia zintegrowana świetlność LHC wyniosła 29,2 fb-1. Przez kolejne lata akcelerator był remontowany i rozbudowywany. Druga kampania naukowa miała miejsce w latach 2015–2018. Wówczas, w ciągu czterech lat pracy, akcelerator osiągnął średnią zintegrowaną świetlnośc 159,8 fb-1.
Obecnie trwająca kampania, zaplanowana na lata 2022–2025, rozpoczęła się zgodnie z planem. W roku 2022 efektywny czas prowadzenia zderzeń protonów wyniósł 70,5 doby, a średnia zintegrowana świetlność osiągnęła poziom 0,56 fb-1 na dzień. W roku 2023 rozpoczęły się problemy. Niezbędne naprawy urządzenia zajmowały więcej czasu niż planowano i przez cały rok zderzenia protonów prowadzono jedynie przez 47,5 dnia, jednak średnia zintegrowana świetlność wyniosła 0,71 fb-1 na dzień.
Bieżący rok jest zaś wyjątkowy. Wydajność LHC przewyższyła oczekiwania. Do 2 września 2024 roku akcelerator zderzał protony łącznie przez 107 dni, osiągając przy tym średnią zintegrowaną jasność rzędu 0,83 fb-1 na dzień. Dzięki temu na kilka miesięcy przed końcem trzeciego roku obecnej kampanii naukowej jego średnia zintegrowana świetlność wyniosła 160,4 fb-1, jest zatem większa niż przez cztery lata poprzedniej kampanii.
W bieżącym roku LHC ma też przeprowadzać zderzenia jonów ołowiu. Zanim jednak do tego dojdzie, będzie przez 40 dni pracował z protonami. Powinno to zwiększyć jego zintegrowaną świetlność o koleje 33 fb-1. To o 12 fb-1 więcej niż zaplanowano na bieżący rok.
« powrót do artykułu -
By KopalniaWiedzy.pl
Amerykański Departament Energii dał zielone światło do rozpoczęcia budowy PIP-II. To projekt znaczącej rozbudowy kompleksu akceleratorowego znajdującego się w Fermilab. Po ukończeniu prac będzie to najpotężniejsze na świecie źródło wysokoenergetycznych neutrin. W przeszłości w Fermilab pracował legendarny Tevatron, urządzenie niezwykle zasłużone dla fizyki. Teraz laboratorium zyska kolejny wyjątkowy instrument badawczy.
PIP-II będzie pierwszym w USA akceleratorem cząstek, w budowę którego znaczący wkład wniosą partnerzy międzynarodowi z Polski, Francji, Indii, Włoch i Wielkiej Brytanii. Dzięki ich współpracy powstanie urządzenie zdolne do generowania wiązek protonów o mocy przekraczającej 1 megawat. To o 60% więcej niż obecne możliwości Fermilab. Dzięki supernowoczesnym rozwiązaniom akcelerator będzie w stanie dostarczyć wiązkę o odpowiednich właściwościach dla różnego rodzaju eksperymentów fizycznych.
Jednym z najważniejszych zadań PIP-II będzie dostarczanie neutrin dla Deep Underground Neutrino Experiment (DUNE). Akceleratory z Fermilab były siłą napędową eksperymentów, które w ciągu ostatnich 50 lat doprowadziły do znaczących przełomów w fizyce. Oficjalne rozpoczęcie budowy PIP-II oznacza, że jesteśmy o krok bliżej do rozbudowy naszych instalacji i wspierania odkryć naukowych przez kolejnych 50 lat, mówi były dyrektor Fermilab, Nigel Lockyer.
W ramach projektu PIP-II na początku łańcucha akceleratorów znajdujących się w Fermilab powstanie unikatowa potężna elastyczna pierwsze sekcja, wykorzystująca najnowsze osiągnięcia z dziedziny nadprzewodnictwa, wysokoenergetycznych systemów radiowych, sztucznej inteligencji i maszynowego uczenia się. Całość ma pozwolić na szybkie automatyczne dopasowywanie parametrów wiązki do wymagań danego eksperymentu przy minimalnym udziale człowieka.
PIP-II zostanie ukończony w drugiej połowie obecnej dekady. Prace nad niektórymi jego elementami już zbliżają się ku końcowi. Tak jest na przykład z budynkiem zawierającym elementy kriogeniczne. Ta część PIP-II to główny wkład Departamentu Energii Atomowej Indii. A w PIP-II Injector Test Facility przeprowadzono udane testy dwóch modułów kriogenicznych. To pokazuje, że Fermilab stanie się światowym liderem w dziedzinie wykorzystania akceleratorów do badań nad neutrinami, a PIP-II będzie znaczącym wkładem w ten sukces, stwierdziła Harriet King z DOE.
« powrót do artykułu -
By KopalniaWiedzy.pl
Fizycy zgadzają się co do tego, że nie istnieje cząstka złożona z samych protonów. Jednak od ponad 50 lat szukają cząstki składającej się z więcej niż 2 neutronów. Naukowcy z Uniwersytetu Technicznego w Monachium poinformowali właśnie, że przeprowadzone przez nich eksperymenty wykazały na możliwość istnienia tetraneutronu, hipotetycznej cząstki złożonej z czterech neutronów. I nie są pierwszymi, którzy na istnienie takiej cząstki wskazują.
Już 20 lat temu francuscy naukowcy opublikowali wyniki swoich eksperymentów, a wśród nich sygnał, który zinterpretowali jako pojawienie się długo poszukiwanego tetraneutronu. Później jednak inne grupy badawcze wykazały, że metodologia Francuzów nie mogła dowieść istnienia tetraneutronów.
W 2016 roku Japończycy z RIKEN próbowali uzyskać tetraneutron bombartując hel-4 strumieniem helu-8. W wyniku tych badań stwierdzili, że tetraneutron nie istnieje w stanie związanym, a tworzące go neutrony bardzo szybko rozpierzchają się. Rok później fizycy z USA i Francji stworzyli teoretyczny model tetraneutronu, z którego wynika, że jeśli taka cząstka w ogóle istnieje, to bardzo szybko się rozpada. Nie wiemy więc, czy mogą istnieć tetraneutrony, w których dochodzi do oddziaływań pomiędzy ich poszczególnymi elementami.
Jeśli jednak tetraneutrony istnieją, może to oznaczać, że fizycy muszą przemyśleć koncepcję oddziaływań silnych. To jedne z czterech oddziaływań podstawowych.
Oddziaływania silne to ta siła, która trzyma wszystko razem. Atomy cięższe od wodoru nie mogłyby bez niej istnieć, mówi doktor Thomas Faestermann, który stał na czele grupy badawczej z Monachium.
Niemcy przeprowadzili badania, w ramach których lit-7 bombardowali strumieniem jąder atomowych litu-7. Uzyskane w ich wyniku pomiary odpowiadają sygnałowi węgla-10 oraz tetraneutronowi o energii wiązania wynoszącej 0,42 MeV (+/- 0,16 MeV). Wynika z nich również, że tetraneutron powinien być tak stabilny jak samodzielny neutron, a czas jego półrozpadu powinien wynieść 450 sekund. Naszym zdaniem to jedyne zgodne z fizyką wyjaśnienie naszych pomiarów, mówi doktor Faestermann.
Pewność pomiaru wynosi ponad 99,7%. Jednak... to za zbyt mało. Pewność statystyczna dla tej wartości to 3σ. Tymczasem w fizyce istnienie cząstki uznaje się za udowodnione, jeśli pewność statystyczna wynosi co najmniej 5σ. Ten poziom oznacza, że ryzyko, iż sygnał jest fałszywy, wynosi 1:3 500 000. Dlatego też naukowcy z Monachium z niecierpliwością czekają, by inny zespół niezależnie potwierdził ich spostrzeżenia.
Wyniki badań zostały opublikowane w Physical Letters B.
« powrót do artykułu -
By KopalniaWiedzy.pl
Nadeszły długo oczekiwane pierwsze wyniki badań w eksperymencie Muon g-2 prowadzonym przez Fermi National Accelerator Laboratory (Fermilab). Pokazują one, że miony zachowują się w sposób, który nie został przewidziany w Modelu Standardowym. Badania, przeprowadzone z bezprecedensową precyzją, potwierdzają sygnały, jakie inni naukowcy zauważali od dekad. Jeśli się potwierdzą, będzie to wyraźnym dowodem, iż miony wykraczają poza Model Standardowy i mogą wchodzić w interakcje z nieznaną cząstką.
To wyjątkowy dzień, długo oczekiwany nie tylko przez nas, ale przez całą społeczność fizyków, mówi Graziano Venanzoni, fizyk z Włoskiego Narodowego Instytutu Fizyki Jądrowej, rzecznik eksperymentu Muon g-2.
Miony są około 200 razy bardziej masywne niż ich kuzyni, elektrony. Występują w promieniowaniu kosmicznym docierającym do Ziemi, a w akceleratorach cząstek potrafimy uzyskiwać je w dużych ilościach. Podobnie jak elektrony, miony zachowują się tak, jakby zawierały magnes. Jak wiemy ze wzoru wprowadzonego przez Paula Diraca, twórcę teorii kwarków, moment magnetyczny samotnego mionu – współczynnik g – ma wartość 2. Stąd zresztą nazwa eksperymentu Muon g-2. Z czasem do wyliczeń tych wprowadzono niewielkie poprawki, określając dokładną wartość współczynnika.
Jednak na mion, podobnie zresztą jak na elektron, wpływa jego otoczenie. Gdy miony krążą w eksperymencie Muon g-2 stykają się z kwantową pianką tworzoną przez pojawiające się i znikające subatomowe cząstki. Interakcja z nimi wpływa na wartość współczynnika g. Model Standardowy pozwala z wielką precyzją wyliczyć tę wartość. Oczywiście uwzględniając przy tym znane nam cząstki. Jeśli więc pojawi się cząstka lub siła nieznana w Modelu Standardowym, współczynnik g przyjmie wartość, która nie jest przezeń przewidziana.
To, co mierzymy, odzwierciedla wszystkie interakcje, z jakimi mion miał do czynienia. Jednak gdy teoretycy przeprowadzają swoje obliczenia, biorąc pod uwagę wszystkie znane siły i cząstki Modelu Standardowego, okazuje się, że wynik ich obliczeń jest różny od wyniku naszego eksperymentu. To silna wskazówka, że na mion działa coś, czego nie przewiduje Model, mówi Renee Fatemi, fizyk z University of Kentucky, która jest odpowiedzialna za symulacje w eksperymencie Muon g-2.
Zgodnie z akceptowanymi obecnie wyliczeniami teoretyków współczynnik g dla mionu wynosi 2,00233183620(86), a wartość poprawki momentu magnetycznego to 0,00116591810(43). W nawiasach zawarto niepewność wyliczeń. Tymczasem uśrednione wartości, jakie uzyskano podczas najnowszych eksperymentów w Fermilab to 2,00233184122(82) oraz 0,00116592061(41).
Istotność statystyczna tej różnicy – czyli w tym przypadku niezgodność obliczeń teoretycznych obliczeń z pomiarami – wynosi aż 4,2 sigma. Przypomnijmy tutaj, że od 5 sigma mówimy w fizyce o odkryciu. Prawdopodobieństwo, że uzyskane wyniki są fałszywe wynosi 1:40 000. Jak zatem widać, fizycy o odkryciu jeszcze nie mówią, ale mają bardzo silne przesłanki, by wierzyć w wyniki eksperymentu.
Eksperyment Moun g-2 zaczął w Fermilab pracę w 2018 roku. Korzysta on z nadprzewodzącego magnetycznego pierścienia akumulacyjnego o średnicy ponad 15 metrów. W 2013 roku pierścień ten został przewieziony z Brookhaven National Laboratory, gdzie nie był już potrzebny. To niezwykłe wydarzenie opisywaliśmy przed 8 laty. Przez kolejne 4 lata specjaliści składali, kalibrowali i testowali nowe urządzenie, wyposażając Moun g-2 w najnowsze osiągnięcia techniki i tworząc na jego potrzebny nowe metody badawcze.
W eksperymencie tym strumień mionów tysiące razy krąży w pierścieniu z prędkością bliską prędkości światła. Tylko w pierwszym roku działania Muong g-2 z Fermilab zebrał więcej danych niż wszystkie wcześniejsze eksperymenty razem wzięte. Dzięki współpracy ponad 200 naukowców z 35 instytucji naukowych z 7 krajów udało się obecnie dostarczyć szczegółowe dane dotyczące pomiarów ruchu ponad 8 miliardów mionów wykorzystywanych podczas pierwszego sezonu badawczego (rok 2018). Obecnie prowadzone są analizy danych z dwóch kolejnych sezonów (lata 2019–2020). Jednocześnie trwa czwarty sezon, a piąty jest planowany.
Połączenie danych ze wszystkich wspomnianych sezonów pozwoli na określenie współczynnika g z jeszcze większą precyzją. Dotychczas przeanalizowaliśmy mniej niż 6% danych, jakie dostarczy nam Muon g-2. Już pierwsze wyniki pokazują, że istnieje interesująca rozbieżność pomiędzy eksperymentem a Modelem Standardowym. W ciągu najbliższych kilku lat dowiemy się znacznie więcej, mówi Chris Polly z Fermilab, który jako student brał udział w badaniach w Brookhaven.
« powrót do artykułu -
By KopalniaWiedzy.pl
W samym sercu Łabędzia, jednego z najpiękniejszych gwiazdozbiorów letniego nieba, bije źródło cząstek promieniowania kosmicznego o dużych energiach: Kokon Łabędzia. Międzynarodowa grupa naukowców z obserwatorium HAWC zdobyła dowody wskazujące, że ta rozległa struktura astronomiczna jest najpotężniejszym z dotychczas poznanych naturalnych akceleratorów cząstek naszej galaktyki.
Spektakularnym odkryciem mogą się pochwalić naukowcy z międzynarodowego obserwatorium promieniowania kosmicznego HAWC (High-Altitude Water Cherenkov Gamma-Ray Observatory). Ulokowane na zboczach meksykańskiego wulkanu Sierra Negra, obserwatorium rejestruje cząstki i fotony o wielkich energiach, napływające z otchłani kosmosu. Na niebie półkuli północnej ich najjaśniejszym źródłem jest region Kokonu Łabędzia. W HAWC ustalono, że z Kokonu nadlatują fotony o energiach nawet kilkadziesiąt razy większych od rejestrowanych przez wcześniejsze detektory Fermi-LAT i ARGO. Fakt ten sugeruje, że Kokon Łabędzia jest najpotężniejszym z dotychczas zidentyfikowanych akceleratorów cząstek w Drodze Mlecznej. Wyniki badań, w których ważną rolę odegrali naukowcy z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie, zaprezentowano na łamach prestiżowego czasopisma Nature Astronomy.
Odkrycie dokonane dzięki obserwatorium HAWC to istotny element trwającej od ponad stu lat naukowej układanki, której celem jest rozszyfrowanie natury promieniowania kosmicznego, zwłaszcza w zakresie cząstek o największych energiach występujących w naszej galaktyce, mówi dr hab. Sabrina Casanova (IFJ PAN), inicjatorka najnowszej analizy danych z regionu Kokonu Łabędzia i jej istotna współautorka.
Kokon Łabędzia, rozległa struktura astronomiczna o rozmiarach około 180 lat świetlnych, leży w odległości 4,6 tysiąca lat świetlnych od Słońca. Na naszym niebie znajdziemy go niemal dokładnie w centrum gwiazdozbioru Łabędzia, gdzie zajmuje obszar o szerokości kątowej zbliżonej do czterech tarcz Księżyca. To region intensywnego formowania się masywnych (i w konsekwencji krótko żyjących) gwiazd, z dwiema młodymi gromadami gwiezdnymi Cygnus OB2 i NGC 6910.
Detektor HAWC ma większą czułość i rozdzielczość kątową od wcześniejszych urządzeń tego typu. W ciągu 1343 dni obserwacji zarejestrowaliśmy za jego pomocą fotony promieniowania gamma o energiach dochodzących nawet do stu teraelektronowoltów, nadlatujące z kierunku gromady Cygnus OB2. Co mogło być źródłem tak wysokoenergetycznego promieniowania?, zastanawia się dr Casanova.
Z najnowszej analizy promieniowania gamma docierającego do Ziemi z Kokonu Łabędzia wyłania się ciekawy obraz zjawisk o złożonej, wieloetapowej naturze. Źródłem wysokoenergetycznego promieniowania kosmicznego zwykle są pozostałości supernowych, w tym pulsary. Protony bądź elektrony nie mają tu jednak wystarczająco dużo czasu, by rozpędzić się do energii kinetycznej sięgającej aż kilkuset teraelektronowoltów. Mogą jednak trafić do wnętrza młodej gromady masywnych gwiazd. Tutaj turbulencje oddziałujących ze sobą potężnych wiatrów gwiazdowych mogą przyspieszać cząstki przez miliony lat. Niektóre z tych cząstek mają wówczas szanse zyskać energie sięgające petaelektronowoltów.
Sytuacja jest jednak bardzo skomplikowana, zauważa dr Casanova i precyzuje: Wewnątrz gromad masywnych gwiazd niektóre cząstki mogą być przyspieszane przez miliony lat, czas porównywalny z wiekiem samej gromady. Jednak im większa energia cząstek, tym krótszy staje się czas ich przyspieszania. Cząstki z największymi energiami opuszczą gromadę zanim wyemitują fotony gamma, które obserwujemy. Pojawia się więc pytanie, jakie jest maksimum energii, do której mogą się rozpędzić cząstki w gromadzie gwiazd?
Kluczowe pytanie dotyczy natury cząstek odpowiedzialnych za emisję wysokoenergetycznych fotonów, które zarejestrowano w obserwatorium HAWC. Gdyby źródłem fotonów były elektrony, ich energie musiałyby być kilkukrotnie większe od energii fotonów. Jeśli jednak źródłem były protony, ich energie musiałyby sięgać nawet petaelektronowolta. To wartość stukrotnie większa od energii zderzeń protonów w akceleratorze LHC.
Nasza analiza nie przynosi jednoznacznego rozstrzygnięcia odnośnie do pochodzenia fotonów o energiach sięgających 100 TeV. Wskazuje jednak na wyraźnego faworyta: protony o ekstremalnych energiach, przyspieszane w zderzeniach wiatrów gwiazdowych, a następnie emitujące fotony gamma w trakcie zderzeń z materią międzygwiazdową, mówi dr Casanova.
Jeśli przyszłe obserwacje potwierdzą obecną interpretację, gromada gwiazd Cygnus OB2 we wnętrzu Kokonu Łabędzia byłaby najpotężniejszym ze wszystkich dotychczas zidentyfikowanych akceleratorów naszej galaktyki.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.