Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przed NASA i ESA nowe wielkie wyzwanie – przywiezienie próbek Marsa na Ziemię

Recommended Posts

Teraz, gdy łazik Perseverance pracuje na Marsie, przed NASA i ESA stoi nowe niezwykle trudne wyzwanie. Obie agencje przygotowują Mars Sample Return, misję, w ramach której próbki zebrane przez Perseverance mają trafić na Ziemię. Jeśli misja się uda, otworzy ona nowy rozdział w robotycznej eksploracji kosmosu.

Zgodnie z założeniami Mars Sample Return najpierw na Czerwoną Planetę zostanie wysłana misja Sample Retrieval Lander. Wyląduje ona w pobliżu miejsca lądowania misji Mars 2020 – czyli łazika Perseverance – i umieści tam specjalną platformę, z której wyjedzie zbudowany przez ESA niewielki łazik, Sample Fetch Rover. Łazik pozbiera próbki przygotowane przez Perseverance i wróci z nimi do platformy. Tam załaduje je do kontenera wielkości piłki do koszykówki znajdującego się na pokładzie Mars Ascent Vehicle (MAV). MAV będzie pierwszym w historii pojazdem, który wystartuje z powierzchni Marsa. Jego zadaniem będzie dostarczenie kontenera na orbitę Marsa.

W tym czasie na orbicie Czerwonej Planety krążył będzie Earth Return Orbiter autorstwa ESA. Ma on przechwycić orbitujący kontener, zdekontaminować go i umieścić w kapsule lądującej. Earth Return Orbiter wróci następnie w okolice Ziemi i uwolni kapsułę, która trafi na naszą planetę.

Skoordynowanie i przeprowadzenie tak złożonej misji to poważne wyzwanie inżynieryjne. Dość wspomnieć, że wszystko musi odbyć się automatycznie i musi udać się za pierwszym razem. Odległość pomiędzy Marsem a Ziemią jest tak duża, że sygnał w obie strony biegnie kilkanaście minut. Jeśli więc w krytycznych momentach misji pojawią się nieprzewidziane problemy, ludzie nie będą mogli im zaradzić.

Największe wyzwanie będzie stanowiło przeprowadzenie startu MAV z powierzchni Marsa. Za opracowanie odpowiednich technologi odpowiedzialna jest firma Northrop Grumman. Tworzymy napęd na paliwo stałe, który wyniesie MAV na orbitę. To kluczowy element powrotu próbek na Ziemię, mówi Mike Lara, dyrektor firmy ds. strategii i rozwoju biznesowego. Anita Sengupta, inżynier na Wydziale Inżynierii Kosmicznej University of Southern California mówi, że głównym problemem jest tutaj uwzględnienie różnic w grawitacji i oddziaływaniu atmosfery Marsa i Ziemi.

Grawitacja na Ziemi jest trzykrotnie większa. A ciśnienie na powierzchni Marsa jest około 100-krotnie niższe niż na Ziemi. Patrząc tylko na te czynniki, wyniesienie z Marsa tej samej masy co z Ziemi wymaga znacznie mniejszej rakiety. Jednak prawdziwym wyzwaniem jest fakt, że na miejscu nie będzie ludzi. Wszystko trzeba zrobić automatycznie. To musi zadziałać za pierwszym razem, stwierdza uczona.

Nawet na Ziemi, gdy mamy pełną kontrolę, start rakiety jest poważnym wyzwaniem, a niewielkie problemy techniczne czy zła pogoda niejednokrotnie powodują, że start przerywany jest dosłownie w ostatnich sekundach, przypomina Lara. Inżynierowie pracujący nad napędem dla MAV muszą też pamiętać, że na Marsie panują bardzo niskie temperatury. Sample Fetch Rover będzie zbierał pozostawione przez Perseverance próbki przez około 18 miesięcy. W tym czasie MAV będzie czekał na powierzchni Czerwonej Planety. Inżynierowie muszą więc zaprojektować taki system utrzymywania odpowiedniej temperatury układu napędowego, by MAV mógł bez przeszkód wystartować po kilkunastu miesiącach postoju w temperaturach minus kilkudziesięciu stopni Celsjusza.

Na szczęście dysponujemy odpowiednimi modelami i mocami obliczeniowymi, dzięki którym inżynierowie będą mogli sprawdzić np. jak zachowuje się paliwo w takich warunkach. Ponadto wiele systemów zostanie zdublowanych, więc gdy jeden zawiedzie, można będzie uruchomić drugi.

Bardzo pomocne będzie też to, czego dowiedzieliśmy się podczas misji Apollo, kiedy to startowano z powierzchni Księżyca, oraz z innych misji. Każda misja uczy nas czegoś, co wykorzystujemy w kolejnych misjach. Tak naprawdę jest to kwestia dobrego rozumienia fizyki, mówi Sengupta.

 


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Za kilkanaście miesięcy, 24 września 2023 roku sonda OSIRIS-REx dostarczy na Ziemię próbki asteroidy Bennu. Jednak na tym nie koniec. NASA przydzieliła jej bowiem nowe zadanie. Po dostarczeniu próbek rozpocznie się OSIRIS-APEX, misja w ramach której sonda poleci do 400-metrowej asteroidy Apophis. Tej samej, która w 2029 roku zbliży się do Ziemi na odległość mniejszą niż satelity na orbicie geosynchronicznej.
      Misja OSIRIR-REx wystartowała w 2016 roku, a cztery lata później sonda dotknęła asteroidy Bennu i pobrała z niego próbki. Padła przy tym ofiarą własnego sukcesu, gdyż materiału było zbyt dużo i nie można było zamknąć pojemnika oraz zważyć próbek. Niemal równo rok temu sonda rozpoczęła powrót w kierunku Ziemi. W przyszłym roku, 24 września, gdy OSIRIS-REx podleci wystarczająco blisko Ziemi, od pojazdu odłączy się pojemnik z próbkami, który na spadochronie wyląduje na Ziemi. Pojemnik zostanie otwarty w specjalnym laboratorium w Johnson Space Center. Część zebranych próbek zostanie udostępniona innym krajom, część zaś zostanie zapieczętowana na wiele dekad, by w przyszłości mogli je zbadać naukowcy dysponujący lepszym sprzętem.
      NASA właśnie przydzieliła pojazdowi nowe zadanie. Trzydzieści dni po tym, jak próbki trafią na Ziemię, pojazd wykona pierwszy z manewrów, który skieruje go w stronę asteroidy Apophis. Będzie wówczas pracował w ramach misji OSIRIS-APEX, od OSIRIS-Apophis Explorer.
      Za stronę naukową misji OSIRIS-REx odpowiada profesor Dante Lauretta. Natomiast głównym naukowcem OSIRIS-APEX będzie obecny zastępca Lauretty, profesor Dani DellaGiustina. Na misję OSIRIS-APEX przeznaczono 200 milionów dolarów.
      Gdy było wiadomo, że misja OSIRIS-REx z powodzeniem pobrała próbki z Bennu i gdy rozpoczął się powrót pojazdu, specjaliści zaczęli zastanawiać się, co dalej. Plan misji zakładał bowiem od początku, że OSIRIS-REx po uwolnieniu pojemnika z próbkami odleci w kierunku zewnętrznych obszarów Układu Słonecznego. Naukowcy chcieli więc wykorzystać sprawny, posiadający paliwo pojazd. Tym bardziej, że został on zaprojektowany nie do przelotu obok wybranego celu, a do zadań związanych z bliskim spotkaniem i prowadzeniem badań. Po intensywnym poszukiwaniu potencjalnego celu badawczego zdecydowano, że sonda poleci na spotkanie z Apophisem.
      Apophis to jedna z asteroid o najgorszej opinii. Gdy została odkryta w 2004 roku istniały obawy, że w 2029 roku może uderzyć w Ziemię. Jednak po intensywnych obserwacjach wykluczono takie ryzyko. Mimo to Apophis będzie najbliższą Ziemi tak dużą asteroidą od czasu około 50 lat, zatem od czasu, gdy szczegółowo śledzimy asteroidy. I przez kolejnych 100 lat żadna ze znanych nam dużych asteroid nie podleci tak blisko naszej planety. W 2029 roku Apophis znajdzie się 10-krotnie bliżej Ziemi niż Księżyc. Ludzie w Europie i Afryce powinni widzieć asteroidę gołym okiem, mówi DellaGiustina.
      Misia OSIRIS-APEX będzie przez 18 miesięcy towarzyszyła asteroidzie. Co prawda nie pobierze żadnych próbek, ale wykona manewr polegający na podleceniu bardzo blisko i uruchomienie silników, wskutek czego być może uda się odsłonić część tego, co znajduje się pod jej powierzchnią. Naukowcy chcą się dowiedzieć, jaki będzie wpływ fizyczny przyciągania ziemskiego na asteroidę, mają też nadzieję poznać jej skład

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Ostatnie postępy w technologii fotowoltaicznej, pojawienie się wydajnych i lekkich ogniw słonecznych i duża elastyczność tej technologii powoduje, że fotowoltaika może dostarczyć całość energii potrzebnej do przeprowadzenia długotrwałej misji na Marsie, a nawet do zasilenia stałej osady – twierdzą naukowcy z University of California, Berkeley.
      Dotychczas większość specjalistów mówiących o logistyce misji na Czerwonej Planecie zakładała wykorzystanie technologii jądrowej. Jest ona stabilna, dobrze opanowana i zapewnia energię przez 24 godziny na dobę. To rozwiązanie na tyle obiecujące, że NASA od kilku lat prowadzi projekt Kilopower, którego celem jest stworzenie na potrzeby misji kosmicznych reaktora jądrowego o mocy do 10 kilowatów.
      Problem z energią słoneczną polega zaś na tym, że w nocy Słońce nie świeci. Ponadto na Marsie wszechobecny pył zmniejsza efektywność paneli słonecznych. Przekonaliśmy się o tym w 2019 roku, gdy po 15 latach spędzonych na Marsie zasilany panelami słonecznymi łazik Opportunity przestał działać po wielkiej burzy pyłowej.
      W najnowszym numerze Frontiers in Astronomy and Space Sciences ukazał się artykuł opisujący wyniki analizy, w ramach których porównano możliwości wykorzystania na Marsie energii ze Słońca z energią jądrową. Naukowcy z Berkeley analizowali scenariusz, w którym marsjańska misja załogowa trwa 480 dni. To bowiem bardzo prawdopodobny scenariusz misji na Marsa uwzględniający położenie planet względem siebie.
      Analiza wykazała, że na ponad połowie powierzchni Marsa panują takie warunki, iż – uwzględniając rozmiary i wagę paneli słonecznych – technologia fotowoltaiczna sprawdzi się równie dobrze lub lepiej niż reaktor atomowy. Warunkiem jest przeznaczenie części energii generowanej za dnia do produkcji wodoru, który zasilałby w nocy ogniwa paliwowe marsjańskiej bazy.
      Na ponad 50% powierzchni Marsa technologia fotowoltaiczna połączona z produkcją wodoru sprawdzi się lepiej niż generowanie energii z rozpadu jądrowego. Przewaga ta jest widoczna przede wszystkim w szerokim pasie wokół równika. Wyniki naszej analizy stoją w ostrym kontraście do ciągle proponowanej w literaturze fachowej energii jądrowej, mówi jeden z dwóch głównych autorów badań, doktorant Aaron Berliner.
      Autorzy analizy wzięli pod uwagę dostępne technologie oraz sposoby ich wykorzystania. Pokazują, najlepsze scenariusze ich użycia, rozważają ich wady i zalety.
      W przeszłości NASA zakładała krótkotrwałe pobyty na Marsie. Takie misje nie wymagałyby np. upraw żywności czy tworzenia na Marsie materiałów konstrukcyjnych lub pozyskiwania środków chemicznych. Jednak obecnie coraz częściej rozważne są długotrwałe misje, a w ich ramach prowadzenie działań wymagających dużych ilości energii byłoby już koniecznością. Trzeba by więc zabrać z Ziemi na Marsa komponenty do budowy źródeł zasilania. Tymczasem każdy dodatkowym kilogram obciążający rakietę nośną to olbrzymi wydatek. Dlatego też konieczne jest stworzenie lekkich urządzeń zdolnych do wytwarzania na Marsie energii.
      Jednym z kluczowych elementów marsjańskiej stacji, którą takie źródła miałyby zasilać, będą laboratoria, w których genetycznie zmodyfikowane mikroorganizmy wytwarzałyby żywność, paliwo, tworzywa sztuczne i związki chemiczne, w tym leki. Berliner i inni autorzy analizy są członkami Center for the Utilization of Biological Engineering in Space (CUBES), które pracuje nad tego typu rozwiązaniami. Naukowcy zauważyli jednak, że cały ich wysiłek może pójść na marne, jeśli na Marsie nie będzie odpowiednich źródeł zasilania dla laboratoriów.
      Dlatego też przeprowadzili analizę porównawczą systemu Kilopower z instalacjami fotowoltaicznymi wyposażonymi w trzy różne technologie przechowywania energii w akumulatorach i dwie technologie produkcji wodoru – metodą elektrolizy i bezpośrednio przez ogniwa fotoelektryczne. Okazało się, że jedynie połączenie fotowoltaiki z elektrolizą jest konkurencyjne wobec energetyki jądrowej. Na połowie powierzchni Marsa było to rozwiązanie bardziej efektywne pod względem kosztów niż wykorzystanie rozpadu atomowego.
      Głównym przyjętym kryterium była waga urządzeń. Naukowcy założyli, że rakieta, która zabierze ludzi na Marsa, będzie zdolna do przewiezienia ładunku o masie 100 ton, wyłączając z tego masę paliwa. Obliczyli, jaką masę należy zabrać z Ziemi, by zapewnić energię na 420-dniową misję. Ku swojemu zdumieniu stwierdzili, że masa systemu produkcji energii nie przekroczyłaby 10% całości masy ładunku.
      Z obliczeń wynika, że dla misji, która miałby lądować w pobliżu równika, łączna masa instalacji fotowoltaicznej oraz systemu przechowywania energii w postaci wodoru wyniosłaby około 8,3 tony. Masa reaktora Kilopower to z kolei 9,5 tony. Ich model uwzględnia nasłonecznienie, obecność pyłu i lodu w atmosferze, które wpływają na rozpraszanie światła słonecznego. Pokazuje też, jak w różnych warunkach optymalizować użycie paneli fotowoltaicznych.
      Uczeni zauważają, że mimo iż najbardziej wydajne panele słoneczne są wciąż drogie, to jednak główną rolę odgrywają koszty dostarczenia systemu zasilania na Marsa. Niewielka masa fotowoltaiki i elastyczność jej użycia to olbrzymie zalety tej technologii. Krzemowe panele na szklanym podłożu zamknięte w stalowych ramach, jakie są powszechnie montowana na dachach domów, nie mogą konkurować z najnowszymi udoskonalonymi reaktorami. Ale nowe, lekkie elastyczne panele całkowicie zmieniają reguły gry, stwierdzają autorzy analizy.
      Zwracają przy tym uwagę, że dzięki niższej masie można zabrać więcej paneli, więc będzie możliwość wymiany tych, które się zepsują. System Kilopower dostarcza więcej energii, zatem mniej takich reaktorów trzeba by dostarczyć, ale awaria jednego z urządzeń natychmiast pozbawiłaby kolonię znacznej części energii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance wylądował na Marsie po trwającej ponad pół roku podróży. W tym czasie był narażony na oddziaływanie dużych dawek promieniowania kosmicznego, które dodatkowo mogło zostać gwałtownie zwiększone przez koronalne wyrzuty masy ze Słońca. Na takie właśnie szkodliwe dla zdrowia promieniowanie narażeni będą astronauci podróżujący na Marsa. W przeciwieństwie do załogi Międzynarodowej Stacji Kosmicznej nie będą oni chronieni przez ziemską magnetosferę. Dlatego też wszelkie metody skrócenia podróży są na wagę zdrowia i życia.
      Emmanuel Duplay i jego koledzy z kanadyjskiego McGill University zaprezentowali na łamach Acta Astronautica interesującą koncepcję laserowego systemu napędowy, który mógłby skrócić załogową podróż na Marsa do zaledwie 45 dni.
      Pomysł na napędzanie pojazdów kosmicznych za pomocą laserów nie jest niczym nowym. Jego olbrzymią zaletą jest fakt, że system napędowy... pozostaje na Ziemi. Jedną z rozważanych technologii jest wykorzystanie żagla słonecznego przymocowanego do pojazdu. Żagiel taki wykorzystywałby ciśnienie fotonów wysyłanych w jego kierunku z laserów umieszczonych na Ziemi. W ten sposób można by rozpędzić pojazd do nieosiągalnych obecnie prędkości.
      Jednak system taki może zadziałać wyłącznie w przypadku bardzo małych pojazdów. Dlatego Duplay wraz z zespołem proponują rozwiązanie, w ramach którego naziemny system laserów będzie rozgrzewał paliwo, na przykład wodór, nadając pęd kapsule załogowej.
      Pomysł Kanadyjczyków polega na stworzeniu systemu laserów o mocy 100 MW oraz pojazdu załogowego z odłączanym modułem napędowym. Moduł składałby się z olbrzymiego lustra i komory wypełnionej wodorem. Umieszczone na Ziemi lasery oświetlałby lustro, które skupiałoby światło na komorze z wodorem. Wodór byłby podgrzewany do około 40 000 stopni Celsjusza, gwałtownie by się rozszerzał i uchodził przez dyszę wylotową, nadając pęd kapsule załogowej. W ten sposób, w ciągu kilkunastu godzin ciągłego przyspieszania kapsuła mogłaby osiągnąć prędkość około 14 km/s czyli ok. 50 000 km/h, co pozwoliłoby na dotarcie do Marsa w 45 dni. Sam system napędowy, po osiągnięciu przez kapsułę odpowiedniej prędkości, byłby od niej automatycznie odłączany i wracałby na Ziemię, gdzie można by go powtórnie wykorzystać.
      Drugim problemem, obok stworzenia takiego systemu, jest wyhamowanie pojazdu w pobliżu Marsa. Naukowcy z McGill mówią, że można to zrobić korzystając z oporu stawianego przez atmosferę Czerwonej Planety, jednak tutaj wciąż jest sporo niewiadomych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Marsjański śmigłowiec Ingenuity odnalazł spadochron, za pomocą którego łazik Perseverance wylądował na Marsie, oraz fragmenty osłony termicznej i inne elementy, które chroniły łazik podczas podróży w kierunku Czerwonej Planety, jak i w czasie wejścia w jej atmosferę.
      NASA wydłużyła czas misji Ingenuity po to, by przeprowadzić pionierskie loty, takie jak ten. Za każdym razem, gdy wznosi się w powietrze, Ingenuity sprawdza nowe fragmenty planety, oferując nam możliwości, jakich nie miała żadna z dotychczasowych misji planetarnych. Jest on idealnym przykładem możliwości i użyteczności platform lotniczych na Marsie, cieszy się Teddy Tzanetos z Jet Propulsion Laboratory, który stoi na czele zespołu odpowiedzialnego na Ingenuity.
      Pojazd z łazikiem na pokładzie wszedł w atmosferę Marsa z prędkością niemal 20 000 km/h. Całość musiała wytrzymać wysokie temperatury, silne drgania i inne ekstremalne zjawiska. Dotychczas pozostałości systemu lądowania mogliśmy oglądać tylko na zdjęciach zrobionych z oddali przez Perseverance. Teraz na Ziemię trafiły świetne ujęcia zrobione z góry, z niewielkiej wysokości.
      Inżynierowie z NASA zrobią użytek z przysłanych przez śmigłowiec fotografii. Uzyskane dzięki nim informacje posłużą do udoskonalenia urządzeń lądujących.
      Misja Perseverance ma najlepiej w historii udokumentowane lądowanie na Marsie. Kamery pokazały nam wszystko, do rozwinięcia spadochronów po pierwszy kontakt z powierzchnią planety. Jednak zdjęcia Ingenuity dostarczają zupełnie nowych informacji. Niezależnie od tego, czy ich analiza wykaże, że wszystkie elementy działały tak, jak przewidywaliśmy czy też stwierdzimy, że coś trzeba poprawić, będzie to nieocenioną pomocą dla planowania misji Mars Sample Return, dodaje Ian Clark, były inżynier systemów Perseverance, który jest obecnie odpowiedzialny za opracowanie fazy startu z powierzchni Marsa misji Mars Sample Return. To misja, w ramach której próbki Marsa zebrane przez Perseverance mają przylecieć na Ziemię.
      Na zrobionych przez Ingenuity zdjęciach widzimy osłonę oraz jej fragmenty, na które rozpadła się uderzając w Marsa z prędkością około 126 km/h. Wydaje się, że jej pokrycie nie zostało uszkodzone podczas wchodzenia w atmosferę planety. Widocznych jest też wiele z 80 lin łączących osłonę ze spadochronami. Widać też około 1/3 samego spadochronu. Reszta jest zapewne przykryta pyłem marsjańskim. Na pierwszy rzut oka można stwierdzić, że spadochron nie uległ uszkodzeniu w czasie rozwijania przy prędkościach ponaddźwiękowych.
      Inżynierów z NASA czeka teraz kilkanaście tygodni analiz zdjęć.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...