Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

W CERN zarejestrowano naruszenie Modelu Standardowego i odkryto nową cząstkę, leptokwark?

Recommended Posts

Podczas ostatnich badań w CERN zdobyto dane, które – jeśli zostaną potwierdzone – będą oznaczały, że doszło do naruszenia Modelu Standardowego. Dane te dotyczą potencjalnego naruszenia zasady uniwersalności leptonów. O wynikach uzyskanych w LHCb poinformowano podczas konferencji Recontres de Moriond, na której od 50 lat omawia się najnowsze osiągnięcia fizyki oraz w czasie seminarium w CERN.

Podczas pomiarów dokonywanych w LHCb porównywano dwa typy rozpadu kwarków powabnych. W pierwszym z nich pojawiają się elektrony, w drugim miony. Miony są podobne do elektronów, ale mają około 200-krotnie większą masę. Elektron, mion i jeszcze jedna cząstka – tau – to leptony, które różnią się pomiędzy sobą zapachami. Zgodnie z Modelem Standardowym, interakcje, w wyniku których pojawiają się leptony, powinny z takim samym prawdopodobieństwem prowadzić do pojawiania się elektronów i mionów podczas rozpadu kwarka powabnego.

W roku 2014 zauważono coś, co mogło wskazywać na naruszenie zasady uniwersalności leptonów. Teraz, po analizie danych z lat 2011–2018 fizycy z CERN poinformowali, że dane wydają się wskazywać, iż rozpad kwarka powabnego częściej dokonuje się drogą, w której pojawiają się elektrony niż miony.

Istotność zauważonego zjawiska to 3,1 sigma, co oznacza, iż prawdopodobieństwo, że jest ono zgodne z Modelem Standardowym wynosi 0,1%. Jeśli naruszenie zasady zachowania zapachu leptonów zostanie potwierdzone, wyjaśnienie tego procesu będzie wymagało wprowadzenie nowych podstawowych cząstek lub interakcji, mówi rzecznik prasowy LHCb profesor Chris Parkes z University of Manchester.

Rozpad kwarka powabnego prowadzi do pojawienia się kwarka dziwnego oraz elektronu i antyelektronu lub mionu i antymionu. Zgodnie z Modelem Standardowym w procesie tym pośredniczą bozony W+ i Z0. Jednak naruszenie zasady uniwersalności leptonów wskazuje, że zaangażowana w ten proces może być jakaś nieznana cząstka. Jedna z hipotez mówi, że jest to leptokwark, masywny bozon, który wchodzi w interakcje zarówno z leptonami jak i z kwarkami.

Co istotne, dane z LHCb zgadzają się z danymi z innych anomalii zauważonych wcześniej zarówno w LHCb, jak i obserwowanych od 10 lat podczas innych eksperymentów na całym świecie. Nicola Serra z Uniwersytetu w Zurichu mówi, że jest zbyt wcześnie by wyciągać ostateczne wnioski. Jednak odchylenia te zgadzają się ze wzorcem anomalii obserwowanych przez ostatnią dekadę. Na szczęście LHCb jest odpowiednim miejscem, w którym możemy sprawdzić potencjalne istnienie nowych zjawisk fizycznych w tego typu rozpadach. Musimy przeprowadzić więcej pomiarów.

LHCb to jeden z czterech głównych eksperymentów Wielkiego Zderzacza Hadronów.Jego zadaniem jest badanie rozpadu cząstek zawierających kwark powabny.

Artykuły na temat opisanych tutaj badań zostały opublikowane na stronach arXiv oraz CERN.


« powrót do artykułu
  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Podczas Konferencji nt. Fizyki Wysokich Energii Europejskiego Towarzystwa Fizycznego poinformowano o odkryciu w CERN-ie nowej egzotycznej cząstki oznaczonej Tcc+. To tetrakwark, hadron zawierający dwa kwarki i dwa antykwarki. Jest najdłużej żyjącą ze wszystkich egzotycznych cząstek i pierwszym tetrakwarkiem, składającym się z dwóch ciężkich kwarków i dwóch lekkich antykwarków.
      Kwarki to podstawowe cegiełki materii. Łączą się m.in. w bariony, takie jak proton i neutron, złożone z trzech kwarków cz w mezony, składające się z kwarka i antykwarka. W ostatnich latach informowaliśmy o odkryciu kolejnych egzotycznych cząstek, złożonych z czterech (tetra-) i pięciu (penta-) kwarków.
      Dotychczas poznaliśmy kilkanaście tetrakwarków, jednak ten najnowszy jest wyjątkowy. Składa się z dwóch kwarków powabnych oraz antykwarka górnego i dolnego. To pierwszy tetrakwark z dwoma kwarkami powabnymi, które nie zostały zrównoważone antykwarkami powabnymi. Fizycy mówią tutaj o „otwartym powabie”. W tym przypadku mamy więc do czynienia z „podwójnym otwartym powabem”. Cząstki zawierające kwark powabny i antykwark powabny niosą zaś „ukryty powab”.
      Tcc+ ma więcej wyjątkowych właściwości. Jest pierwszym tetrakwarkiem z dwoma ciężkimi kwarkami i dwoma lekkimi antykwarkami. Zgodnie z obowiązującymi teoriami, takie cząstki rozpadają się do mezonów, tworzonych przez ciężki kwark i lekki antykwark. Niektóre teorie mówią, że masa takiego tetrakwarka powinna być bardzo zbliżona do masy obu mezonów, w które tetrakwark się rozpada. Podobieństwo masy powoduje, że rozpad tego typu tetrakwarków jest dość trudny, skutkując ich dłuższym życiem. I rzeczywiście, badacze z LHCb zauważyli, że Tcc+ jest najdłużej istniejącym egzotycznym hadronem jaki znamy.
      Odkrycie to otwiera drogę do poszukiwań jeszcze cięższych cząstek tego typu, gdzie w miejscu jednego lub obu kwarków powabnych będzie znajdował się kwark niski. Z obliczeń wynika, że cząstka zawierająca dwa kwarki niskie byłaby szczególnie interesująca, gdyż jej masa powinna być mniejsza niż suma mas jakiejkolwiek pary mezonów B. To by oznaczała, że cząstka taka nie mogłaby się rozpaść za pośrednictwem oddziaływań silnych. Do jej rozpadu mogłoby dojść za pośrednictwem oddziaływań słabych, a to by oznaczało, że jej czas życia byłby o wiele rzędów wielkości dłuższy niż jakiegokolwiek znanego egzotycznego hadronu.
      Nowy tetrakwark to bardzo dobry obiekt do dalszych badań. Rozpada się w dość łatwe do wykrycia cząstki, emitując przy tym niewielką ilość energii, dzięki czemu możliwe będzie bardzo dokładne badanie Tcc+. Będzie on zatem stanowił dobry obiekt do testowania obowiązujących modeli teoretycznych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zderzenia pomiędzy wysoko energetycznymi protonami po raz pierwszy pozwoliły na przyjrzenie się niezwykłym hiperonom. Zaliczane są one do cząstek dziwnych. To bariony zawierające co najmniej jeden kwark dziwny. Hiperony prawdopodobnie występują w jądrach gwiazd neutronowych, zatem ich badanie może sporo zdradzić na temat samych gwiazd oraz środowisk o tak ekstremalnie upakowanej materii.
      Hiperony są hadronami, czyli cząstek złożonych z co najmniej dwóch kwarków. Interakcje pomiędzy hadronami mają miejsce za pośrednictwem oddziaływań silnych. Niezbyt wiele wiemy o oddziaływaniach pomiędzy hadronami, a większość tej wiedzy pochodzi z badan, w których używane są protony i neutrony. Natura oddziaływań silnych powoduje, że bardzo trudno jest czynić w ich przypadku przewidywania teoretyczne. Trudno jest więc teoretycznie badać, jak hadrony oddziałują między sobą. Zrozumienie tych oddziaływań jest często nazywane „ostatnią granicą” Modelu Standardowego.
      Protony, neutrony i hiperony składają się z trzech kwarków. O ile jednak protony i neutrony zbudowane są wyłącznie z kwarków górnych i dolnych, to hiperony zawierają co najmniej jeden kwark dziwny. Badanie hiperonów daje nam zatem nowe informacje na temat oddziaływań silnych.
      Podczas badań naukowcy z CERN, pracujący przy eksperymencie ALICE, przyglądali się wynikom zderzeń wysoko energetycznych protonów, w wyniku których w otoczeniu miejsca kolizji pojawiają się „źródła” cząstek. Dochodzi do interakcji kwarków i gluonów, tworzących nowe cząstki. Powstają też pary hiperonów i protonów. Naukowcy, mierząc korelacje momentów pędu w takich parach zbierają informacje na temat sposobu ich interakcji.
      Interakcje takie można w ograniczonym stopniu przewidywać na podstawie modelowania zachowania kwarków i gluonów. Najnowsze badania wykazały, że przewidywania niemal idealnie zgadzają się z pomiarami.
      Ze szczegółami badań można zapoznać się na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN udostępnił swój pierwszy publiczny Raport Środowiskowy, dotyczący m.in. emisji gazów cieplarnianych. Dowiadujemy się z niego, że w 2018 roku ta instytucja wyemitowała 223 800 ton ekwiwalentu dwutlenku węgla. To tyle co duży statek wycieczkowy.
      Z raportu dowiadujemy się, że aż 3/4 tej emisji powodują zawierające fluor gazy, używane podczas prac z wykrywaczami cząstek. CERN planuje zmniejszenie emisji.
      Obejmujący lata 2017–2018 raport sprowokował debatę zarówno wśród pracowników, jak i wśród osób z zewnątrz. Zaczęliśmy zastanawiać się, co można zrobić z tym już teraz i w jaki sposób projektować akceleratory przyszłości, mówi Frederick Bordry, dyrektor CERN ds. akceleratorów i technologii.
      Raport porusza wszelkie kwestie związane z wpływem CERN na środowisko, od emitowanego hałasu, po wpływ na bioróżnorodność, zużycie wody czy emitowane promieniowanie. Specjaliści orzekli, że to redukcja gazów cieplarnianych będzie miała największy wpływ na poprawę stanu środowiska. Inżynierowie już planują uszczelnienie miejsc wycieków w LHC i zoptymalizowanie systemu cyrkulacji gazu. Docelowo chcą, żeby w roli chłodziwa czujników gazy zawierające fluor zostały zastąpione przez dwutlenek węgla, który ma kilka tysięcy razy mniejszy potencjał cieplarniany. Gdy budowaliśmy Wielki Zderzacz Hadronów, nie docenialiśmy potencjału cieplarnianego tych gazów. Naszym głównym zmartwieniem była dziura ozonowa, mówi Bordry. Na razie CERN chce obniżyć swoją bezpośrednią emisję gazów cieplarnianych o 28% do roku 2024.
      Raport uwzględnia też pośrednią emisję generowaną przez CERN. Laboratorium zużywa bowiem tyle energii elektrycznej co niewielkie miasteczko. Zakładamy w LHC systemy odzyskiwania energii. Jesteśmy pionierami wykorzystania nadprzewodnictwa na duża skalę, co może zwiększyć efektywność sieci energetycznych.
      Jak jednak zauważają specjaliści, znacznie lepiej jest emitować gazy cieplarniane w celu dokonywania odkryć naukowych, niż w innych celach. Postęp naukowy jest bardzo ważny i trudno znaleźć ważniejszą instytucję naukową niż CERN. Osobiście wolę, byśmy emitowali gazy cieplarniane pracując w CERN niż lecąc samolotem do Pragi, by się upić na weekend, mówi John Barrett, z Sustainability Research Institute.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy pracujący przy Wielkim Zderzaczu Hadronów (LHC) poinformowali o nowym sposobie używania tego niezwykłego urządzenia badawczego. Eksperyment ATLAS zaobserwował pierwsze zderzenie fotonów, w wyniku którego powstała para bozonów W, będących nośnikami oddziaływań słabych. Okazuje się zatem, że LHC można wykorzystywać też do bezpośrednich badań oddziaływań słabych. Obserwacje potwierdzają jedno z najważniejszych przewidywań teorii dotyczących tych oddziaływań – ich nośniki mogą oddziaływać ze sobą.
      Klasyczna elektrodynamika mówi, że dwa przecinające się promienie światła nie odbiją się od siebie, nie będą się absorbowały lub nawzajem niszczyły. Jednak elektrodynamika kwantowa dopuszcza interakcje pomiędzy fotonami.
      Nie są to pierwsze badania fotonów przeprowadzone przy użyciu LHC. Obserwowano rozpraszanie światła przez światło, kiedy to pary fotonów wchodziły w interakcje tworząc inną parę fotonów. W eksperymencie ATLAS zdobyto pierwsze bezpośrednie dowody takiego rozpraszania.
      Podczas nowych eksperymentów badano zupełnie inne zjawisko. W wyniku interakcji pomiędzy dwoma fotonami pojawiły się dwa bozony W o przeciwnych ładunkach elektrycznych. Już kilka lat temu uzyskano pierwsze wskazówki, że zjawisko takie zachodzi. Potrzeba było jednak więcej danych, by je potwierdzić. Teraz naukowcy zyskali pewność. Wynosi ona bowiem 8,4 sigma, a o odkryciu mówi się już przy poziomie 5 sigma.
      W centralnym detektorze były widoczne tylko produktu rozpadu dwóch bozonów W, elektron i mion. Co prawda pary bozonów W powstają też – i to znacznie częściej – w wyniku interakcji pomiędzy kwarkami i gluonami w zderzających się protonach, jednak w takim przypadku widoczne są jeszcze inne sygnały niż gdy powstają one w wyniku zderzeń fotonów.
      Nowe badania potwierdziły, że bozony cechowania – bozony W, Z i fotony – również wchodzą ze sobą w interakacje. Ich badanie może stać się nowym sposobem testowania Modelu Standardowego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      CERN informuje, że eksperymenty ATLAS i CMS zdobyły pierwsze dowody wskazujące, że bozon Higgsa rozpada się na dwa miony. Mion to cięższa kopia elektronu, jednej z podstawowych cząstek, z których zbudowany jest cała materia. O ile jednak elektrony są cząstkami pierwszej generacji, to miony należą do generacji drugiej. Rozpad bozonu Higgsa do mionów to rzadkie zjawisko, zachodzące w 1 na 5000 rozpadów. To ważne odkrycie, gdyż wskazuje, że bozon Higgsa wchodzi w interakcje z cząstkami drugiej generacji.
      Według Modelu Standardowego cała materia zbudowana jest z fermionów. Jest ich 12 i dzielą się na 6 kwarków i 6 leptonów. Otaczającą nas materię trwałą tworzą cząstki pierwszej generacji: elektron, neutrino elektronowe, kwark dolny i kwark górny. Druga generacja cząstek to mion, neutrino mionowe, kwark dziwny i kwark powabny. Istnieje jeszcze trzecia generacja fermionów (taon, neutrino taonowe, kwark spodni i kwark szczytowy) oraz 4 bozony cechowania przenoszące oddziaływania i bozon Higgsa, nadający masę cząstkom, z którymi oddziałuje.
      Bozon Higgsa jest przedmiotem intensywnych badań od czasu jego wykrycia w 2012 roku. Jego znalezienie było głównym zadaniem Wielkiego Zderzacza Hadronów. Jedną z podstawowych metod badań jest obserwacja jego rozpadu. Eksperyment CMS wykazał, że bozon Higgsa rozpada się na dwa miony a prawdopodobieństwo takiego wydarzenia wynosi 3 sigma. Oznacza to, że jeśli taki rozpad nie istnieje, to pojawienie się takich danych w CMS wynosi mniej niż 1:700. Z kolei ATLAS wskazał na istnienie rozpadu Higgsa do dwóch mionów z prawdopodobieństwem 2 sigma. Tutaj szanse na otrzymanie fałszywego sygnału to 1:40. Razem z pewnością znacznie przekraczającą 3 sigma można mówić o istnieniu opisanego mechanizmu. Odkrycie ogłasza się przy 5 sigma.
      Wydaje się, że bozon Higgsa wchodzi w interakcje z cząstkami elementarnymi drugiej generacji w sposób zgodny z Modelem Standardowym. Podczas kolejnej kampanii badawczej będziemy uściślali te wyniki, mówi Roberto Carlin, rzecznik prasowy CMS.
      Bozon Higgsa to kwantowa manifestacja pola Higgsa, które nadaje masę cząstkom elementarnym. Mierząc tempo rozpadu bozonu Higgsa w różne cząstki fizycy mogą obliczyć siłę ich interakcji z polem Higgsa. Im szybszy rozpad, tym silniejsze interakcje.
      Dotychczas Wielki Zderzacz Hadronów wykazał, że bozon Higgsa rozpada się w różne bozony, jak W i Z czy cięższe fermiony, jak leptony tau. Zmierzono też interakcje z najcięższymi kwarkami, górnym i spodnim. Miony są znacznie lżejsze, więc słabiej reagują z polem Higgsa.
      Pomiary bozonu Higgsa osiągnęły wyższy poziom precyzji, dzięki czemu możemy badać rzadsze sposoby rozpadu, mówi Karl Jakobs, rzecznik prasowy eksperymentu ATLAS.
      Poważnym problemem w prowadzeniu opisywanych tutaj badań jest fakt, że na każdy bozon Higgsa rozpadający się na dwa miony przypadają tysiące par mionów powstających w wyniku innych procesów. Charakterystyczną sygnaturą bozonu Higgsa po rozpadzie do mionów jest niewielki nadmiar mas par mionów przy energii 125 GeV, czyli masie bozonu Higgsa. Wyizolowanie tego rozpadu nie jest łatwe. By to zrobić naukowcy musieli mierzyć energię, pęd oraz moment pędu mionów.
      Specjaliści spodziewają się, że dzięki kolejnym kampaniom badawczym oraz wykorzystaniu w przyszłości High-Luminosity LHC można będzie mówić o osiągnięciu pewności (5 sigma) i odkryciu, że bozon Higgsa rozpada się do mionów.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...