Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Aerożel – superlekki materiał, składający się głównie z powietrza, zasili przyszłe misje kosmiczne

Recommended Posts

Superlekkie materiały składające się w ponad 99% z powietrza mogą stać się kluczowymi elementami dostarczającymi energię przyszłym misjom kosmicznym. Materiały te, porowate aerożele węglowe, tworzą elektrody superkondensatora zbudowanego na zlecenie NASA przez Merced nAnomaterials Center for Energy and Sensing, University of California, Santa Cruz (UCSC), University of California, Merced i Lawrence Livermore National Laboratory. Superkondensator przyda się też podczas prac na biegunach, gdyż działa w bardzo niskich temperaturach.

Wiele pojazdów kosmicznych wymaga stosowania wewnętrznego ogrzewania. Łaziki pracujące na Marsie muszą mierzyć się ze średnimi temperaturami rzędu -62 stopnie Celsjusza. W zimie temperatura spada poniże -125 stopni Celsjusza. Dlatego też np. Perseverance wyposażony jest w grzałki, które dbają o to, by nie zamarzł elektrolit w akumulatorach łazika. Jednak grzałki i ich źródła zasilania to kolejne elementy dodające masy łazikowi, przez co rosną koszty i poziom skomplikowania misji.

Rozwiązaniem wielu problemów mogłyby być superkondensatory. To urządzenia, które łączą zalety akumulatorów i kondensatorów. Przede wszystkim są zdolne do przechowywania znacznie większych ilości energii niż kondensatory, chociaż nie są tak dobre w jej przechowywaniu jak akumulatory. Jednak nad akumulatorami mają tę przewagę, że można je ładować i rozładować w ciągu minut. Ponadto wytrzymują miliony cykli ładowanie/rozładowanie, podczas gdy akumulatory potrafią przetrwać jedynie kilka tysięcy takich cykli. W końcu, co ważne, w przeciwieństwie do akumulatorów nie działają dzięki reakcjom chemicznym, a dzięki przechowywaniu ładunków w formie naładowanych jonów umieszczonych na powierzchni elektrod.

Zespół pracujący pod kierunkiem Jennifer Lu z UC Merced i Yata Li z USCS stworzył elektrody do swojego kondensatora za pomocą druku 3D. Atramentem było połączenie celulozowych nanokrysztalów, które dostarczyły węgla, i krzemowych mikrosfer, tworzących podporę dla makroporów. W ten sposób powstał aerożel z porami o średnicy od kilku nanometrów do 500 mikrometrów. Utworzono hierarchiczną strukturę kanałów, które znakomicie zwiększają tempo, w jakim jony z elektrolitu przemieszczają się przez materiał, minimalizując drogę, którą muszą przebyć.

Uzyskany aerożel ma powierzchnię około 1750 m2/g, a stworzona z niego elektroda charakteryzuje się pojemnością elektryczną rzędu 148,6 F/g przy przyłożonym napięciu 5 mV/s. Twórcy elektrody wykazali, że działa ona przy temperaturze nawet -70 stopni Celsjusza, podczas gdy większość komercyjnie dostępnych akumulatorów litowo-jonowych i superkondensatorów przestaje działać w temperaturze -20 do -40 stopni Celsjusza, gdyż dochodzi do zamarznięcia elektrolitu.

Obecnie trwają testy mające na celu dokładne określenie wydajności elektrody przy niskich temperaturach. Prowadzimy testy w warunkach, jakie panują na Księżycu, Marsie i Międzynarodowej Stacji Kosmicznej, mówi Lu.

Szczegóły badań opublikowano na łamach Nano Letters.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Zamiast "Atramentem było połączenie", czytajcie "Ewenementem było połączenie".

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Międzynarodowy zespół naukowy stworzył idealną sałatkę dla astronautów – jest ona optymalna pod względem odżywczym i zawiera składniki, które można wyhodować na pokładzie pojazdu kosmicznego. W stworzeniu sałatki pomógł model komputerowy, któremu dostarczono danych z badań NASA dotyczących codziennego zapotrzebowania astronautów na składniki odżywcze.
      Idealna kosmiczna sałatka zawiera ściśle odmierzoną ilość soi, maku, jęczmienia, jarmużu, orzeszków ziemnych, batatów i słonecznika. Przepis na nią to wspólne dzieło ekspertów ds. farmakologii kosmicznej, rolnictwa i badań nad żywieniem z University of Adelaide i University of Nottingham. Symulowaliśmy połączenie 6–8 roślin, które zapewniają wszystkie składniki odżywcze potrzebne astronautom. Ich wymagania różnią się od tego, czego potrzebują ludzie na Ziemi. Istnieją dziesiątki roślin mogących zaspokoić potrzeby żywieniowe astronautów, jednak chcieliśmy znaleźć takie rośliny, które mają jak najwięcej składników odżywczych, ich mniejsze ilości dostarczają dużej ilości kalorii i które mogą być uprawiane na niewielkiej przestrzeni, wyjaśnia profesor Volker Hessel.
      Naukowcy wzięli pod uwagę ponad 100 różnych roślin. Na początku wybrali z nich rośliny, które dostarczą wszystkich składników odżywczych oraz odpowiedniej ilości kalorii, a do ich zapewnienia nie trzeba będzie zjeść więcej, niż ludzie zwykle jedzą na Ziemi. Ze względu na ograniczenia podczas podróży kosmicznych założono też, że sałatka idealna nie może składać się więcej niż z 10 składników, muszą być to rośliny nadające się do uprawy hydroponicznej w kosmosie, których uprawa zajmie jak najmniej miejsca. Ponadto rośliny musiały mieć minimalne wymagania dotyczące nawożenia, by uniknąć konieczności zabierania w podróż zbyt dużej ilości nawozu. Ważny był też wpływ składników sałatki na nastrój, zatem pod uwagę brano kolor, smak, teksturę, świeżość i zapach produktów. Pożywienie jest niezbędnym elementem zdrowia i szczęścia, więc trzeba wziąć pod uwagę wiele czynników, wyjaśnia Shu Liang z University of Nottingham.
      Teraz naukowcy chcą zaprojektować na potrzeby długotrwałych misji kosmicznych system, w którym uprawiane będą składniki niezbędne do przygotowania kosmicznej sałatki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance rozpoczął tworzenie na Marsie zapasowego magazynu próbek. W miejscu zwanym Three Forks złożona została tytanowa tuba z próbkami marsjańskich skał. W ciągu najbliższych 2 miesięcy łazik pozostawi tam w sumie 10 pojemników, tworząc pierwszy w historii skład próbek na innej planecie.
      Za 10 lat próbki mają trafić na Ziemię w ramach misji Mars Sample Return. Plan ich przywiezienia zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas śmigłowce zabiorą próbki ze składu zapasowego i dostarczą je do pojazdu. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który zawiezie je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przetransportuje próbki na Ziemię. W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033.
      Obecnie Perseverance ma na pokładzie 17 pojemników z próbkami, w tym 1 z próbką atmosfery. Pierwszy pojemnik złożony w Three Forks zawiera skały pobrane 31 stycznia 2022 roku na obszarze South Séítah w Kraterze Jezero.
      Cały proces składowania próbki trwał godzinę. Po tym, gdy pojemnik wypadł spod podwozia łazika, inżynierowie musieli sprawdzić, czy nie znajdzie się pod kołami Perseverance, gdy ten będzie odjeżdżał, ani czy nie ustawił się pionowo. Pojemniki na jednym końcu są płaskie, co ma ułatwić ich przyszłe zebranie. Jednak przez to istnieje ryzyko, że ustawią się pionowo. Podczas testów naziemnych działo się tak w 5% przypadków.


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dnia 20 lipca 1976 roku lądownik Viking 1 stał się pierwszym wysłanym przez człowieka pojazdem, który z powodzeniem wylądował i podjął pracę na Marsie. Na przysłanych przez niego zdjęciach naukowcy zobaczyli nie to, czego się spodziewali. Zamiast śladów wielkiej powodzi ujrzeli zagadkowy, pokryty głazami krajobraz. Teraz naukowcy z Planetary Science Institute dowodzą, że Viking 1 wylądował na krawędzi pola osadów powstałego w wyniku gigantycznego tsunami.
      Lądownik miał szukać śladów życia na Marsie, więc inżynierowie i naukowcy wykonali żmudną pracę wybrania miejsca lądowania na podstawie najwcześniejszych dostępnych zdjęć Marsa oraz danych pochodzących ziemskiego radaru badającego powierzchnię Czerwonej Planety, mówi główny autor badań, doktor José Alexis Palermo Rodriguez. Wybrali więc obszar, który wyglądał jak miejsce wielkie powodzi. Jednak okazało się, że jego wygląd nie odpowiada scenariuszowi „zwykłej” powodzi. Kolejne badania i zdjęcia Marsa sugerowały raczej, że doszło tam do tsunami. Teraz Rodriguez i jego zespół znaleźli pozostałość po prawdopodobnym sprawcy tsunami – krater uderzeniowy Pohl o szerokości 110 kilometrów.
      Krater znajduje się na północnych nizinach Marsa. Powstał na osadach, które prawdopodobnie uformowały się, gdy miejsce to zostało po raz pierwszy zalane podczas tworzenia się wielkiego oceanu. Na podstawie rozmiarów krateru i serii symulacji naukowcy doszli do wniosku, że przed 3,4 miliardami lat w Marsa uderzyła asteroida o średnicy około 9 lub 3 kilometrów – wszystko zależy od właściwości podłoża, na które spadła – i wywołała tsunami z falami o wysokości do 250 metrów, które powędrowały 1500 kilometrów od miejsca uderzenia.
      Gdy myślimy o tsunami wyobrażamy sobie ścianę wody zbliżającą się do wybrzeża i je zalewającą. Tutaj mogło przebiegać to inaczej. Mieliśmy ścianę czerwonawej wzburzonej wody poruszającej się w górę i w dół wraz z niesionym skałami i gruntem, mówi Rodriguez. Jako że Mars ma słabszą grawitację niż Ziemia, woda i skały opadały wolniej niż na naszej planecie.
      Uczeni z Planetary Science Institute mówią, że w miejscu lądowania Vikinga 1 zapewne znajdują się bardzo stare osady oceaniczne wyrzucone przez tsunami. Głazy widoczne na pierwszych zdjęciach przysłanych z powierzchni Marsa to prawdopodobnie skały przemieszczone przez megatsunami.
      Zdaniem uczonych uderzenie, które wywołało megatsunami na Marsie było bardzo podobne do upadku asteroidy, która zabiła dinozaury. W obu przypadkach asteroida spadła do płytkich wód (ok. 200 metrów głębokości), oba kratery uderzeniowe mają około 100 km średnicy i obaw wywołały fale o podobnej wysokości, które na podobną odległość zalały ląd.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W Centrum Badań Kosmicznych PAN zakończyła się budowa modelu inżynierskiego instrumentu GLOWS (GLObal solar Wind Structure). GLOWS to fotometr, który będzie liczył fotony odpowiadające długości fali promieniowania Lyman-α (121,56 nm). Zostanie on zainstalowany na pokładzie sondy kosmicznej IMAP (The Interstellar Mapping and Acceleration Probe), która rozpocznie swoją misję w 2025 roku.
      Sonda IMAP zostanie umieszczona w punkcie libracyjnym L1 i stamtąd będzie badała przyspieszenie cząstek pochodzących z heliosfery oraz interakcję wiatru słonecznego z lokalnym medium. Dane będą przesyłane na Ziemię w czasie rzeczywistym i posłużą do prognozowania pogody kosmicznej.
      Polski GLOWS będzie jednym z 10 instrumentów naukowych znajdujących się na pokładzie IMAP. Jego oś optyczna będzie odchylona o 75 stopni od osi obrotu satelity. Wraz z obrotem IMAP GLOWS będzie skanował okrąg, który codziennie będzie się przesuwał wraz ze zmianą orientacji całego IMAP. W ramach przygotowania eksperymentu zaprojektowaliśmy cały przyrząd: układ optyczny, elektronikę, system zasilania elektrycznego, oprogramowanie do zbierania danych na pokładzie i ich transmisji na Ziemię oraz koncepcję systemu przetwarzania danych na Ziemi, informuje profesor Maciej Bzowski, szef zespołu GLOWS.
      Zbudowaliśmy komputerowy model poświaty heliosferycznej, zbadaliśmy tło pozaheliosferyczne oczekiwane w eksperymencie, zidentyfikowaliśmy i wprowadziliśmy do modelu znane źródła astrofizyczne promieniowania Lyman-alfa, zbudowaliśmy listę gwiazd, które posłużą do kalibracji przyrządu. Zbudowaliśmy też prototyp GLOWS i uruchomiliśmy go w warunkach laboratoryjnych. Wreszcie sprawdziliśmy, że przyrząd widzi promieniowanie Lyman-alfa, które ma obserwować w kosmosie. Oznacza to, że zarejestrowaliśmy pierwsze światło, dodaje uczony.
      GLOS to pierwszy całkowicie polski instrument i eksperyment przygotowany na misję NASA. Otrzymaliśmy możliwość zarówno zaplanowania eksperymentu, zbudowania absolutnie własnego przyrządu i śledzenia rejestrowanych przez niego danych. Sądzę też, że jako pierwsi będziemy mogli przedstawić własne wyniki tych unikatowych pomiarów. Jesteśmy przekonani, że wkrótce po tym przedstawimy na forum międzynarodowym potwierdzenie naszych teorii które, były inspiracją tego kluczowego eksperymentu, podkreśliła profesor Iwona Stanisławska, dyrektor CBK PAN.
      Przed trzema miesiącami dokonano Critical Design Review instrumentu. Obok Polaków wzięli w nim udział m.in. eksperci z NASA, Uniwersytetu Johnsa Hopkinsa i Southwest Research Institute. Przegląd wypadł pomyślnie, co oznacza, że wydano zgodę na rozpoczęcie budowy właściwego urządzenia, które poleci w kosmos.
      Prace przy GLOWS pozwalają naszym naukowcom zdobyć cenne doświadczenie i umiejętności. Mogą one skutkować otwarciem w Polsce nowych perspektyw badawczych. Obserwacje satelitarne w zakresie UV to wciąż nowatorska i przyszłościowa dziedzina badań kosmosu. Unikatowe doświadczenia i bardzo specjalistyczna infrastruktura techniczna, w obu przypadkach zdobyte w trakcie realizacji GLOWS, stanowią doskonałą podstawę do realizacji w Polsce przyszłych misji satelitarnych. Tym bardziej, że obserwacje w zakresie UV proponuje szereg ważnych ośrodków naukowych, również polskich, wyjaśnia doktor habilitowany Piotr Orleański, zastępca dyrektora CBK PAN ds. rozwoju technologii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NASA wyznaczyła datę kolejnej próby startu misji Artemis I. Będzie ona miała miejsce 14 listopada, a 69-minutowe okienko startowe otworzy się o godzinie 6:07 czasu polskiego. Dotychczas podjęto dwie próby startu, a po drugiej z nich nie było pewne, czy we wrześniu uda się przeprowadzić trzecią próbę. Mimo, że usterki, które uniemożliwiły obie próby, udało się usunąć, do Florydy zaczął zbliżać się huragan Ian, w związku z czym podjęto decyzję o przetransportowaniu rakiety do hangaru.
      Przeprowadzone po przejściu huraganu inspekcje i analizy wykazały, że przygotowanie rakiety i stanowiska startowego nie wymaga zbyt dużo pracy. Zdecydowano więc o podjęciu drobnych napraw w systemie ochrony termicznej, ponownym załadowaniu lub wymianie akumulatorów, przeprowadzeniu niewielkich zmian w systemie awaryjnego przerwania lotu. Rakieta wyjedzie z hangaru w kierunku stanowiska startowego 4 listopada.
      NASA zarezerwowała sobie dwa rezerwowe okna startowe, na 16 i 19 listopada. Wystrzelenie misji podczas którejś z trzech wymienionych dat – 14, 16 lub 19 listopada – będzie oznaczało, że misja Artemis I potrwa około 26 dni.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...