Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Poszukując wyspy stabilności, znaleźli nowy darmsztad i nieznany wzbudzony stan kopernika

Recommended Posts

Naukowcy poszukujący „wyspy stabilności” odkryli nowy izotop darmsztadu i nowy stan wzbudzony kopernika-282. Stwierdzili jednocześnie, że „wyspy” należy szukać nie tam, gdzie przewidywały wcześniejsze teorie, ale nieco dalej. Wyprawa do wyspy stabilności obrała nowy kurs, stwierdził Anton Såmark-Roth z Uniwersytetu w Lund.

W latach 60. pojawiły się teorie dotyczące możliwego istnienia superciężkich pierwiastków. Stwierdzono wtedy, że w okolicy nieznanego jeszcze wówczas pierwiastka o liczbie atomowej 114 powinna istnieć „wyspa stabilności”, gdzie superciężkie pierwiastki będą trwały dłużej.

Najcięższym występującym w naturze pierwiastkiem jest uran, którego jądro zawiera 92 protony i 146 neutronów. Jądra cięższych pierwiastków, z powodu wzrastającej liczby protonów, są coraz bardziej niestabilne. Rozpadają się więc coraz szybciej, w ułamku sekundy. Jeśli jednak w jądrze pojawi się „magiczna liczba” protonów i/lub netronów, jądro takie staje się stabilne. Niedawno informowaliśmy, że CERN bada magię liczby 32. Pod koniec lat 60. fizycy teoretyczni przewidywali, że taka wyspa stabilności powinna istnieć wokół pierwiastka o liczbie atomowej 114.

Obecnie najcięższym znanym nam pierwiastkiem jest zsyntetyzowany w 2002 roku oganeson. Jego liczba atomowa to 118. Bardzo trudno jest go uzyskać, a jeszcze trudniej badać, gdyż czas półrozpadu tego pierwiastka to około 1 milisekundy.

To Święty Graal fizyki atomowej. Wielu naukowców marzy o odkryciu czegoś tak egzotycznego, jak długotrwały, a może nawet stabilny, superciężki pierwiastek, mówi Anton Såmark-Roth. Wszedł on w skład międzynarodowego zespołu pracującego pod kierunkiem profesora Dirka Rudolpha z Uniwersytetu w Lund.

Naukowcy wzięli na warsztat pierwiastek flerow o liczbie atomowej 114, a konkretnie jego dwa lżejsze izotopy flerow-288 i flerow-286.

W niemieckim Centrum Badań nad Ciężkimi Jonami (GSI Helmholtzzentrum für Schwerionenforschung) uczeni użyli synchrotronu, za pomocą którego przyspieszali do 10% prędkości światła atomy wapnia-48 i bombardowali nimi pluton-244. W ten sposób otrzymywali pojedyncze atomy flerowa i obserwowali ich rozpad. W czasie 18-dniowego eksperymentu zaobserwowali kilkadziesiąt takich rozpadów.

W czasie badań zauważyli nowe, nieznane dotychczas drogi rozpadu tego pierwiastka. Szczególnie interesujące były dwie. Pierwsza z nich, w ramach której flerow-288 rozpadał się do kopernika-284, a ten do nieznanego wcześniej darmstadu-280. W drugim interesującym łańcuchu zaobserwowano rozpad flerowu-286 do wzbudzonego kopernika-282, który zawierał parzystą liczbę protonów i parzystą neutronów. Nigdy wcześniej nie zauważono takiego zjawiska we wzbudzonym superciężkim jądrze.

Obserwacja obu tych łańcuchów oraz istnienie wzbudzonego kopernika-282 pozwala na opracowanie nowych modeli teoretycznych dotyczących zarówno flerowa-298, jak i wyspy stabilności.

To były trudne, ale bardzo udane badania. Teraz wiemy, że wyspy stabilności powinniśmy poszukiwać nie w okolicach 114., ale 120. pierwiastka, który jeszcze nie został odkryty, mówi Såmark-Roth.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Dziwne - mapy z wyspą stabilności w okolicach 120 a nawet powyżej oglądałam już z 10 lat temu.

Share this post


Link to post
Share on other sites
Posted (edited)

No to jak dalej grają w totolotka, podobnie jak w przypadku bozonu higgsa. To ja sobie też zagram. Mój szczęśliwy numerek to 82. 

Edited by l_smolinski

Share this post


Link to post
Share on other sites
2 godziny temu, KopalniaWiedzy.pl napisał:

W drugim interesującym łańcuchu zaobserwowano rozpad flerowu-286 do wzbudzonego kopernika-282, który zawierał równą liczbę protonów i neutronów.

:unsure: Może ktoś mnie poprawi, ale dodaję 112 do 112 i ni cholery nie chce mi wyjść 282...

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites
Posted (edited)
43 minuty temu, Astro napisał:

dodaję 112 do 112 i ni cholery nie chce mi wyjść 282...

Z matmą u mnie słabo. Tuszę iż literówka. Może chodzi o ten drugi Kopernik ze 141 protonami.

Edited by Jajcenty

Share this post


Link to post
Share on other sites
4 godziny temu, Astro napisał:

:unsure: Może ktoś mnie poprawi, ale dodaję 112 do 112 i ni cholery nie chce mi wyjść 282...

Dałem ciała. Już poprawiam :)

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Jedną z największych tajemnic fizyki jądrowej jest odpowiedź na pytanie, dlaczego wszechświat jest zbudowany z takich a nie innych pierwiastków. Dlaczego nie z innych? Naukowców szczególnie interesują procesy fizyczne stojące u podstaw powstania ciężkich pierwiastków, jak złoto, platyna czy uran. Obecnie uważa się, że powstają one podczas łączenia się gwiazd neutronowych oraz eksplozji gwiazd.
      W Argonne National Laboratory opracowano nowe techniki badania natury i pochodzenia ciężkich pierwiastków, a uczeni z Argonne stanęli na czele międzynarodowej grupy badawczej, która prowadzi w CERN eksperymenty mające dać nam wgląd w procesy powstawania egzotycznych jąder i opracowani modeli tego, co dzieje się w gwiazdach i wydarzeń we wczesnym wszechświecie.
      Nie możemy sięgnąć do wnętrza supernowych, więc musimy stworzyć na Ziemi ekstremalne warunki, jakie w nich panują i badać reakcje, jakie tam zachodzą, stwierdził fizyk Ben Kay z Argonne National Laboratory i główny autor najnowszych badań.
      Uczonym biorącym udział w projekcie udało się – jako pierwszym w historii – zaobserwować strukturę jądra o mniejszej liczbie protonów niż w jądrze ołowiu i o liczbie neutronów przekraczających 126. To jedna z liczb magicznych fizyki jądrowej. Liczba magiczne dla protonów i neutronów wynoszą m.in. 8, 20, 28, 50 i 126. To wartości kanoniczne. Fizycy wiedzą, że jądra atomów o takich wartościach charakteryzują się zwiększoną stabilnością. Jądra o liczbie neutronów powyżej 126 są słabo zbadane, gdyż trudno je uzyskać. Wiedza o ich zachowaniu jest kluczowa dla zrozumienia procesu wychwytu neutronu (proces r), w wyniku którego powstaje wiele ciężkich pierwiastków.
      Obecnie obowiązujące teorie przewidują, że proces r zachodzi w gwiazdach. W tych bogatych w neutrony środowiskach jądra atomowe mogą rosnąć wychwytując neutrony i tworząc cięższe pierwiastki. Proces ten jest na tyle szybki, że nowe cięższe pierwiastki tworzą się zanim jeszcze dojdzie do rozpadu.
      Twórcy eksperymentu skupili się na izotopie rtęci 207Hg. Jego badanie może bowiem rzucić światło na ich bezpośrednich sąsiadów, jądra bezpośrednio zaangażowane w proces r. Naukowcy najpierw wykorzystali infrastrukturę HIE-ISOLDE w CERN. Wysokoenergetyczny strumień protonów skierowali na roztopiony ołów. W wyniku kolizji powstały setki egzotycznych radioaktywnych izotopów. Odseparowali z nich 206Hg i w akceleratorze HIE-ISOLDE wytworzyli strumień jąder o najwyższej osiągniętej tam energii. Strumień skierowali na deuter znajdujący się w ISOLDE Solenoidal Spectrometer.
      Żadne inne urządzenie na świecie nie jest w stanie wytworzyć strumienia jąder rtęci o tej masie i nadać mu takiej energii. To w połączeniu z wyjątkową rozdzielczością ISS pozwolió nam na przeprowadzenie pierwszych w historii obserwacji stanów wzbudzonych 207Hg, mówi Kay.  Dzięki ISS naukowcy mogli więc obserwować, jak jądra 206Hg przechwyciły neutron stając się 207Hg.
      Deuter to ciężki izotop wodoru. Zawiera proton i neutron. Gdy 206Hg przechwytuje z niego neutron, dochodzi do odrzutu protonu. Emitowane w tym procesie protony trafiają do detektora w ISS, a ich pozycja i energia zdradzają kluczowe informacje o strukturze jądra. Informacje te mają bardzo duży wpływ na proces r i uzyskane w ten sposób dane pozwalają na przeprowadzenie istotnych obliczeń.
      ISS korzysta z pionierskiej koncepcji opracowanej przez Johna Schiffera z Argonne National Laboratory. Na podstawie jego pomysłu zbudowano w Argone urządzenie HELIOS. Pozwoliło ono na badanie właściwości jąder atomowych, których wcześniej nie można było badać. HELIOS stał się inspiracją do zbudowania w CERN-ie ISS. Urządzenie to pracuje od 2008 roku i uzupełnia możliwości HELIOS.
      Przez ostatnich 100 lat fizycy mogli zbierać informacje o jądrach atomowych dzięki bombardowaniu ciężkich jąder lekkimi jonami. Jednak reakcja przeprowadzana w drugą stronę, gdy ciężkie jądra uderzały w lekkie cele, prowadziła do pojawiania się wielu zakłóceń, które trudno było wyeliminować. Udało się to dopiero za pomocą HELIOS.
      Gdy ciężka kula uderza w lekki cel dochodzi do zmiany kinematyki i uzyskane w ten sposób spektra są skompresowane. John Schiffer zauważył, że gdy do takiej kolizji dochodzi wewnątrz magnesu, wyemitowane w jej wyniku protony wędrują po spiralnym torze w kierunku detektora. Opracował pewną matematyczną sztuczkę, która opisuje tę kinematyczna kompresję, otrzymujemy więc zdekompresowane spektrum, z którego możemy wnioskować o strukturze jądrowej, wyjaśnia Kay.
      Pierwsze analizy uzyskanych danych potwierdziły prawdziwość przewidywań teoretycznych. Naukowcy planują zatem kolejne eksperymenty, podczas których chcą wykorzystać inne jądra z obszaru 207Hg.
      Ze szczegółami badań zapoznamy się na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      To kolizja, w wyniku której powstał Księżyc, dostarczyła na Ziemię składniki niezbędne do powstania życia, uważają naukowcy z Rice University. Ponad 4,4 miliarda lat temu Ziemia zderzyła się z inną planetą, a skutkiem tej kolizji było powstanie Księżyca. Amerykańscy uczeni twierdzą, że nie był to jej jedyny efekt. Ich zdaniem podczas zderzenia nasza planeta zyskała większość obecnego na niej węgla i azotu.
      Z badań nad prymitywnymi meteorytami wiemy, że Ziemia i inne wewnętrzne planety Układu Słonecznego są ubogie w lotne pierwiastki. Czas i sposób ich pojawienia się na Ziemi jest przedmiotem debaty naukowej. Nasza teoria jest pierwszą, która wyjaśnia, zgodnie ze wszystkimi dowodami geochemicznymi, czas i sposób pojawienia się tych pierwiastków na naszej planecie, mówi współautor badań Rajdeep Dasgupta.
      Prowadzone przez Dasguptę laboratorium specjalizuje się w badaniu reakcji geochemicznych zachodzących w głębi planety w warunkach wysokiej temperatury i ciśnienia. Podczas serii eksperymentów Dasgupta i jego student Damanveer Grewal postanowili przetestować hipotezę, że lotne związki chemiczne trafiły na Ziemię wskutek zderzenia z protoplanetą, której jądro było bogate w siarkę. Zawartość siarki jest tutaj istotna, gdyż dysponujemy licznymi dowodami eksperymentalnymi wskazującymi, że węgiel, siarka i azot są obecne w każdej części Ziemi, z wyjątkiem jej jądra. Jądro nie wchodzi w interakcje z resztą Ziemi, ale wszystko ponad nim, płaszcz, skorupa, hydrosfera i atmosfera są ze sobą połączone i wymieniają się materiałem, mówi Grewal.
      Od dawna istnieje teoria mówiąca, że Ziemia zyskała lotne pierwiastki z bogatych w nie meteorytów, które bombardowały planetę już po uformowaniu się jądra. Co prawda sygnatury izotopowe tych pierwiastków są zgodne z sygnaturami izotopowymi pierwiastków znajdowanych obecnie na prymitywnych meteorytach zwanych chondrytami węglowymi, to stosunek węgla do azotu jest różny. Na Ziemi wynosi on około 40:1, tymczasem w chondrytach węglowych jest to 20:1.
      Podczas swoich eksperymentów, w czasie których symulowano ciśnienie i temperatury podczas formowania się jądra ziemi, Grewal i jego zespół testowali hipotezę, zgodnie z którą mamy bogate w siarkę jądro, ale brakuje w nim azotu i węgla, przez co poza jądrem stosunek tych pierwiastków jest inny niż powinien. Podczas serii testów z uwzględnieniem różnych temperatur i ciśnienia Grewal obliczał, jak dużo węgla i azotu może dostać się do jądra przy trzech różnych scenariuszach: gdy nie ma w nim siarki, gdy jest 10% siarki i gdy siarka stanowi 25% jądra.
      Na azot niemal nie miało to wpływu. Pozostawał on rozpuszczalny w stopach powiązanych z krzemianami. Jedynie przy założeniu najwyższej koncentracji siarki obserwowaliśmy, że rozpoczynało się jego usuwanie z jądra. Węgiel zaś zachowywał się zupełnie inaczej. Znacznie gorzej rozpuszczał się w stopach z obecnością siarki i było go w nich około 10-krotnie mniej pod względem wagowym niż w stopach bez siarki.
      Po uzyskaniu takich wyników naukowcy, znając koncentrację i stosunek pierwiastków zarówno na Ziemi jak i na meteorytach, stworzyli symulację komputerową, której celem było opracowanie najbardziej prawdopodobnego scenariusza, wedle którego mamy na Ziemi takie a nie inny rozkład lotnych pierwiastków. Uzyskanie odpowiedzi wymagało sprawdzenia około miliarda(!) różnych scenariuszy i porównania uzyskanych w każdym z nich wyników z warunkami, jakie obecnie panują w Układzie Słonecznym.
      Okazało się, że wszystkie dostępne dowody – sygnatury izotopów, stosunek węgla do azotu oraz całkowita ilość węgla, azotu i siarki na Ziemi z wyjątkiem jej jądra – wskazują na to, że pierwiastki te trafiły na naszą planetę wskutek kolizji z planetą wielkości Marsa o bogatym w siarkę jądrze, w wyniku której powstał Księżyc, mówi Grewal.
      Nasze badania sugerują, że skaliste podobne do Ziemi planety mają większą szansę na nabycie pierwiastków niezbędnych do powstania życia, jeśli doszło tam do zderzenia z inną planetą zbudowaną z innych pierwiastków, prawdopodobnie pochodzącą z innej części dysku protoplanetarnego, mówi Dasgupta, który jest też głównym badaczem w finansowanym przez NASA programie CLEVER Planets. Celem tego programu jest badanie, jak niezbędne do życia pierwiastki mogły trafić na Ziemię i inne skaliste planety.
      Zdaniem Dasgupty jest mało prawdopodobne, by Ziemia zyskała wspomniane pierwiastki samodzielnie, w czasie swojego formowania się. To zaś oznacza, że możemy rozszerzyć obszar poszukiwań sposobu, w jaki pierwiastki lotne trafiają na jedną planetę i tworzą życie w znanej nam formie, dodaje Dasgupta.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Astronomowie ze szwedzkiego Uniwersytetu w Lund znaleźli możliwe wytłumaczenie tajemniczego zjawiska, odkrytego w ubiegłym roku w pobliżu centrum naszej galaktyki. Wówczas zauważono, że w pobliżu centralnej czarnej dziury, Sagittariusa A*, znajdują się duże ilości skandu. Szwedzi twierdzą, że to iluzja optyczna.
      W ubiegłym roku pojawiła się praca naukowa, której naukowcy donosili, że w czerwonych olbrzymach, oddalonych od czarnej dziury nie więcej niż o 3 lata świetlne, znajduje się duża ilość trzech różnych pierwiastków.
      Teraz naukowcy z Uniwersytetu w Lund we współpracy z kolegami z Uniwersytetu Kalifornijskiego z Los Angeles, twierdzą, że zauważone widmo spektroskopowe skandu, wanadu i itru, to złudzenie optyczne. Te czerwone olbrzymy zużyły większość swojego wodoru i ich temperatura jest o połowę niższa niż temperatura Słońca, mówi główny autor badań, doktorant Brian Thorsbro. Wedle najnowszych badań, niska temperatura gwiazd przyczyniła się do powstania iluzji optycznej. Elektrony wspomnianych pierwiastków zachowują się inaczej w niższych temperaturach niż w wyższych. Podczas badania widma spektroskopowego może to wprowadzać w błąd. Do takich wniosków doszli astronomowie i fizycy atomowi.
      Thorsbro i jego zespół wykorzystali podczas swoich badań m.in. Teleskopy Kecka na Hawajach. Wykonali szczegółowe mapowanie centralnych obszarów Galaktyki, skupiając się na znajdujących się tam gwiazdach i badając, jakie pierwiastki zawierają. To światowej klasy badania w tym sensie, że wykonaliśmy szczegółowe mapowanie składu gwiazd wielkiej centralnej gromady otaczającej czarną dziurę, wyjaśnia Nnils Ryde z Uniwersytetu w Lund.
      Na podstawie badań w bliskiej podczerwieni, z wykorzystaniem technologii, która jest dostępna dopiero od niedawna, uczeni doszli do wniosku, że wcześniejsze doniesienia to nie naukowa sensacja, a złudzenie optyczne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Odkąd Mendelejew odkrył, że właściwości pierwiastków układają się w regularny sposób, wiele ich cech można było po prostu przewidzieć. Niestety, nie wszystko i do dziś niektóre przewidywania nie zostały potwierdzone, choć intensywne badania trwają.
      Wiele tajemnic kryje się jeszcze we właściwościach izotopów pierwiastków, czyli form posiadających różną liczbę neutronów w jądrze. Część izotopów jest stabilna, część się wolniej lub szybciej rozpada, ale pierwiastki cięższe od ołowiu nie posiadają w ogóle izotopów stabilnych, czyli są mniej lub bardziej promieniotwórcze.
      Pierwiastki zyskują stabilność wtedy, gdy ich protony lub neutrony występują w pewnych określonych liczbach, czyli w pełni „zamykają" powłoki nukleonowe. Te liczby nazywane są magicznymi, a pierwiastek z obiema liczbami (protonów i neutronów) magicznymi będzie superstabilny. Tak głosi hipoteza tak zwanej „wyspy stabilności", której naukowcy szukają od lat. Przewidywana wyspa stabilności na układzie okresowym pierwiastków prezentuje się właśnie jako zamknięty obszar wśród izotopów niestabilnych.
      Nad uzyskaniem stabilnych izotopów superciężkich pierwiastków pracuje międzynarodowy zespół, który choć nie dopłynął jeszcze do „wyspy", osiągnął wiele sukcesów. Pracuje w nim dwudziestu naukowców z Berkeley Lab, UC Berkeley, Lawrence Livermore National Laboratory, niemieckiego GSI Helmholtz Center for Heavy Ion Research, Oregon State University, i norweskiego Institute for Energy Technology; pod kierunkiem Heino Nitsche z Berkeley Lab's Nuclear Science Division (NSD).
      Ostatnie ich osiągnięcie to uzyskanie sześciu nowych izotopów pierwiastków: ruthefordu (l.a. 104), seaborgu (106), hasu (108), darmsztadtu (110), copernicium (112) oraz nie posiadającego jeszcze nazwy pierwiastka o liczbie atomowej 114 (nazywanego tymczasowo od liczby protonów ununquadium). Nowe pierwiastki „produkuje" się przy pomocy cyklotronu, ta grupa używa 88-calowego cyklotronu w Berkeley. Nowe izotopy uzyskano bombardując tarcze z plutonu 242 (posiadającego 242 nukleony: protony i neutrony) strumieniem rozpędzonych cząsteczek ciężkiego wapnia 48. Poza intensywnym bombardowaniem ze ściśle określonymi parametrami poszukiwanie nowych izotopów wymaga odpowiedniej aparatury detektora, który odsieje nieprzydatne cząstki i wyłowi nieliczne interesujące, poszukiwane atomy.
      Najciekawszym na razie osiągnięciem zespołu jest nowy izotop ununquadium (większość jego członków pracowała w zespole, który ten pierwiastek odkrył). Najcięższy do tej pory odkryty izotop to ununquadium 298, wywołuje on tak wiele zainteresowania, ponieważ zbliża się już do od dawna poszukiwanego ununquadium 298. Czemu akurat 298? Ponieważ, według dotychczasowych przewidywań taki właśnie izotop osiągnie mityczną wyspę stabilności, czyli nie będzie podlegał rozpadowi promieniotwórczego.
      Sami członkowie zespołu studzą jednak entuzjazm i to z dwóch powodów. Po pierwsze, uważają, że do stworzenia ununquadium 289 posiadany przez nich cyklotron jest zbyt słaby i potrzebne będą większe moce. Po drugie, niektóre teorie przewidują, że stabilność mogą osiągnąć dopiero pierwiastki posiadające w jądrze 120 lub 126 protonów. A do nich jeszcze jest dość daleko. Wygląda więc, że odyseja po morzu izotopów w poszukiwaniu wyspy stabilności jeszcze potrwa.
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...