Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Marsjański łazik będzie strzelał laserem, nasłuchiwał dźwięków i przygotuje próbki do zabrania na Ziemię

Rekomendowane odpowiedzi

Łazik Perseverance, który wylądował wczoraj na Marsie w ramach misji Mars 2020, to dziewiąta udana marsjańska misja NASA w czasie której przeprowadzono miękkie lądowanie na powierzchni planety. Łazik będzie badał marsjańską geologię i klimat, zbierał dane potrzebne do przeprowadzenia załogowej misji na Marsa i – co jest jego głównym celem – będzie poszukiwał śladów dawnego życia.

Dlatego też na miejsce lądowania łazika wybrano tak trudny teren jak Krater Jezero. Naukowcy sądzą, że 3,5 miliarda lat temu krater ten był dnem jeziora, do którego szeroką deltą wpływała rzeka. Co prawda wody dawno tam nie ma, ale specjaliści wierzą, na na dnie krateru o średnicy 45 kilometrów lub na jego zboczach, wznoszących się w górę na 610 metrów, zachowały się ślady dawnego życia. Myślimy, że najlepszym miejscem do poszukiwania biosygnatur są osady z dna Jezero lub jego linii brzegowej. Mogą się tam znajdować minerały zawierające węgiel, o których wiemy, że bardzo dobrze przechowują się w nich pozostałości dawnego życia na Ziemi.

Perseverance to piąty łazik, jaki NASA umieściła na Czerwonej Planecie. Obok Curiosity, który pracuje na Marsie od 2012 roku, i Opportunity, którego misja niedawno się zakończyła po przepracowaniu 5351 marsjańskich dni (sol), były to Spirit z 2004 roku, który pracował przez 2208 soli oraz Sojourner, pierwszy łazik w historii, pracujący na innej planecie.

W poszukiwaniu biosygnatur Perseverance wykorzysta Mastcam-Z. To umieszczona na maszcie kamera, która może wykonywać przybliżenia odległych obiektów, by naukowcy mogli się im przyjrzeć. Gdy specjaliści stwierdzą, że obiekt wart jest bliższego zbadania, do dzieła przystąpi SuperCam. To kamera wyposażona w laser i mikrofon. W stronę interesującego celu zostanie wystrzelona wiązka laserowa. Odparowany laserem materiał utworzy niewielką chmurę plazmy, którą zarejestruje SuperCam, a analiza obrazu pozwoli określić skład chemiczny celu. Mikrofon przechwyci zaś dźwięk z całego wydarzenia, co dostarczy dodatkowych informacji do analizy. Jeśli na tej podstawie uczeni uznają, że danej skale czy fragmentowi gruntu warto się przyjrzeć, mogą wydać łazikowi polecenie podjechania i zbadania próbek.

Próbki będą badane przez robotyczne ramię, na którego końcach znajdują się dwa instrumenty. PIXL (Planetary Instrument for X-ray Lithochemistry) przeprowadzi badania za pomocą silnego promieniowania rentgenowskiego w poszukiwaniu w nim chemicznych oznak dawnego życia. Z kolei SHERLOC (Scanning Habitable Environments with Raman & Luminescence for Organics & Chemicals) posiada własny laser i może wykrywać niewielkie ilości molekuł organicznych oraz minerałów tworzących się w środowisku wodnym. Razem PIXL i SHERLOC stworzą mapę minerałów, pierwiastków i molekuł w skałach i mariańskiej glebie.

Naukowcy mają nadzieję, że trafią na coś, co jednoznacznie będzie można zinterpretować jako ślady dawnego życia. Czymś takim mogą być np. stromatolity. To formacje skalne będące ubocznym skutkiem życia sinic. Na Ziemi są to jedne z najstarszych śladów życia.

Jeśli PIXL i SHERLOC pokażą, że mamy do czynienia z czymś naprawdę interesującym, ramię łazika pobierze próbki. Zostaną one umieszczone w specjalnych tubach, które w ramach przyszłych misji marsjańskich zostaną zabrane na Ziemię. Instrumenty konieczne, by definitywnie potwierdzić, że na Marsie w przeszłości istniało życie są zbyt duże i złożone, by dostarczyć je na Marsa. Dlatego też NASA we współpracy z Europejską Agencją Kosmiczną planuje składający się z wielu misji program Mars Sample Return, którego celem jest przywiezienie na Ziemię próbek zebranych przez Perseverance, mówi Bobby Braun, menedżer programu Mars Sample Return.

Dysponujemy mocnymi dowodami wskazującymi, że w Kraterze Jezero istniały niegdyś warunki do istnienia życia. Nawet jeśli po analizie próbek na Ziemi stwierdzimy, że w jeziorze nie było życia, nauczymy się czegoś ważnego o możliwości istnienia życia w kosmosie. To, czy na Marsie życie istniało czy nie, jest podstawowym pytaniem dotyczącym ewolucji planet skalistych. Dlaczego nasza planeta jest bogata w życie, podczas gdy Mars stał się martwym pustkowiem?, wyjaśnia Ken Williford, zastępca głównego naukowca misji Mars 2020 Perseverance.

Wspomniana tutaj Mars Sample Return ma rozpocząć się w drugiej połowie bieżącej dekady. Będzie się ona składała z pojazdu Sample Retrieval lander, który dostarczy na powierzchnię marsa łazik Sample Fetch Rover oraz pojazd Mars Ascent Vehicle. Łazik zabierze przygotowane przez Perseverance pojemniki z próbkami i przetransportuje je do pojemnika znajdującego się na dziobie pojazdu Mars Ascent Vehicle. Ewentualnie będzie to mógł też zrobić Perseverance.

Mars Ascent Vehicle będzie pierwszym pojazdem, który wystartuje z powierzchni innej planety. Dotrze on na orbitę Marsa, gdzie uwolni pojemnik z próbkami. Tam przejmie je Earth Return Orbiter. Próbki trafią do kolejnego pojemnika i wraz z nim mają wylądować na Ziemi na początku przyszłej dekady.

Misja Mars Sample Return będzie bardzo istotna z punktu widzenia załogowej eksploracji Marsa. W jej ramach na powierzchni wyląduje bowiem rekordowo masywny ładunek, będzie też można przeprowadzić testy startu z powierzchni Czerwonej Planety.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

patrząc na tempo prace spacex to podejrzewam, że te próbki tam sobie zostaną.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Mars - jedyna znana ludzkości planeta zasiedlona przez roboty...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 20.02.2021 o 18:32, GROSZ-ek napisał:

Mars - jedyna znana ludzkości planeta zasiedlona przez roboty...

a ziemia to co? ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      NASA pokazała pierwsze zdjęcia i ujawniła wyniki wstępnej analizy próbek asteroidy Bennu, które trafiły niedawno za sprawą misji OSIRIS-REx. Badania pokazały, że Bennu zawiera bardzo dużo węgla i wody, co sugeruje, że w próbkach mogą znajdować się składniki, dzięki którym na Ziemi istnieje życie. Próbki dostarczone przez OSIRIS-REx to największa ilość fragmentów asteroidy bogatego w węgiel, jaka kiedykolwiek została przywieziona na Ziemię. Pozwolą one nam oraz przyszłym pokoleniom prowadzić prace nad początkiem życia na naszej planecie, stwierdził dyrektor NASA Bill Nelson.
      Celem misji OSIRIS-REx było przywiezienie na Ziemię 60 gramów materiału. Misja padła jednak ofiarą własnego sukcesu, próbek pobrano więcej i już w przestrzeni kosmicznej pojawiły się problemy. Przez większą niż przewidywano ilość próbek, proces rozładowywania się opóźnił. W ciągu pierwszych dwóch tygodni naukowcy dokonali szybkiej analizy za pomocą skaningowego mikroskopu elektronowego, badań w podczerwieni, rozpraszania promieni rentgenowskich i analizy chemicznej pierwiastków. Wykorzystali też tomografię komputerową do stworzenia trójwymiarowych modeli komputerowych próbek. Już te wczesne badania pokazały wysoką zawartość węgla i wody.
      Bardziej szczegółowe analizy potrwają kolejne dwa lata. Co najmniej 70% próbek Bennu będzie przechowywanych w Johnson Space Center na potrzeby przyszłych badań. Będą one udostępniane też uczonym z zagranicy. Już teraz wiadomo, że ich analizą zainteresowanych jest ponad 200 obcokrajowców.
      Asteroida Bennu ma około 4,5 miliarda lat. Jedna z hipotez dotyczących początków życia na Ziemi mówi, że to właśnie tego typu i podobne obiekty przyniosły na naszą planetę składniki, potrzebne do jego powstania. Dlatego naukowcy mają nadzieję, że badając próbki pobrane bezpośrednio z asteroid pozwolą nam zajrzeć w przeszłość i dowiedzieć się, w jaki sposób powstało życie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Sprzątacz wyłączył zamrażarkę w uczelnianym laboratorium, ponieważ zepsuty sprzęt wydawał drażniący dźwięk. W ten sposób zniszczył próbki i inne materiały, niwecząc przeszło dwie dekady badań. Rensselaer Polytechnic Institute w Troy domaga się od firmy, która go zatrudniła, ponad 1 mln dolarów. Kwota ta ma stanowić odszkodowanie i pokryć opłaty prawne.
      Uczelnia nie pozwała sprzątacza, ale zatrudniającą go firmę Daigle Cleaning Systems Inc., wskazując na niewłaściwe przeszkolenie i nadzorowanie personelu. Daigle Cleaning Systems Inc. świadczyła uczelni usługi przez kilka miesięcy 2020 roku (kontrakt opiewał na 1,4 mln dol.).
      Michael Ginsberg, prawnik reprezentujący Rensselaer Polytechnic Institute, podkreślił w wypowiedzi dla CNN-u, że zaistniała sytuacja jest skutkiem ludzkiego błędu. Kluczem do jej interpretacji jest fakt, że firma nie przeszkoliła odpowiednio swojego personelu. Sprzątacz nie powinien bowiem próbować rozwiązywać problemów elektrycznych.
      W zamrażarce znajdowały się m.in. hodowle komórkowe i próbki, w przypadku których, jak napisano w pozwie złożonym w Sądzie Najwyższym Hrabstwa Rensselaer, niewielkie wahania temperatury rzędu trzech stopni mogły wyrządzić katastrofalne szkody.
      Materiał przechowywany w zamrażarce wymagał zachowania temperatury -80°C. Prof. K.V. Lakshmi, dyrektorka Baruch '60 Center For Biochemical Solar Energy Research, stwierdziła, że alarm włączył się ok. 14 września 2020 r., bo temperatura wzrosła do -78°C. Zespół naukowców ustalił, że mimo to próbkom i kulturom nic się nie stało. Ponieważ przez ograniczenia pandemiczne naprawa mogła się rozpocząć dopiero po tygodniu, na drzwiczkach zamrażarki umieszczono ostrzegający napis: Urządzenie piszczy, bo znajduje się w naprawie. Proszę go nie przesuwać ani nie odłączać. Nie ma potrzeby sprzątania tego obszaru. Jeśli chcesz wyłączyć dźwięk, przez 5-10 s przyciśnij guzik wyciszania alarmu. Zamiast tego 17 września sprzątacz wyłączył obwód zasilający zamrażarkę.
      Nim naukowcy zorientowali się, co się stało, temperatura podniosła się aż o 50 stopni. Większość próbek uległa zniszczeniu. W raporcie sporządzonym przez uczelniany zespół ds. bezpieczeństwa publicznego napisano, że sprzątacz myślał, że włącza obwód zasilający, tymczasem w rzeczywistości było dokładnie na odwrót. Podczas rozmów z prawnikami nadal wydaje się przekonany, że nie zrobił nic złego i próbował po prostu pomóc.
      Badania nad fotosyntezą prowadzone przez prof. K.V. Lakshmi mogły być przełomowe dla dalszego rozwoju paneli słonecznych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Próbki pobrane z asteroidy Ryugu przez japońską misję Hayabusa 2 zawierają różne związki organiczne, w tym uracyl, wchodzący w skład RNA, poinformował międzynarodowy zespół naukowy, który analizuje zebrany materiał. Uczeni znaleźli też kwas nikotynowy (niacynę), czyli witaminę B3. Odkrycie dowodzi, że ważne elementy tworzące organizmy żywe powstają w przestrzeni kosmicznej i mogły zostać dostarczone na Ziemię przez meteoryty.
      Już wcześniej na niektórych bogatych w węgiel meteorytach znajdowano zasady azotowe nukleozydów i witaminy. Zawsze jednak pozostawała możliwość, że materiał został zanieczyszczony, gdyż doszło do jego interakcji ze środowiskiem ziemskim. Jednak pojazd Hayabusa 2 pobrał próbki bezpośrednio z asteroidy Ryugu i dostarczył je na Ziemię w zapieczętowanych kapsułach, więc możemy wykluczyć zanieczyszczenie, powiedział profesor Yasuhiro Oba z Hokkaido University.
      Naukowcy zanurzyli próbki asteroidy w gorącej wodzie, a następnie wykorzystali techniki chromatografii cieczy w połączeniu ze spektrometrią mas. W ten sposób wykryli uracyl, kwas nikotynowy i inne związki organiczne zawierające azot. Uracyl występował w stężeniu od 6 do 32 części na miliard (ppb), a witamina B3 w stężeniu 49–99 ppb. Znaleźliśmy tez inne molekuły biologiczne, w tym aminokwasy, aminy i kwasy karboksylowe, które występują w białkach i procesach metabolicznych, dodaje profesor Oba. Znalezione związki są podobne, ale nie identyczne, do tych, jakie wcześniej znajdowano na meteorytach.
      Badacze sądzą, że zawierające azot związki mogły, przynajmniej częściowo, powstać z prostszych molekuł, jak amoniak, formaldehyd czy cyjanowodór. Co prawda nie znaleziono ich na Ryugu, ale wiadomo, że są obecne w lodzie komet, a Ryugu mógł być w przeszłości częścią komety lub obiektu, który przebywał w niskich temperaturach.
      Odkrycie uracylu na Ryugu wzmacnia teorie mówiące o pochodzeniu zasad azotowych nukleotydów na Ziemi. W bieżącym roku sonda OSIRIS-REx NASA dostarczy próbki z asteroidy Bennu i będzie można przeprowadzić badania porównawcze, które dostarczą nowych danych do rozwoju tych teorii, dodaje Oba.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szukając śladów roślin z czasów, kiedy ustępował lodowiec, naukowcy z paru uczelni pobierali rdzenie osadów z dna Małego Stawu w Karkonoszach. Zespół pracował na pokładzie pływającej platformy.
      W pewnych miejscach osady mają ok. 10 m grubości. Jak podkreślono we wpisie Karkonoskiego Parku Narodowego (KPN) na Facebooku, można tam znaleźć fragmenty DNA, części roślin i zwierząt, a także np. pyłki czy ślady pożarów.
       

      Kierownikiem projektu „Paleogenomika refugiów środkowoeuropejskich: dynamika flory arktyczno-alpejskiej w czasie i przestrzeni pomiędzy strefą polarną a umiarkowaną” jest dr hab. Michał Ronikier z Instytutu Botaniki im. Władysława Szafera Polskiej Akademii Nauk. Badania finansuje Narodowe Centrum Nauki.
      Cytowany przez TVP3 Marek Dobrowolski, główny specjalista ds. ochrony przyrody z KPN, wyjaśnia, że nowoczesna technologia pozwala sprawdzić kod genetyczny znalezionych roślin, a potem porównać go z występującymi współcześnie w regionie. Dzięki temu można ustalić reakcje roślin: jakie gatunki przetrwały do dziś, jakie ograniczyły częstość występowania, a jakie wyginęły. Uzyskane wyniki pozwolą również wnioskować o przeszłych cyklach klimatycznych i geologicznych.
      Dr Ronikier dodaje, że na podstawie rekonstrukcji można pokusić się o prognozowanie, co zajdzie w przyszłości.
      Podobne badania mają zostać przeprowadzone w Wielkim Stawie, największym polodowcowym jeziorze cyrkowym Karkonoszy o powierzchni 8,321 ha.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      NASA kończy prace koncepcyjne nad drugą częścią Mars Sample Return Program, którego celem jest przywiezienie na Ziemię próbek z Marsa. Pierwszą część stanowi misja łazika Perseverance, który od 2020 roku bada Marsa i zbiera próbki. Za 10 lat mają one trafić na Ziemię. Jednak, by je przywieźć, konieczne będzie zorganizowanie kolejnej misji.
      Opracowana koncepcja opiera się na najnowszych danych z łazika Perseverance i jego przewidywanej wytrzymałości oraz na sukcesie marsjańskiego śmigłowca Ingenuity. Śmigłowiec odbył już 29 lotów i przetrwał o rok dłużej, niż zakładano.
      Plan przywiezienia próbek na Ziemię zakłada, że to Perseverance zawiezie je do lądownika Sample Retrieval Lander, na pokładzie którego znajdzie się rakieta Mars Ascent Vehicle oraz zbudowane przez Europejską Agencję Kosmiczną Sample Transfer Arm. Europejskie ramię przeładuje przywiezione próbki z Perseverance do Mars Ascent Vehicle. To znaczna zmiana w porównaniu z pierwotną koncepcją. Zakładała ona, że jeden lądownik dostarczy na Czerwoną Powierzchnię rakietę Mars Ascent Vehicle, a drugi – osobny łazik Sample Fetch Rover odpowiedzialny za zebranie próbek.
      Na pokładzie Sample Retrieval Lander znajdą się też dwa śmigłowce bazujące na architekturze Ingenuity. Zostaną one wykorzystane, gdyby z jakichś powodów Perseverance nie mógł dostarczyć próbek. Wówczas próbki na pokład lądownika przywiozą śmigłowce. Następnie z powierzchni Marsa wystartuje Mars Ascent Vehicle, który dostarczy je do czekającego na orbicie pojazdu Earth Return Orbiter. Ten zaś przywiezie je na Ziemię.
      W tej chwili plan przewiduje, że Earth Return Orbiter zostanie wystrzelony jesienią 2027 roku, a Sample Retrieval Lander wiosną 2028. Próbki mają trafić na Ziemię w roku 2033.
      W październiku rozpocznie się faza projektowa misji, która potrwa około 12 miesięcy. W tym czasie powinny powstać technologie oraz prototypy głównych elementów misji.
      Od 18 lutego 2021 roku łazik Perseverance zebrał 11 próbek gruntu i 1 próbkę atmosfery Marsa. Dostarczenie ich na Ziemię pozwoli na przeprowadzenie badań za pomocą instrumentów, które są zbyt duże i skomplikowane, by wysłać je na Marsa. Ponadto marsjańskie próbki będą mogły badać kolejne pokolenia naukowców, podobnie ja ma to miejsce z próbkami księżycowymi przywiezionymi w ramach programu Apollo.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...