Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Życie pod lodami Antarktyki to zagadka dla nauki

Recommended Posts

Biolodzy mówią, że znalezienie organizmów żywych na morskim dnie pod lodem Antarktyki burzy nasze wyobrażenia o tym, w jaki sposób organizmy żywe mogą przetrwać w środowisku, do którego nie ma dostępu światła słonecznego.

Uczeni wwiercili się pod 900-metrowy Lodowiec Szelfowy Flichnera-Ronne i opuścili kamerę, by zbadać osady morskie. Ze zdumieniem zauważyli żyjące tam zwierzęta. Na nagranym wideo widać 16 gąbek oraz 22 inne niezidentyfikowane zwierzęta, w tym prawdopodobnie wąsonogi. Po raz pierwszy w takim miejscu zauważono osiadłe zwierzęta.

Jest wiele powodów, dla których nie powinno ich tam być, mówi Huw Griffiths z British Antarctic Survey. Sfilmowane zwierzęta żyją w wodach o temperaturze -2 stopni Celsjusza. Odżywiają się filtrując pokarm z wody. Problem w tym, że odwiertów dokonano 240 kilometrów od otwartych wód, gdzie mogą przetrwać organizmy polegające na fotosyntezie. A to one właśnie stanowią pożywienie dla gąbek i wąsonogów. To jednak nie wszystko, mówi Griffiths. Dzięki znajomości rozkładu prądów morskich w okolicy wiemy, że najbliższe miejsce, gdzie woda wypływa z głębin na powierzchnię, a więc gdzie odbywa się fotosynteza i żyją organizmy będące pokarmem dla gąbek znajduje się w odległości... 600 kilometrów.

Obecnie nie wiadomo, czy zauważone zwierzęta to gatunki znane czy nieznane. Nie wiadomo też, jak długo żyją. Niektóre z antarktycznych gąbek szklanych liczą sobie tysiące lat. Nie wiadomo też, jak często się odżywiają. Może być to raz na rok, ale równie dobrze raz na sto lat. Niemal wszystkie zauważone gąbki znaleziono na jednym kamieniu. Tylko jedna, samotna, była na innym.

Odkrycie wskazuje, że najbardziej nieprzyjazne środowiska Antarktyki również zawierają życie. Jego zbadanie może pozwolić nam na odpowiedź na pytanie, jak wyglądało życie przed setkami milionów lat, gdy Ziemia była śnieżną kulą.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Zwierzęta takie jak gąbki i pąkle pod szelfem Filchner-Ronne’a mogą odżywiać się bakteriami i mikroorganizmami, które wyewoluowały tam przed setkami milionów lat lub koloniami bakterii, które pojawiły się tam w wyniku wymiany wody oceanicznej z wodą pod tym szelfem. W środowisku lądowym bakteriami odżywiają się najliczniejsze na Ziemi roztocza takie jak mechowce.:)

Życie niekoniecznie musiało powstać w dużym zbiorniku niezamarzniętej wody. :rolleyes:Wg jednej z teorii życie mikrobiologiczne mogło zaistnieć w obszarze bardzo cienkiego niezamarzniętego środowiska wodnego, które powstaje na styku krystalicznego lodu i powierzchni mineralnych. Przyjmuje ono tam formę żył i może pozwalać mikroorganizmom pozyskiwać energię w reakcjach utleniania z jonami zawartymi w wodzie lub w strukturach mineralnych takich jak skały, kamienie. Na wczesnej Ziemi i na planetach/księżycach lodowych cząsteczki organiczne mogły ulec polimeryzacji do RNA i polipeptydów dzięki niskiej agresywności środowiska wodnego w niskiej temperaturze i wysokiego tempa reaktywności w wodnych żyłach. Na tempo tych przemian wpływ mogły mieć własności fizykochemiczne mineralnych ziaren przemieszczających się tymi żyłami.:)

https://academic.oup.com/femsec/article/59/2/217/2908360

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
      O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
      Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
      Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
      Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
      Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
      Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W ciągu najbliższych trzech dekad głębinowa cyrkulacja antarktyczna może spowolnić o ponad 40%, stwierdzają naukowcy z Uniwersytetu Nowej Południowej Walii. Taka zmiana będzie niosła ze sobą poważne konsekwencje dla oceanów i klimatu.
      Zimna woda, która zanurza się pod powierzchnię oceanu w pobliżu Antarktyki napędza najgłębszą cyrkulację oceaniczną. Rozprowadza ona ciepło, węgiel, tlen i składniki odżywcze po całym światowym oceanie. Ma to wpływ na klimat, poziom mórz oraz produktywność ekosystemów morskich.
      Nasz model pokazuje, że jeśli emisja węgla będzie odbywała się na tym samym poziomie, co obecnie, to w ciągu 30 lat cyrkulacja głębinowa zwolni o ponad 40% i wszystko będzie zmierzało do załamania, mówi główny autor badań, profesor Matthew England.
      Każdego roku około 250 bilionów ton zimnej, słonej, bogatej w tlen wody zanurza się głęboko w ocean w pobliżu Antarktydy. Woda ta płynie następnie na północ, dostarczając tlen i składniki odżywcze do Oceanów Indyjskiego, Spokojnego i Atlantyckiego. Jeśli oceany miałyby płuca, to byłoby jedno z nich, wyjaśnia England. Ta głęboka cyrkulacja antarktyczna była relatywnie stabilna przez ostatnie setki tysięcy lat. Jednak modele klimatyczne wskazują, że wraz z emisją dwutlenku węgla, będzie ona słabła.
      Gdy tak się stanie, wody oceaniczne położone na głębokości ponad 4000 metrów czeka stagnacja. Substancje odżywcze zostaną uwięzione w głębinach oceanicznych, a to zmniejszy ich ilość dostępną w płytszych warstwach oceanu, wyjaśnia England. Wykorzystany model pokazuje, że spowolnienie cyrkulacji spowoduje szybkie ogrzewanie się głębokich wód oceanicznych. Bezpośrednie pomiary potwierdzają, że już obecnie mamy do czynienia z ogrzewaniem się głębokich partii oceanu, przypomina współautor badań, doktor Steve Rintoul.
      Autorzy badań zauważyli, że topienie się lodów wokół Antarktyki powoduje, że wody oceaniczne są mniej gęste, co spowalnia ich cyrkulację. A wszystko wskazuje na to, że na obu biegunach będzie ubywało lodu. Nasze badania pokazują, że roztapianie się lodów ma olbrzymi wpływ na cyrkulację zwrotną, która reguluje klimat na Ziemi, dodaje doktor Adele Morrison. Mówimy o potencjalnym długoterminowym zniknięciu niezwykle ważnego mechanizmu. Tak głębokie zmiany w przepływie ciepła, tlenu, węgla i składników odżywczych będą miały głęboki, negatywny, trwający wiele wieków wpływ na oceany, dodaje England.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Autorzy nowych badań przeprowadzonych przez NASA wykazali, że utrata lodu szelfowego w Antarktyce jest dwukrotnie większa niż pokazywały dotychczasowe dane. W ramach badań powstała m.in. pierwsza mapa cielenia się lodowców szelfowych.
      Czynnikiem, który w największym stopniu wpływa na niepewność przewidywania wzrostu poziomu oceanów jest zwiększanie się tempa utraty lodu w Antarktyce. Naukowcy z Jet Propulsion Laboratory opublikowali właśnie dwa badania dotyczące ubywania lodu w Antarktyce w ostatnich dekadach.
      Autorzy jednego z badań, które opisano na łamach Nature, stworzyli mapę cielenia się antarktycznych lodowców szelfowych w ciągu ostatnich 25 lat. Cielenie się lodowców szelfowych to nic innego, jak odłamywanie się fragmentów lodowca, tworzących następnie góry lodowe. Autorzy mapy zauważyli, że tempo cielenia się było szybsze, niż tempo przyrastania lodu w lodowcach.
      Od 1997 roku antarktyczne lodowce szelfowe utraciły 12 bilionów ton lodu. Dotychczas sądzono, że strata ta jest dwukrotnie mniejsza. Utrata lodu osłabiła lodowce szelfowe i spowodowała, że lądolód szybciej spływa do oceanu.
      Autorzy drugich badań, opublikowanych w Earth System Science Data, szczegółowo pokazali jak woda roztapiająca lód Antarktyki od spodu, wdziera się coraz bardziej w głąb pokrywy lodowej. W niektórych miejscach Antarktyki Zachodniej jest ona już dwukrotnie dalej od krawędzi niż jeszcze dekadę temu. Oba powyższe badania dają najbardziej szczegółowy obraz zmian zachodzących na Antarktyce.
      Antarktyka kruszy się na brzegach. A gdy lodowce szelfowe ulegają osłabieniu i rozpadnięciu, potężne lodowce na lądzie stałym spływają coraz szybciej i przyspieszają wzrost poziomu oceanów, mówi Chad Greene, lider zespołu badającego cielenie się lodowców szelfowych. Musimy pamiętać, że lodowce szelfowe są najważniejszym czynnikiem wpływającym na stabilność lądolodu Antarktydy. Są też jednak czynnikiem najbardziej wrażliwym, gdyż są podmywane przez wody oceaniczne.
      Spływające z Antarktydy lodowce tworzą potężne lodowce szelfowe o grubości do 3 kilometrów i szerokości 800 kilometrów. Działają one jak bufory, utrudniające spływanie lądolodu. Gdy cykl utraty masy (cielenia się) i jej przyrostu równoważy się, lodowce szelfowe są stabilne, ich wielkość w dłuższym terminie jest stała i spełniają swoją rolę bufora. Jednak w ostatnich dekadach ocieplające się wody oceaniczne zaczęły destabilizować lodowce szelfowe Antarktyki, coraz bardziej podmywając je i roztapiając. Lodowce stają się więc cieńsze i słabsze.
      Od kilku dekad dokonywane są regularne satelitarne pomiary grubości lodowców szelfowych Antarktyki, jednak dane te trudno interpretować. Wyobraźmy sobie, że oglądamy zdjęcia satelitarne i próbujemy na nich odróżnić od siebie białą górę lodową, biały lodowiec szelfowy, biały lód pływający i białą chmurę. To zawsze było trudne zadanie. Teraz jednak dysponujemy wystarczająco dużą ilością danych z różnych czujników satelitarnych, dzięki którym możemy powiedzieć, jak w ostatnich latach zmieniało się wybrzeże Antarktyki, mówi Greene.
      Uczony wraz ze swoim zespołem połączył zbierane od 1997 roku dane z czujników pracujących w zakresie światła widzialnego, podczerwieni i z radarów. Na tej podstawie powstała mapa pokazująca linię brzegową lodowców szelfowych. Jej twórcy stwierdzili, że cielenie się lodowców szelfowych daleko przewyższa przyrosty ich masy, a utrata lodu jest tak duża, że jest mało prawdopodobne, by do końca wieku lodowce szelfowe mogły odzyskać swój zasięg sprzed roku 2000. Jest wręcz przeciwnie, należy spodziewać się dalszych strat, a w ciągu najbliższych 10-20 lat może dojść do wielkich epizodów cielenia się.
      Z kolei autorzy drugich badań wykorzystali niemal 3 miliardy rekordów z siedmiu różnych rodzajów instrumentów, by stworzyć najbardziej szczegółową bazę danych zmian wysokości lodowców. Użyli przy  przy tym danych z pomiarów radarowych i laserowych, które pozwalają na mierzenie z dokładnością do centymetrów. Pomiary te pokazały, jak długoterminowe trendy klimatyczne oraz doroczne zmiany pogodowe wpływają na lód. Pokazały nawet, jak zmienia się wysokość lodowców gdy regularnie napełniają się i opróżniają podlodowe jeziora położone wiele kilometrów pod powierzchnią lodu. Takie subtelne zmiany, w połączeniu z lepszym rozumieniem długoterminowych trendów, pozwoli nam lepiej zrozumieć procesy, wpływające na utratę masy lodu, a to z kolei umożliwi lepsze przewidywanie przyszłych zmian poziomu oceanów, stwierdził lider grupy badawczej, Johan Nilsson.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Długie życie kobiet po menopauzie to zagadka. Zgodnie z obowiązującym poglądem, selekcja naturalna promuje tych, którzy mogą się rozmnażać. Dlatego w pierwszych dekadach życia nasze organizmy lepiej radzą sobie z pojawiającymi się mutacjami. Jednak po okresie reprodukcyjnym, mechanizm ochronny zostaje wyłączony, po menopauzie komórki stają się bardziej podatne na mutacje. Dla większości zwierząt oznacza to szybką śmierć. Wyjątkiem są tu ludzie i niektóre walenie.
      Z ewolucyjnego punktu widzenia długie życie po menopauzie to zagadka. Nie zyskujemy bowiem kilku lat. Mamy cały długi etap życia po przekroczeniu zdolności do reprodukcji, mówi profesor antropologii Michael Gurven z Uniwersytetu Kalifornijskiego w Santa Barbara. Naukowiec przywołuje tutaj przykład naszych bliskich krewnych, szympansów, u których dobrze widać związek pomiędzy płodnością a zdolnością do przeżycia, a długość życia tych zwierząt spada wraz ze spadkiem zdolności reprodukcyjnych.
      Gurven we współpracy z ekologiem populacyjnym Razielem Davisonem opublikowali artykuł, w którym rzucają wyzwanie przekonaniu, że po okresie reprodukcyjnym ochronne mechanizmy doboru naturalnego u ludzi zostają wyłączone. Obaj uczeni stwierdzają, że długie życie po utracie zdolności do reprodukcji nie jest u ludzi tylko i wyłącznie zasługą postępów medycyny i opieki zdrowotnej.
      Wyewoluowaliśmy możliwość długiego życia, stwierdza Gurven. A długie życie wynika z wartości, jakie niesie ze sobą obecność starszych dorosłych. Taki pomysł krążył wśród naukowców już od pewnego czasu. My go sformalizowaliśmy i zadaliśmy pytanie, jakie wartości – z ewolucyjnego punktu widzenia – wnoszą starsi dorośli.
      Jeną z prób wyjaśnienia tego fenomenu jest hipoteza babki, mówiąca, że kobieta po menopauzie, pomagając swojej córce w wychowaniu dzieci, wpływa na polepszenie jej kondycji fizycznej, dzięki czemu córka może mieć więcej dzieci, co z kolei zwiększa szanse przetrwania genów matki. Zatem nie chodzi tutaj o reprodukcję, a rodzaj pośredniej reprodukcji. Możliwość wykorzystania całej puli zasobów, a nie tylko zasobów własnych, zupełnie zmienia reguły gry wśród zwierząt społecznych, wyjaśnia Davison.
      Gurven i Davison przyjrzeli się elementowi, który jest motywem centralnym hipotezy babki, czyli transferom międzygeneracyjnym, a mówiąc prościej – dzieleniem się zasobami pomiędzy młodszym a starszym pokoleniem.
      Najbardziej widocznym przejawem takiego dzielenia się zasobami jest podział pożywienia wśród społeczności nieuprzemysłowiony. Od chwili urodzin muszą minąć mniej więcej 2 dekady, by człowiek zaczął wytwarzać więcej pożywienia, niż sam konsumuje, mówi Gurven, który badał demografię i gospodarkę boliwijskiego ludu Tsimane i innych rdzennych mieszkańców Ameryki Południowej. Zanim dzieci dorosną, będą w stanie o siebie zadbać i stać się produktywnym członkiem społeczności, dorośli muszą włożyć dużo wysiłku w zdobycie i przygotowanie dla nich żywności. Jest to możliwe dlatego, że dorośli są w stanie wytworzyć więcej żywności niż tylko na własne potrzeby. Ta zdolność pojawiła się w naszej ewolucji już dawno i jest obecna też w wysoko rozwiniętych społeczeństwach przemysłowych.
      W naszym modelu duże nadwyżki wytwarzane przez dorosłych pozwalają poprawić szanse na przeżycie i płodność krewniaków oraz innych członków grupy, którzy również dzielą się swoimi nadwyżkami. Patrząc tylko z punktu widzenia produkcji żywności widzimy, że najwyższą wartość mają tutaj ludzie w wieku rozrodczym. Gdy jednak wykorzystaliśmy dane demograficzny i gospodarcze z wielu różnych społeczności łowiecko-zbierackich i rolniczych okazało się, że nadwyżki dostarczane przez starszych dorosłych, również mają pozytywny wpływ na grupę. Obliczyliśmy, że dłuższe życie starszych osób ma wartość kilku dodatkowych dzieci, mówi Davison.
      Okazuje się jednak, że osoby starsze mają swoją wartość, ale tylko do pewnego wieku. Nie wszystkie babki są cenne. Mniej więcej w połowie 7. dekady życia w społecznościach łowiecko-zbierackich i rolniczych starsze osoby zaczynają zużywać więcej zasobów, niż dostarczają. Ponadto w tym czasie większość ich wnuków już ich nie potrzebuje, więc grupa krewnych, która korzysta z ich pomocy jest mała.
      Żywność to jednak nie wszystko. Starsze osoby uczą i socjalizują dzieci. To właśnie na tym polega ich największa wartość. Nie dostarczają już tak dużych nadwyżek żywności, jak kiedyś, ale dzielą się z wnukami swoimi umiejętnościami i doświadczeniem oraz odciążają rodziców od opieki nad dziećmi. Gdy zdasz sobie sprawę z tego, że starsi pomagają młodszemu pokoleniu w utrzymaniu kondycji pozwalającej mu na wytwarzanie dużych nadwyżek, łatwo zauważysz, że to spora korzyść z obecności starszych aktywnych osób. Starsi nie tylko dają coś grupie, ale ich użyteczność dla grupy powoduje, że i oni coś od niej otrzymują. Czy to nadwyżki żywności, czy to ochronę i opiekę. Innymi słowy, współzależności występują w obie strony, od starszych do młodszych i od młodszych do starszych, wyjaśnia Gurven.
      Zdaniem obu badaczy, w toku ludzkiej ewolucji stosowane przez naszych przodków strategie i długoterminowe inwestycje w kondycję grupy skutkowały zarówno wydłużonym dzieciństwem jak i niezwykle długim życiem po okresie rozrodczym. Dla kontrastu możemy się tutaj przyjrzeć szympansom, które są w stanie zadbać o siebie już przed osiągnięciem 5. roku życia.
      Jednak zdobywanie przez nie pokarmu wymaga mniejszych umiejętności i wytwarzają one niewielkie nadwyżki. Mimo to, jak sugerują Gurven i Davison, gdyby przodek szympansa szerzej dzielił się żywnością z grupą, także i u nich pojawiłyby się mechanizmy preferujące długowieczność. To pokazuje, że naszą długowieczność zawdzięczamy współpracy. Szympansie babki rzadko robią coś dla swoich wnucząt, dodaje Gurven.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Odpowiednia dieta może wydłużyć życie nawet o ponad dekadę, informują naukowcy z Uniwersytetu w Bergen. Uczeni przeanalizowali dane z Global Burden of Disease i stwierdzili np., że 20-letnia Amerykanka przechodząc z typowej zachodniej diety na optymalną, może wydłużyć życie o 10,7 lat, a jej rówieśnik o 13 lat. Z kolei 60-latka zyska średnio 8 lat, a 60-latek może wydłużyć życie o 8,8 lat. Norwegowie udostępnili też kalkulator pokazujący, jak poszczególne zmiany diety wpłyną na przewidywaną długość życia.
      Global Burden of Disease to olbrzymia baza danych tworzona i aktualizowana od ponad 30 lat. Pracuje nad nią niemal 4000 naukowców. Baza zawiera informacje z 204 krajów i terytoriów dotyczące 369 rodzajów chorób i urazów oraz 87 czynników ryzyka.
      Dieta to jeden z najważniejszych czynników wpływających na nasze zdrowie. Szacuje się, że nieodpowiednia dieta zabija rocznie około 11 milionów osób, a globalny wskaźnik DALY (lata życia skorygowane niesprawnością), który wyraża lata życia utracone w wyniku przedwczesnej śmierci lub uszczerbku na zdrowiu, wynosi 255 milionów (utraconych lat życia na rok).
      Wraz z rosnącą świadomością dotyczącą wpływu pożywienia na zdrowie i jakość życia, rośnie też zainteresowanie środowisk naukowych tym tematem. Od 2017 roku na całym świecie ukazało się około 250 000 artykułów naukowych, których tematyka była powiązana z żywieniem. Wykonano kilkanaście metaanaliz uwzględniających dane naukowe, a dotyczące wpływu różnych grup żywności na zdrowie.
      Norwescy naukowcy opracowali własną metodologię, na podstawie której połączyli dane z artykułów naukowych oraz Global Burden of Disease i przeprowadzili metaanalizę dostępnych informacji. Wzięli pod uwagę spodziewaną długość życia i dodali do tego czynnika element zmiany diety, który może mieć pozytywny bądź negatywny wpływ na długość życia. Za punkt wyjścia przyjęli typową dietę zachodnią, którą odtworzyli na podstawie danych dotyczących diety w USA i Europie. Zbadali w ten sposób korzyści, jakie możemy odnieść, zmieniając nasze przyzwyczajenia dietetyczne dla różnych grup pokarmów.
      Z analiz wynika, że największe korzyści odniesiemy jedząc więcej roślin strączkowych, pełnych ziaren zbóż i orzechów oraz ograniczając spożycie czerwonego mięsa oraz mięsa przetworzonego. Im wcześniej zaczniemy stosować zdrową dietę, tym większe korzyści odniesiemy. Dlatego też osoba, która zaczęła zdrowo odżywiać się w wieku 20 lat może liczyć na większe przedłużenie życia, niż ktoś, to przeszedł na zdrowa dietę później.
      Największe korzyści można – oczywiście – osiągnąć przy diecie optymalnej. Jednak dla wielu osób jej utrzymanie może być zbyt trudne. Dlatego też Norwegowie obliczyli np., że amerykańska 20-latka, zmieniając typową zachodnią dietę na dietę realną do utrzymania, zyska dodatkowo 6,2 roku życia, a jej rówieśnik może liczyć na zwiększenie spodziewanej długości życia o 7,3 roku.
      Norwegowie przedstawili 3 scenariusze. Punkt wyjścia, czyli typową dietę zachodnią (TW), dietę realną do utrzymania (FA) oraz dietę optymalną (OD) i dla każdej z nich pokazali, jakie jest lub powinno być spożycie poszczególnych grup pokarmów. I tak:
      - pełne ziarna zbóż: w typowej diecie zachodniej jest to 50 g, dla diety realnej do utrzymania powinno być to 137,5 g, dla diety optymalnej 225 g;
      - warzywa: TW 250 g, FA 325 g, OD 400 g
      - owoce: TW 200 g, FA 300 g, OD 400 g
      - orzechy: TW 0 g, FA 12,5 g, OD 25 g
      - strączkowe: TW 0 g, FA 100 g, OD 200 g
      - ryby: TW 50 g, FA 125 g, OD 200 g
      - jajka: TW 50 g, FA 37,5 g, OD 25 g
      - produkty mleczne: TW 300 g, FA 250 g, OD 200 g
      - oczyszczone ziarna zbóż: TW 150 g, FA 100 g, OD 50 g
      - czerwone mięso: TW 100 g, FA 50 g, OD 0 g
      - przetworzone mięso: TW 50 g, FA 25 g, OD 0 g
      - białe mięso: TW 75 g, FA 62,5 g, OD 50 g
      - słodzone napoje: TW 500 g, FA 250 g, OD 0 g
      - dodane oleje roślinne: TW 25 g, FA 25 g, OD 25 g.
      Naukowcy zauważają, że główne korzyści ze zmiany diety są powiązane ze zmniejszeniem ryzyka chorób układu krążenia, nowotworów i cukrzycy. Autorzy badań piszą, że w zaprezentowanych wyliczeniach skupili się na Stanach Zjednoczonych, ale wyniki dla Europy i Chin były bardzo podobne.
      Szczegóły badań zostały opublikowane na łamach PLOS Medicine.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...