Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jak sztuczna inteligencja pomoże w zapobieganiu przedwczesnym porodom?

Rekomendowane odpowiedzi

Wg raportu Światowej Organizacji Zdrowia (WHO) spontaniczny przedwczesny poród dotyczy 15 milionów noworodków rocznie. Aż milion z nich umiera. Wiele przez całe życie mierzy się z niepełnosprawnością.

Wykorzystywana powszechnie manualna analiza obrazów ultrasonograficznych umożliwia wykrycie ewentualnych problemów, ale nie jest to metoda doskonała.

Problem ten dostrzegają lekarze. W 2017 roku Nicole Sochacki-Wójcicka (w trakcie specjalizacji z ginekologii) oraz Jakub Wójcicki zgłosili się do dr. Tomasza Trzcińskiego z Wydziału Elektroniki i Technik Informacyjnych PW z pytaniem, czy jest możliwość zrealizowania projektu predykcji spontanicznego przedwczesnego porodu z wykorzystaniem sieci neuronowych.

Wtedy powstał zespół badawczy i zaczęły się prace. Pierwsze efekty już znamy.

Nasze rozwiązanie może wspomóc diagnostykę komputerową i pozwolić z większą dokładnością przewidywać spontaniczne przedwczesne porody – wyjaśnia Szymon Płotka, absolwent Politechniki Warszawskiej i jeden z członków zespołu pracującego nad projektem.

Wytrenować sieć neuronową

Przed rozpoczęciem projektu, współpracujący z nami lekarze przygotowali zestaw danych uczących, walidacyjnych oraz adnotacji w formie obrysu kształtu szyjek macicy na obrazach ultrasonograficznych oraz numerycznych (0 i 1), odpowiadającymi kolejno: poród w terminie, poród przedwczesny – wyjaśnia Szymon Płotka.

Po wstępnym oczyszczeniu takie dane są wykorzystywane jako dane „uczące” sieć neuronową – w tym przypadku konwolucyjną (splotową).

Analizuje ona każde zdjęcie piksel po pikselu, wyodrębniając z nich niezbędne cechy, które posłużą do zadania segmentacji interesującego nas fragmentu obrazu (w tym przypadku szyjki macicy) oraz klasyfikacji (czy mamy do czynienia z porodem przedwczesnym, czy nie) – tłumaczy dalej Szymon Płotka.W trakcie treningu sieć neuronowa testuje swoje predykcje na zbiorze walidacyjnym. Po zakończeniu trenowania sieci neuronowej, jest ona sprawdzana na danych testowych, które nie zostały wykorzystane w ramach treningu. W ten sposób weryfikuje się poprawność wytrenowanego modelu.

W ramach projektu powstały dwie publikacje naukowe.

Efektem prac opisanych w „Estimation of preterm birth markers with U-Net segmentation network” (publikacja dostępna tutaj i tutaj) jest m.in. redukcja błędu predykcji spontanicznych przedwczesnych porodów z 30% (manualnie przez lekarzy) do 18% przez sieć neuronową.

W „Spontaneous preterm birth prediction using convolutional neural networks” (szczegóły tutaj i tutaj) naukowcy zaprezentowali poprawę jakości segmentacji w stosunku do pierwszej publikacji i uzyskali lepsze wyniki klasyfikacji.

Zgodnie z naszą najlepszą wiedzą, są to jedyne istniejące prace podejmujące się zadania predykcji spontanicznego przedwczesnego porodu w oparciu o transwaginalne obrazy ultrasonograficzne – mówi Szymon Płotka.

Naukowcy pracują obecnie nad serwisem w formie aplikacji internetowej. Chcą tam udostępnić przygotowane modele sieci neuronowej. Ma to pomóc ginekologom analizować obrazy ultrasonograficzne i tym samym wesprzeć diagnostykę spontanicznego przedwczesnego porodu. A to może uratować życie i zdrowie milionów noworodków.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Coraz więcej takich sytuacji:

1.Nie rozumiemy jak coś się dzieje

2. Więc wytrenujmy sieć neuronową

3. Mamy "sukces" bo sieć robi coś lepiej od specjalistów

Tylko ze nawet specjaliści nie potrafią wyciągnąć wniosku z powyższego procesu: nadal nie potrafimy odpowiedzieć na pytanie jakie cechy obrazu sieć neuronów traktuje jako istotne w ocenie przypadku.

To wykorzystanie sieci neuronowych jest dla mnie trochę mało naukowe. Doceniam starania byśmy byli zdrowi ale to nadal kiepskie, że używamy czegoś czego nie potrafimy wyjaśnić.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, idearmo napisał:

Tylko ze nawet specjaliści nie potrafią wyciągnąć wniosku z powyższego procesu: nadal nie potrafimy odpowiedzieć na pytanie jakie cechy obrazu sieć neuronów traktuje jako istotne w ocenie przypadku.

Bo cechy mogą być bardzo subtelne, a komputer ma możliwość przepuszczenia obrazu przez setki filtrów. W przypadku U-net to 96 różnych filtrów wydobywających krawędzie i tekstury (cechy). Komputer się nie męczy i jest cały czas skupiony, błędy rozpoznania wynikają głównie z jakości obrazu i/lub wczesnego etapu problemu.

Nigdy nie bawiłem się U-Netem, ale jestem prawie pewien, że niektóre frameworki pozwalają zaglądnąć do wnętrza wyuczonego modelu i wskazania  które filtry są najistotniejsze. Tylko taka wiedza lekarzowi na nic, powiedzmy że najważniejszy jest filtr 1, no i co?

image.png.0ec2fd92eb65efc59f0d4a554ab3e930.png

Edytowane przez Jajcenty

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
59 minut temu, Jajcenty napisał:

Nigdy nie bawiłem się U-Netem, ale jestem prawie pewien, że niektóre frameworki pozwalają zaglądnąć do wnętrza wyuczonego modelu i wskazania  które filtry są najistotniejsze. Tylko taka wiedza lekarzowi na nic, powiedzmy że najważniejszy jest filtr 1, no i co?

No i można by wyciągnąć jakieś wnioski na przyszłość ("że kształt szyjki macicy w tym i tym miejscu..." lub coś podobnego) i pójść z tą wiedzą do przodu i na tej bazie dokonywać kolejnych odkryć. A tak mamy magiczne pudełko o którym za wiele nie wiemy, poza tym że się nie męczy i jest skuteczniejsze od lekarzy w kilku analizach, ale wyciągnięta wiedza wygląda na "ostateczną": sieć neuronowa tak zadecydowała, no i co jej zrobisz? Przyjmiesz jako prawdę objawioną? W jaki sposób poza badaniem skuteczności można podważyć jej działanie? To mi przypomina konia, który podobno dobrze liczył, a potem się okazało, że po prostu obserwował zachowanie obserwatorów i na tej podstawie osiągał korzyści (smakołyki). Może też powinniśmy nie zatrzymywać się na "ta sieć neuronowa jest lepsza od lekarzy" bo dla mnie to jest zadanie bardziej dla operatorów odpowiednich programów a nie dla naukowców, tylko powinniśmy zgłębiać dalej ten temat zadając pytania w stylu "dlaczego sieć neuronowa dokonała takiej a nie innej decyzji", albo "co zadecydowało o kwalifikacji danego obrazu do tej kategorii".

Z tego powodu dokonania typu "zaprogramowaliśmy sieć neuronową i jesteśmy lepsi od człowieka" jest i owszem, dokonaniem, ale dla mnie mało naukowym, a raczej technicznym. Z tego powodu prędzej widziałbym taki artykuł nie w Kopalni wiedzy ale na portalach IT oraz medycznych. Po prostu zrzędzę, że mało tej nauki w tym odkryciu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
11 minut temu, idearmo napisał:

No i można by wyciągnąć jakieś wnioski na przyszłość ("że kształt szyjki macicy w tym i tym miejscu..." lub coś podobnego) i pójść z tą wiedzą do przodu i na tej bazie dokonywać kolejnych odkryć. 

To jest robione w procesie douczania. Lekarz może douczyć sieć, czy sieć może douczyć lekarza? Bardzo wątpię. Może na etapie studiów do weryfikacji umiejętności studenta.

14 minut temu, idearmo napisał:

tylko powinniśmy zgłębiać dalej ten temat zadając pytania w stylu "dlaczego sieć neuronowa dokonała takiej a nie innej decyzji", albo "co zadecydowało o kwalifikacji danego obrazu do tej kategorii"

Ależ my to wiemy. Przecież uczymy: jak tu jest białe a obok czarne to rak. Im więcej czarnego tym więcej rak. Sieć jedynie kondensuje te wiedzę lekarzy do macierzy współczynników.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Gdy Deep Blue wygrał w szachy z Garri Kasparowem, a w 2016 roku AlphaGo pokonał w go Lee Sedola wiedzieliśmy, że jesteśmy świadkami ważnych wydarzeń. Były one kamieniami milowymi w rozwoju sztucznej inteligencji. Teraz system sztucznej inteligencji „Swift” stworzony na Uniwersytecie w Zurychu pokonał mistrzów świata w wyścigu dronów.
      Swift stanął do rywalizacji z trzema światowej klasy zawodnikami w wyścigu, podczas którego zawodnicy mają założone na głowy specjalne wyświetlacze do których przekazywany jest obraz z kamery drona i pilotują drony lecące z prędkością przekraczającą 100 km/h.
      Sport jest bardziej wymagający dla sztucznej inteligencji, gdyż jest mniej przewidywalny niż gra planszowa niż gra wideo. Nie mamy idealnej wiedzy o dronie i środowisku, zatem sztuczna inteligencja musi uczyć się podczas interakcji ze światem fizycznym, mówi Davide Scaramuzza z Robotik- und Wahrnehmungsgruppe  na Uniwersytecie w Zurychu.
      Jeszcze do niedawna autonomiczne drony potrzebowały nawet dwukrotnie więcej czasu by pokonać tor przeszkód, niż drony pilotowane przez ludzi. Lepiej radziły sobie jedynie w sytuacji, gdy były wspomagane zewnętrznym systemem naprowadzania, który precyzyjne kontrolował ich lot. Swift reaguje w czasie rzeczywistym na dane przekazywane przez kamerę, zatem działa podobnie jak ludzie. Zintegrowana jednostka inercyjna mierzy przyspieszenie i prędkość, a sztuczna sieć neuronowa, na podstawie obrazu z kamery lokalizuje położenie drona i wykrywa kolejne punkty toru przeszkód, przez które dron musi przelecieć. Dane z obu tych jednostek trafiają do jednostki centralnej – również sieci neuronowej – która decyduje o działaniach, jakie należy podjąć, by jak najszybciej pokonać tor przeszkód.
      Swift był trenowany metodą prób i błędów w symulowanym środowisku. To pozwoliło na zaoszczędzenie fizycznych urządzeń, które ulegałyby uszkodzeniom, gdyby trening prowadzony był na prawdziwym torze. Po miesięcznym treningu Swift był gotowy do rywalizacji z ludźmi. Przeciwko niemu stanęli Alex Vanover, zwycięzca Drone Racing League z 2019 roku, Thomas Bitmatta lider klasyfikacji 2019 MultiGP Drone Racing oraz trzykroty mistrz Szwajcarii Marvin Schaepper.
      Seria wyścigów odbyła się w hangarze lotniska Dübendorf w pobliżu Zurychu. Tor ułożony był na powierzchni 25 na 25 metrów i składał się z 7 bramek, przez które należało przelecieć w odpowiedniej kolejności, by ukończyć wyścig. W międzyczasie należało wykonać złożone manewry, w tym wywrót, czyli wykonanie półbeczki (odwrócenie drona na plecy) i wyprowadzenie go półpętlą w dół do lotu normalnego.
      Dron kontrolowany przez Swift pokonał swoje najlepsze okrążenie o pół sekundy szybciej, niż najszybszy z ludzi. Jednak z drugiej strony ludzie znacznie lepiej adaptowali się do warunków zewnętrznych. Swift miał problemy, gdy warunki oświetleniowe były inne niż te, w których trenował.
      Można się zastanawiać, po co drony mają latać bardzo szybko i sprawnie manewrować. W końcu szybki lot wymaga większej ilości energii, więc taki dron krócej pozostanie w powietrzu. Jednak szybkość lotu i sprawne manewrowanie są niezwykle istotne przy monitorowaniu pożarów lasów, poszukiwaniu osób w płonących budynkach czy też kręcenia scen filmowych.
      Warto tutaj przypomnieć, że systemy sztucznej inteligencji pokonały podczas symulowanych walk doświadczonego wykładowcę taktyki walki powietrznej oraz jednego z najlepszych amerykańskich pilotów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W przypadku sztucznej inteligencji z Osaki powiedzenie „wyglądasz na swój wiek” odnosi się nie do twarzy, a do... klatki piersiowej. Naukowcy z Osaka Metropolitan University opracowali zaawansowany model sztucznej inteligencji, który ocenia wiek człowieka na podstawie zdjęć rentgenowskich klatki piersiowej. Jednak, co znacznie ważniejsze, jeśli SI odnotuje różnicę pomiędzy rzeczywistym wiekiem, a wiekiem wynikającym ze zdjęcia, może to wskazywać na chroniczną chorobę. System z Osaki może zatem przydać się do wczesnego wykrywania chorób.
      Zespół naukowy, na którego czele stali Yasuhito Mitsuyama oraz doktor Daiju Ueda z Wwydziału Radiologii Diagnostycznej i Interwencyjnej, najpierw opracował model sztucznej inteligencji, który na podstawie prześwietleń klatki piersiowej oceniał wiek zdrowych osób. Następnie model swój wykorzystali do badania osób chorych.
      W sumie naukowcy wykorzystali 67 009 zdjęć od 36 051 zdrowych osób. Okazało się, że współczynnik korelacji pomiędzy wiekiem ocenianym przez SI, a rzeczywistym wiekiem badanych wynosił 0,95. Współczynnik powyżej 0,90 uznawany jest za bardzo silny.
      Uczeni z Osaki postanowili sprawdzić, na ile ich system może być stosowany jako biomarker chorób. W tym celu wykorzystali 34 197 zdjęć rentgenowskich od chorych osób. Okazało się, że różnica pomiędzy oceną wieku pacjenta przez AI, a wiekiem rzeczywistym jest silnie skorelowana z różnymi chorobami, jak np. nadciśnienie, hiperurykemia czy przewlekła obturacyjna choroba płuc. Im więcej lat dawała pacjentowi sztuczna inteligencja w porównaniu z jego rzeczywistym wiekiem, tym większe było prawdopodobieństwo, że cierpi on na jedną z tych chorób.
      Wiek chronologiczny to jeden z najważniejszych czynników w medycynie. Nasze badania sugerują, że wiek oceniany na podstawie prześwietlenia klatki piersiowej może oddawać rzeczywisty stan zdrowia. Będziemy nadal prowadzili nasze badania. Chcemy sprawdzić, czy system ten nadaje się do oceny zaawansowania choroby, przewidzenia długości życia czy możliwych komplikacji pooperacyjnych, mówi Mitsuyama.
      Szczegóły badań opublikowano na łamach The Lancet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uniwersytet im. Adama Mickiewicza w Poznaniu (UAM), Politechnika Poznańska oraz neurolodzy i psychiatrzy chcą opracować nową, bezinwazyjną metodę diagnozowania choroby Alzheimera na wczesnym etapie. Jak podkreślono na stronie UAM, w celu przeprowadzenia badań pilotażowych w projekcie naukowcy planują zgromadzić grupę około 50 osób zagrożonych rozwojem choroby, a także podobną grupę kontrolną.
      Choroba Alzheimer przez dekady może rozwijać się bez żadnych objawów. Tymczasem, jak w przypadku większości chorób, wczesne rozpoznanie ma olbrzymie znaczenie dla rokowań. Im zatem szybciej schorzenie zostanie zdiagnozowane, tym większa szansa na wyleczenie czy powstrzymanie dalszych postępów choroby. Wszyscy mamy nadzieję, że prędzej czy później będziemy dysponować skutecznym lekiem, jednak może się okazać, że największą barierą w jego zastosowaniu będzie dostęp do wczesnej diagnostyki - obecnie drogiej i trudno osiągalnej, mówi profesor Jędrzej Kociński z UAM.
      Naukowcy zapraszają więc do wzięcia udziału w bezpłatnych anonimowych badaniach wszystkich, którzy podejrzewają, że coś złego dzieje się z ich pamięcią, oraz osoby po 50. roku życia bez zaburzeń pamięci, ale w rodzinach których są lub były osoby z wczesnym otępieniem (czyli takie, u których rozwinęło się one przed 65. rokiem życia). W badaniach nie mogą wziąć udział osoby z wyraźnymi objawami otępienia, ani z już zdiagnozowaną chorobą Alzheimera. Szczegółowe informacje o projekcie znajdziemy na stronach Alzheimer Prediction Project, a chęć udziału w badaniu można zgłosić pisząc na adres kierownika projektu, doktora Marcina Górniaka, lekarz.marcin.gorniak[at]gmail.com.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Sztuczna inteligencja lepiej niż technik-elektroradiolog ocenia i diagnozuje funkcjonowanie serca na podstawie badań ultrasonograficznych, wynika z badań przeprowadzonych przez naukowców z Cedars-Sinai Medical Center. Randomizowane testy prowadzili specjaliści ze Smidt Heart Institute i Division of Articifial Intelligence in Medicine.
      Uzyskane wyniki będą miały natychmiastowy wpływ na obrazowanie funkcji serca oraz szerszy wpływ na całe pole badań obrazowych serca, mówi główny autor badań, kardiolog David Ouyang. Pokazują bowiem, że wykorzystanie sztucznej inteligencji na tym polu poprawi jakość i efektywność obrazowania echokardiograficznego.
      W 2020 roku eksperci ze Smidt Heart Institute i Uniwersytetu Stanforda stworzyli jeden z pierwszych systemów sztucznej inteligencji wyspecjalizowany w ocenie pracy serca, a w szczególności w ocenie frakcji wyrzutowej lewej komory. To kluczowy parametr służący ocenie pracy mięśnia sercowego. Teraz, bazując na swoich wcześniejszych badaniach, przeprowadzili eksperymenty, w ramach których wykorzystali opisy 3495 echokardiografii przezklatkowych. Część badań została opisana przez techników, część przez sztuczną inteligencję. Wyniki badań wraz z ich opisami otrzymali kardiolodzy, którzy mieli poddać je ocenie.
      Okazało się, że kardiolodzy częściej zgadzali się z opisem wykonanym przez sztuczną inteligencję niż przez człowieka. W przypadku SI poprawy wymagało 16,8% opisów, natomiast kardiolodzy wprowadzili poprawki do 27,2% opisów wykonanych przez techników. Lekarze nie byli też w stanie stwierdzić, które opisy zostały wykonane przez techników, a które przez sztuczą inteligencję. Badania wykazały również, że wykorzystanie AI zaoszczędza czas zarówno kardiologów, jak i techników.
      Poprosiliśmy naszych kardiologów, by powiedzieli, które z opisów wykonała sztuczna inteligencja, a które technicy. Okazało się, że lekarze nie są w stanie zauważyć różnicy. To pokazuje, jak dobrze radzi sobie sztuczna inteligencja i że można ją bezproblemowo wdrożyć do praktyki klinicznej. Uważamy to za dobry prognostyk dla dalszych testów na wykorzystaniem SI na tym polu, mówi Ouyang.
      Badacze uważają, że wykorzystanie AI pozwoli na szybszą i sprawniejszą diagnostykę. Oczywiście o ostatecznym opisie badań obrazowych nie będzie decydował algorytm, a kardiolog. Tego typu badania, kolejne testy i artykuły naukowe powinny przyczynić się do szerszego dopuszczenia systemów AI do pracy w opiece zdrowotnej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na University of Leeds powstał system sztucznej inteligencji (SI), który analizuje skany oczu wykonywane podczas rutynowych wizyt u okulisty czy optyka i wskazuje osoby narażone na... wysokie ryzyko ataku serca. System analizuje zmiany w miniaturowych naczyniach krwionośnych siatkówki, o kórych wiemy, że wskazują na szerszy problem z układem krążenia.
      Specjaliści z Leeds wykorzystali techniki głębokiego uczenia się, by przeszkolić SI w automatycznym odczytywaniu skanów oraz wyławianiu osób, które w ciągu najbliższego roku mogą doświadczyć ataku serca.
      System, który został opisany na łamach Nature Machine Intelligence, wyróżnia się dokładnością rzędu 70–80 procent i zdaniem jego twórców może być wykorzystany przy diagnostyce chorób układu krążenia.
      Choroby układu krążenia, w tym ataki serca, to główne przyczyny zgonów na całym świecie i druga przyczyna zgonów w Wielkiej Brytanii. To choroby chroniczne, obniżające jakość życia. Ta technika może potencjalnie zrewolucjonizować diagnostykę. Skanowanie siatkówki to tani i rutynowy proces stosowany w czasie wielu badań oczu, mówi profesor Alex Frangi, który nadzorował rozwój nowego systemu. Osoby badane przez okulistę czy optometrystę mogą niejako przy okazji dowiedzieć się, czy nie rozwija się u nich choroba układu krążenia. Dzięki temu leczenie można będzie zacząć wcześniej, zanim pojawią się inne objawy.
      System sztucznej inteligencji trenowano na danych okulistycznych i kardiologicznych ponad 5000 osób. Uczył się odróżniania stanów patologicznych od prawidłowych. Gdy już się tego nauczył, na podstawie samych skanów siatkówki był w stanie określić wielkość oraz wydajność pracy lewej komory serca. Powiększona komora jest powiązana z większym ryzykiem chorób serca. Następnie SI, łącząc dane o stanie lewej komory serca z informacjami o wieku i płci pacjenta, może przewidzieć ryzyko ataku serca w ciągu najbliższych 12 miesięcy.
      Obecnie rozmiar i funkcjonowanie lewej komory serca jesteśmy w stanie określić za pomocą echokardiografii czy rezonansu magnetycznego. To specjalistyczne i kosztowne badania, które są znacznie gorzej dostępne niż badania prowadzone w gabinetach okulistycznych czy optycznych. Nowy system nie tylko obniży koszty i poprawi dostępność wczesnej diagnostyki kardiologicznej, ale może odegrać olbrzymią rolę w krajach o słabiej rozwiniętym systemie opieki zdrowotnej, gdzie specjalistyczne badania są bardzo trudno dostępne.
      Ten system sztucznej inteligencji to wspaniałe narzędzie do ujawniania wzorców istniejących w naturze. I właśnie to robi, łączy wzorce zmian w siatkówce ze zmianami w sercu, cieszy się profesor Sven Plein, jeden z autorów badań.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...