Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Popularność SUV-ów całkowicie niweluje korzyści z rosnącej popularności pojazdów elektrycznych

Rekomendowane odpowiedzi

Korzyści z rosnącej sprzedaży samochodów elektrycznych są całkowicie niwelowane przez rosnącą popularność SUV-ów. Spadek sprzedaży ropy naftowej, spowodowany coraz większym zapotrzebowaniem na pojazdy elektryczne został całkowicie wyrównany przez wzrost konsumpcji ropy przez SUV-y, informują Laura Cozzi i Apostolos Petropoulos z Międzynarodowej Agencji Energii w Paryżu.

W 2020 roku zużycie ropy naftowej przez samochody, w tym SUV-y, spadło o 10%, czyli o ponad 1,8 miliona baryłek dziennie. Większość tego spadku związana jest z pandemią, która spowodowała, iż ludzie mniej podróżują. Jest to zatem najprawdopodobniej zjawisko tymczasowe. Jednak za niewielką część spadku, około 40 000 baryłek dziennie, odpowiada wzrost liczby samochodów elektrycznych, szacują Cozzi i Patropoulos. W roku 2020 sprzedaż pojazdów elektrycznych gwałtownie wzrosła, mówi Patropoulos. Niestety, wzrosła też sprzedaż SUV-ów. I ile całkowita sprzedaż samochodów spadła, to aż 42% kupujących wybrało SUV-a, zatem sprzedano o 3% więcej tego typu pojazdów niż w roku 2019.

Obecnie po drogach całego świata jeździ ponad 280 milionów SUV-ów. Jeszcze w 2010 roku było ich mniej niż 50 milionów. Przeciętny SUV spala o 20% więcej paliwa niż samochód osobowy średniej wielkości. Popularność SUV-ów spowodowała, że korzyści z zakupów samochodów elektrycznych zostały całkowicie zniwelowane.

SUV-y przyczyniają się do utrzymania poziomu zanieczyszczeń emitowanych przez samochody. W latach 2010–2020 globalna emisja CO2 z samochodów osobowych zmniejszyła się o 350 milionów ton. Główne przyczyny to zwiększona wydajność silników oraz rosnąca popularność samochodów elektrycznych. Jednocześnie jednak emisja z SUV-ów wzrosła o ponad 500 milionów ton.
I to właśnie rosnąca popularność SUV-ów powoduje, że pomimo coraz lepszych silników i coraz popularniejszych samochodów elektrycznych, ogólna emisja z samochodów osobowych nie spada.

Przyczyną popularności tego typu samochodów jest postrzeganie ich jako symboli statusu materialnego, rosnąca zamożność ludności w takich krajach jak Indie czy RPA oraz fakt, że SUV-y są bardzo intensywnie reklamowane przez koncerny samochodowe. Zapewniają one bowiem wyższy margines zysku niż standardowe pojazdy.

Na rynku zaczęły pojawiać się też elektryczne SUV-y. Być może z czasem bardziej się one rozpowszechnią. Jednak trzeba pamiętać, że nawet wówczas większy i cięższy samochód wymaga zużycia większej ilości surowców do produkcji, a elektryczny SUV zużywa około 15% więcej energii niż mniejszy elektryczny samochód.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ano. Ja sam zamieniłem autko palące 4.5 oleju na benzynowca palącego 8.3 Do tej pory zastanawiam się dlaczego....

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Well, mój w mieście pali 12. Cóż, jak się chce mieć "ekologiczną" benzynę zamiast diesla... ale to tylko dlatego, bo nie stać mnie na tesle model X.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Świetnie, najpierw naganiać ludzi na konsumpcję, a potem stwierdzać, patrz, nie spada.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Do czasu wprowadzenia na rynek nowego typu akumulatorów grafenowych, zredukowania ceny aut elektrycznych, rozbudowy stacji ładowania,  samochody bezemisyjne niestety nie będą cieszyły się dużą popularnością. Akumulatory grafenowe mają znacznie krótszy czas ładowania i dłuższą żywotność.

Akumulatory grafenowe w samochodach elektrycznych

SUV-y spalinowe zarzynają klimat i być może rozwiązaniem czasowym mogłaby być produkcja ekologicznego paliwa jednak najczęściej to rozwiązanie pojawia się w odniesieniu do samolotów odrzutowych, których silniki nie można zastąpić elektrycznymi.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Kiedyś czytałem opinię, że ludzie preferują SUVy, bo chcą czuć się bezpiecznie na drogach. Kiedy jednak wszyscy będą już mieli SUVy, to trzeba będzie wejść na kolejny poziom wyścigu zbrojeń. Nie może tak być, że to mój sąsiad wyjdzie żywy z czołówki :) Stawiam na sprawdzone rozwiązania typu MRAP :)

OF4JRORE65CVTCYLZQGKNS52UA.JPG

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Inżynierowie z NASA skonstruowali i przetestowali pierwszy pełnoskalowy silnik rakietowy z rotującą detonacją (RDRE – rotating detonation rocket engine). Tego typu napęd może być przyszłością lotów kosmicznych. Dzięki niemu bowiem rakiety będą lżejsze, mniej skomplikowane i zużyją mniej paliwa. Zaledwie trzy lata temu powstał matematyczny model takiego silnika oraz niewielki prototyp, co pozwoliło inżynierom na rozpoczęcie testów urządzenia.
      Konwencjonalny silnik rakietowy uzyskuje ciąg dzięki spalaniu paliwa i wyrzucaniu go z tyłu. Silnik z rotującą detonacją składa się z koncentrycznych cylindrów, pomiędzy które wpływa paliwo. Zostaje ono tam zapalone. Dochodzi do gwałtownego uwolnienia ciepła w postaci fali uderzeniowej. Jest to silny impuls gazów o wysokiej temperaturze i ciśnieniu, które poruszają się szybciej od prędkości dźwięku. O ile w konwencjonalnych silnikach stosowane są liczne podzespoły odpowiedzialne za kierowanie i kontrolowanie reakcji spalania, to nie są one potrzebne w silnikach RDRE. Napędzana procesem spalania fala uderzeniowa w sposób naturalny przemieszcza się w komorze, zapalając kolejne porcje paliwa. To bardzo gwałtowny proces, w wyniku którego można uzyskać większy ciąg, zużywając przy tym mniej paliwa.
      NASA poinformowała właśnie o wynikach ubiegłorocznego testu silnika RDRE. Został on uruchomiony kilkanaście razy i pracował w sumie przez 10 minut. Celem testu było sprawdzenie, czy poszczególne podzespoły są w stanie wytrzymać przez dłuższy czas ekstremalne temperatury i ciśnienie.
      Podczas pracy z pełną mocą silnik przez niemal minutę wygenerował ciąg o mocy ok. 18 kN, czyli ok. 400 razy mniejszy niż ciąg F-1, najpotężniejszego w historii jednokomorowego silnika na paliwo płynne, który napędzał Saturna V, najpotężniejszą rakietę w dziejach. Średnie ciśnienie w komorze spalania wyniosło 4,2 MPa. To najwyższa wartość ciśnienia osiągnięta w tego typu silniku.
      Udane testy RDRE pozwalają NASA myśleć o wykorzystaniu tej technologii w przyszłości. Obecnie inżynierowie pracują nad RDRE wielokrotnego użytku, który wygeneruje ciąg 44,5 kN. Posłuży on do testów porównujących tego typu konstrukcję z obecnie używanymi silnikami.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Litowo-jonowe akumulatory wykorzystywane w samochodach elektrycznych to poważny problem środowiskowy i wizerunkowy. Ich recykling z pewnością poprawiłby zarówno wizerunek, jak i obciążenie dla środowiska. O ile jednak zaczyna rozwijać się cały przemysł recyklingu akumulatorów, to bardzo trudno jest namówić producentów samochodów, by chcieli korzystać z materiałów pochodzących z recyklingu.
      Ludzie uważają, że materiał z recyklingu nie jest równie dobry, jak oryginalny. Producenci akumulatorów mają wątpliwości odnośnie wykorzystywania odzyskiwanych materiałów, mówi profesor Yan Wang z Worcester Polytechnic Institute. Tymczasem badania przeprowadzone przez Wanga we współpracy ze specjalistami z US Advanced Battery Consortium (USABC) i firmy A123 Systems wykazały, że takie obawy są bezpodstawne. Katody z recyklingu są równie dobre, a nawet lepsze niż katody wykonane z dziewiczych materiałów.
      Specjaliści przeanalizowali akumulatory z pochodzącymi z recyklingu katodami NMC111. To najpowszechniej występujący typ katod, zbudowanych z manganu, kobaltu i niklu. Recykling wykonano za pomocą technologii opracowanej przez Wanga, którą uczony próbuje obecnie skomercjalizować.
      Okazało się, że katoda z materiału po recyklingu posiada więcej mikroskopijnych porów niż z dziewiczego materiału. W efekcie akumulatory z taką katodą mają podobną gęstość energetyczną, ale mogą pracować o 53% dłużej.
      Testów nie prowadzono co prawda w samochodach, ale na przemysłowych stanowiskach testowych. Na ich potrzeby wykonano odpowiadające standardom przemysłowym ogniwa o pojemności 11 Ah. Za testy odpowiedzialni byli inżynierowie z A123 Systems, a przeprowadzano je według standardów USABC dla hybryd plug-in. Wykazały one, że katody z recyklingu świetnie się sprawują. A to katody, jak mówi Wang, są najcenniejszym elementem akumulatorów. Dlatego też uczony zainteresował się właśnie ich odzyskiwaniem, gdyż to one mogą przynieść firmom zajmującym się recyklingiem największe zyski, a tym samym stać się impulsem do powszechniejszego recyklingu akumulatorów samochodowych.
      Założona przez Wanga firma Battery Resources planuje otwarcie pierwszego zakładu, który 2 2022 roku przetworzy 10 000 ton akumulatorów. Wangowi udało się też zdobyć finansowanie w wysokości 70 milionów USD, za które chce wybudowac dwa kolejne zakłady, tym razem na terenie Europy. Mają one powstać do końca przyszłego roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na University of Bath powstał niezwykle lekki materiał, który może wyciszyć silniki samolotów i znacząco poprawić komfort pasażerów. To najlżejszy ze znanych materiałów izolujących, który może zmniejszyć hałas generowany przez silniki startujących odrzutowców do poziomu zbliżonego do hałasu generowanego przez... suszarkę do włosów.
      Metr sześcienny aerożelu z tlenku grafenu i poli(alkoholu winylowego) waży zaledwie 2,1 kilograma, co czyni go najlżejszym kiedykolwiek wyprodukowanym materiałem izolującym. Jego twórcy zapewniają, że może on obniżyć hałas generowany przez silniki samolotu ze 105 do 89 decybeli, zatem do poziomu przeciętnej suszarki do włosów. Jednocześnie niemal nie wpływałby na wagę całego samolotu.
      Obecnie naukowcy z Materials and Structures Centre (MAST) na Bath University pracują nad optymalizacją swojego aerożelu. Chcą, by lepiej rozpraszał on ciepło, co zmniejszy zużycie paliwa i poprawi bezpieczeństwo.
      "To niezwykle interesujący materiał, który może znaleźć wiele zastosowań. Początkowo w przemyśle lotniczym i kosmicznym, ale potencjalnie również w samochodowym, transporcie morskim czy budownictwie", mówi profesor Michele Meo, który stał na czele zespołu badawczego. "Udało się nam wyprodukować tak lekki materiał dzięki połączeniu ciekłych tlenku grafenu i polimeru, które formowane są tak, by zamknąć wewnątrz bąble powietrza. Możemy porównać tę technikę z ubijaniem bezy. Otrzymujemy ciało stałe, zawierające dużo powietrza".
      Twórcy nowego materiału oceniają, że może on trafić na rynek już za 18 miesięcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z USA po raz pierwszy w historii doprowadzili do detonacji, w której fala pozostaje przez jakiś czas nieruchomo. Detonację taką przeprowadzono w prototypowym silniku, a naukowcy mają nadzieję, że tego typu system może w przyszłości posłużyć do rozpędzenia samolotu czy promu kosmicznego do prędkości nawet 17-krotnie przewyższającej prędkość dźwięku.
      Większość wybuchów to deflagracje, podczas których materiał wybuchowy rozkłada się stosunkowo powoli, a sama fala takiego wybuchu rozprzestrzenia się znacznie wolniej niż prędkość dźwięku. To właśnie deflagracja jest obecnie wykorzystywana w transporcie. Z nią mamy do czynienia w silnikach spalinowych.
      To jednak detonacja, czyli wybuch, w którym fala rozprzestrzenia się z prędkością ponaddźwiękową, dostarcza więcej energii i w sposób bardziej efektywny. Jednak takie intensywne uwalnianie się energii jest zjawiskiem niestabilnym i trudnym do kontrolowania. Jeśli jednak udałoby się je opanować, mogłoby posłużyć np. do osiągania prędkości naddźwiękowych w lotach kosmicznych czy nawet podczas lotów międzykontynentalnych na Ziemi. Z obliczeń specjalistów wynika, że można by skonstruować silnik rozpędzający samolot do prędkości 6–17 machów.
      Naukowcy z University of Central Florida i Naval Research Laboratory zaprezentowali silnik wykorzystujący detonację. Przed rokiem informowaliśmy, o innym typie takiego silnika – rotacyjnym silniku detonacyjnym.
      Tym razem jest to silnik ze stabilną falą uderzeniową, która pozostaje w tej samej pozycji. Chcieliśmy uzyskać właściwą mieszankę detonacyjnych, przy właściwej prędkości i zamrozić ją w przestrzeni, mówi Kareem Ahmed.
      Uczeni stworzyli prototypowy silnik o nazwie HyperReact (high-enthalpy hypersonic reacting facility). Podzielony jest on na trzy sekcje. W pierwszej, komorze mieszania, dochodzi do zapłonu mieszaniny wodoru i powietrza. Pojawia się gorące powietrze o wysokim ciśnieniu, które przepływa do kolejnej komory – dyszy konwergencji-dywergencji (CD). Gdy gorące powietrze tam trafia, dodawany jest strumień bardzo czystego wodoru. Kształt dyszy CD jest dobrany tak, by przyspieszać całą mieszankę do prędkości około 4,5 machów. W ostatniej komorze znajduje się rampa ustawiona pod kątem 30 stopni. Mieszanka z olbrzymią prędkością trafia na rampę, gdzie dochodzi do detonacji i wyrzucenia z duża prędkością spalin z tyłu silnika. Pojawia się też duże ciśnienie. Mamy wszystko, co trzeba, by wygenerować duży ciąg. A metoda jest też bardzo wydajna, gdyż spalane jest niemal 100% paliwa.
      Naukowcy odkryli, że manipulując mieszkanką, temperaturą oraz przepływem powietrza w komorach, są w stanie wytworzyć na rampie falę uderzeniową, która pozostaje w miejscu przez około 3 sekundy.
      Ahmed wyjaśnia, że napęd detonacyjny byłby znacznie bardziej efektywny niż napęd deflagracyjny. Osiągnięcie prędkości naddźwiękowych ma olbrzymie znacznie, gdyż obecnie nie dysponujemy systemami, które to potrafią. Jedyne, co obecnie nadaje nam prędkość naddźwiękową jest silnik rakietowy. To nie jest efektywne rozwiązanie. Gdyby było, loty w przestrzeni kosmicznej byłyby czymś powszechnym, a są niezwykle kosztowne. Pojazd kosmiczny napędzany takim silnikiem nie potrzebowałby rakiet nośnych, by opuścić Ziemię.
      Teraz, gdy udowodniono, że możliwe jest stworzenie silnika z ukośną falą detonacyjną, uczeni chcą prowadzić eksperymenty z różnymi rodzajami paliwa i różną prędkością przemieszczania się mieszanki paliwowej. Mają nadzieję, że dzięki temu określą parametry, przy których detonacja jest stabilna i możliwa do kontrolowania. Tyko wówczas można będzie tego typu silnik zastosować w praktyce.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Producenci akumulatorów od lat próbują zastąpić grafitową anodę w akumulatorach litowo-jonowych jej krzemową wersją. Powinno to zwiększyć zasięg samochodów elektrycznych wyposażonych w takie akumulatory. Próby są prowadzone zwykle z użyciem tlenku krzemu lub połączenia krzemu i węgla. Jednak kalifornijska firma Enevate ma nieco inny pomysł – wykorzystuje cienkie porowate warstwy czystego krzemu.
      Właściciel i główny technolog firmy, Benjamin Park, który od ponad 10 lat pracuje nad nowymi akumulatorami, twierdzi, że taki materiał jest nie tylko tani, ale pozwala na zwieszenie o 30% zasięgu samochodów elektrycznych wyposażonych w tego typu akumulatory. Co więcej, przedstawiciele Enevate uważają, że w niedalekiej przyszłości tego typu akumulatory po 5-minutowym ładowaniu zapewnią samochodowi 400 kilometrów zasięgu.
      Podczas ładowania akumulatorów litowo-jonowych jony litu przemieszczają się z katody do anody. Im więcej jonów jest w stanie przyjąć anoda, tym większa pojemność akumulatora. Krzem może przechowywać nawet 10-krotnie więcej energii niż grafit. Jednak w trakcie pracy akumulatora znacznie się on rozszerza i kurczy, powstają pęknięcia i materiał kruszy się po kilku cyklach ładowania.
      Producenci akumulatorów, chcąc obejść ten problem, dodają nieco krzemu do proszku grafitowego. Całość mieszana jest z tworzywem sztucznym działającym jak spoiwo i nakładana na cienką warstwę miedzi. W ten sposób powstaje anoda. Jednak, jak wyjaśnia Park, jony litu najpierw wchodzą w interakcje z krzemem, później z grafitem. Krzem wciąż się nieco rozszerza, a spoiwo jest dość słabe. Tak zbudowana anoda ulega tym szybszej degradacji, im więcej krzemu się w niej znajduje.
      Enevate nie używa spoiwa. Firma opracowała własny sposób na bezpośrednie nakładanie na miedź porowatych warstw krzemu o grubości od 10 do 60 mikrometrów. Na wierzch stosuje się dodatkową warstwę, która chroni krzem przed kontaktem z elektrolitem.
      Cały proces nie wymaga używania krzemu o wysokiej jakości, więc tego typu anoda kosztuje mniej niż anoda grafitowa o identycznej pojemności. Zaś dzięki temu, że stosowany jest krzem, jony litu mogą bardzo szybko się przemieszczać. W ciągu 5 minut można naładować akumulator do 75% pojemności, nie powodując przy tym zbytniego rozszerzania się krzemu.
      Wszystko co potrzebne do wyprodukowania anody można wytwarzać standardowymi metodami przemysłowymi z rolki. Zatem cały proces łatwo jest skalować. Dzięki połączeniu nowej anody z konwencjonalnymi katodami stworzono akumulatory o pojemności do 350 Wh/kg. To o około 30% więcej niż współczesne akumulatory litowo-jonowe.
      Enevate już współpracuje z koncernami motoryzacyjnymi. Jej nowe akumulatory powinny trafić do samochodów elektrycznych w sezonie 2024/2025.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...