-
Similar Content
-
By KopalniaWiedzy.pl
Koronawirus SARS-CoV-2 wywołuje chorobę COVID-19. Najczęściej towarzyszącymi jej objawami są: podwyższona temperatura ciała, zaburzenia węchu i smaku, kaszel, bóle mięśni, duszność i zmęczenie. Wirus szerzy się bardzo łatwo drogą kropelkową w sposób pośredni i bezpośredni.
Co to jest koronawirus?
Koronawirus to rodzaj wirusa odpowiedzialnego za powstanie ostrej choroby zakaźnej układu oddechowego. Tzw. choroba koronawirusowa, określana też jako COVID-19, wywoływana jest przez wirusa SARS-CoV-2. W większości przypadków infekcja ma łagodny lub umiarkowany przebieg i nie wymaga specjalnego leczenia. Ciężki przebieg choroby koronawirusowej dotyczy ok. 15–20% pacjentów. W sposób szczególny narażone są na niego osoby w podeszłym wieku, o obniżonej odporności, zmagające się ze schorzeniami przewlekłymi. Poważne przypadki wymagają specjalistycznej pomocy, w tym hospitalizacji i tlenoterapii. Szacuje się, że w 2–3% zakażeń SARS-CoV-2 choroba kończy się zgonem.
Jak się zabezpieczyć przed koronawirusem?
Wirus SARS-CoV-2 przenosi się drogą kropelkową. Można zarazić się w sposób bezpośredni (kontakt z osobą chorą) lub pośredni (kontakt z zanieczyszczonymi przez wirusa powierzchniami). Ochrona przed zakażeniem koronawirusem obejmuje przede wszystkim:
zachowanie odległości od innych ludzi, w sposób szczególny od osób z objawami zakażenia;
unikanie dotykania okolic oczu, nosa i ust;
unikanie spluwania w miejscach publicznych;
dbałość o higienę – częste mycie rąk ciepłą wodą i mydłem, stosownie środków do dezynfekcji;
zakrywanie ust i nosa podczas przebywania w zbiorowiskach ludzkich, poprzez noszenie maseczki, a w czasie kaszlu i kichania zasłanianie chusteczką higieniczną (którą od razu należy wyrzucić po użyciu) lub zgiętym łokciem;
w przypadku wystąpienia objawów zakażenia skonsultowanie się z lekarzem i zweryfikowanie swojego stanu poprzez skorzystanie z zestawu szybkiego testu antygenowego w kierunku SARS-CoV-2, który wykrywa antygeny wirusa w materiale z wymazu z nosogardzieli;
poddawanie się szczepieniom ochronnym.
W jaki sposób objawia się COVID-19?
Najczęściej występujące objawy zakażenia SARS-CoV-2 to podwyższona temperatura ciała, zaburzenia smaku lub węchu, kaszel, bóle mięśni, duszności, zmęczenie, ból gardła, mięśni i stawów, uczucie rozbicia, osłabienie, ogólne pogorszenie samopoczucia, ból głowy, problemy ze strony układu pokarmowego (biegunka, nudności, ból brzucha, spadek apetytu).
Rzadziej w COVID-19 pojawiają się objawy dermatologiczne, takie jak wysypka czy przebarwienia skóry. Może dojść do zapalenia spojówek i rozmaitych zmian w jamie ustnej. Na skutek zakażenia SARS-CoV-2 czasami dochodzi do uaktywnienia uśpionego w organizmie wirusa ospy wietrznej i półpaśca lub opryszczki pospolitej.
W ciężkim przebiegu może rozwinąć się atypowe zapalenie płuc, wystąpić silny ból lub ucisk w klatce piersiowej, pojawiają się też problemy z oddychaniem. Istnieje ryzyko rozwoju niebezpiecznych dla zdrowia i życia powikłań, takich jak m.in. zespół ostrej niewydolności oddechowej, ostra niewydolność serca, zaburzenia czynności wątroby, ostre uszkodzenie nerek, zakrzepica żylna, a także niewydolność wielonarządowa i sepsa.
« powrót do artykułu -
By KopalniaWiedzy.pl
W najbliższy piątek, 4 marca, fragment rakiety nośnej spadnie po niewidocznej z Ziemi stronie Księżyca. Naukowcy postanowili skorzystać z okazji i przeprowadzić dodatkowe badania Srebrnego Globu. Satelita Lunar Reconnaissance Orbiter (LRO) zbada po uderzeniu zmiany w atmosferze Księżyca oraz powstały krater. Ocenia się, że fragment rakiety uderzy w krater Hertzsprung w piątek o godzinie 13:25 czasu polskiego.
To, o ile wiadomo, pierwszy raz, gdy dojdzie do takiego wydarzenia. Dotychczas ludzie rozbijali pojazdy o powierzchnię Srebrnego Globu albo przypadkiem, podczas nieudanych prób lądowania, albo też celowo. Początkowo sądzono, że obserwowany fragment zdążający w stronę Księżyca, to pozostałości rakiety Falcon 9 firmy SpaceX. Jednak po szczegółowej analizie spektrum światła odbijanego przez obiekt, eksperci doszli do wniosku, że lepiej pasuje ono do rodzaju farby używanej przez Chińczyków.
Uznano, że to kawałek chińskiej rakiety Długi Marsz 3C, która została wystrzelona w 2014 roku w ramach misji Chang'e 5-T1. W ramach tej misji pojazd Chang'e 5-T1 przeleciał za Księżycem i powrócił na Ziemię. Celem zaś było przetestowanie możliwości wejścia w atmosferę na potrzeby bezzałogowej misji Chang'e 5, która w 2020 roku przywiozła próbki księżycowego gruntu.
Uderzenie, które nastąpi 4 marca, będzie podobne do upadku trzeciego stopnia rakiety Saturn V, który w ramach programu Apollo został celowo rozbity o powierzchnię Księżyca. Jak wyjaśniają eksperci, pozostałości rakiety Długi Marsz nie utworzą zbyt głębokiego krateru na powierzchni. Podobnie zresztą było w przypadku Saturn V. Oba fragmenty można bowiem porównać do puszek do piwa i podczas zderzenia znaczna część energii zostanie zużyta na zgniecenie rakiet, a nie na wyżłobienie krateru.
Uderzenie fragmentu chińskiej rakiety to bardzo dobra okazja do badań i lepszego zrozumienia procesu powstawania kraterów uderzeniowych na Księżycu. Lekcja tym cenniejsza, że LRO wykonał już bardzo szczegółowe zdjęcia miejsca spodziewanego uderzenia, więc uczeni będą dysponowali materiałem porównawczym. Jedynym nieznanym parametrem jest obecnie orientacja fragmentu w stosunku do jego trajektorii. Wiadomo, że się on obraca, nie wiadomo jednak dokładnie, w jaki sposób. Specjaliści mają nadzieję, że Chińczycy to wiedzą i podzielą się swoimi danymi.
« powrót do artykułu -
By KopalniaWiedzy.pl
Fragment rakiety SpaceX uderzy w marcu w Księżyc, przewidują eksperci. Rakieta została wystrzelona w 2015 roku i wyniosła na orbitę satelitę NASA Deep Space Climate Observatory (DSCOVR). Po wypełnieniu misji jej drugi stopień znajdował się na chaotycznej orbicie. Astronom Bill Gray obliczył, że obecnie znajduje się on na kursie kolizyjnym ze Srebrnym Globem. Już w styczniu ten kosmiczny śmieć przeleciał blisko Księżyca, co zmieniło jego orbitę, mówi Gray.
Uczony pracuje nad Project Pluto, oprogramowaniem, które pozwala na obliczanie trajektorii asteroidów i innych obiektów. Program ten jest używany w wielu finansowanych przez NASA projektach.
Niedługo po tym, gdy okazało się, że fragment rakiety przeleciał w pobliżu Księżyca, Gray obliczył, że 4 marca rozbije się on po jego niewidocznej stronie, pędząc z prędkością 9000 km/h. Obliczenia Graya zostały potwierdzone obserwacjami astronomów-amatorów. Śledzę kosmiczne odpadki od około 15 lat. Tutaj będziemy mieli do czynienia z pierwszym przypadkiem, w którym stworzony przez człowieka obiekt uderzy w Księżyc w sposób niezaplanowany, mówi Gray.
Astronom Jonathan McDowell nie wyklucza jednak, że do takich zdarzeń już dochodziło. W latach 60., 70. i 80. ludzkość pozostawiła na odległych orbitach okołoziemskich co najmniej 50 obiektów, których nie śledziliśmy. Teraz obserwujemy niektóre z nich. Ale wielu nie możemy znaleźć, nie ma ich tam, gdzie je zostawiliśmy, dodaje.
Nie będziemy mogli obserwować w czasie rzeczywistym upadku fragmentu rakiety SpaceX na Księżyc. Jednak ważący cztery tony odpadek wybije w powierzchni Srebrnego Globu krater, który będzie można zauważyć za pomocą należącego do NASA Lunar Reconnaissance Orbitera lub indyjskeigo Chandrayaana-2. Jego zbadanie powie nam więcej o geologii Księżyca.
Dotychczas ludzie celowo rozbijali obiekty na Srebrnym Globie. Robiono tak w ramach misji Apollo, by testować sejsmometry. W 2009 roku NASA celowo skierowała jeden ze stopni rakiety nośnej na biegun południowy Księżyca, szukając tam wody.
Zdecydowana większość rakiet nie dociera jednak tak daleko. SpaceX odzyskuje pierwszy stopień rakiety nośnej, a drugi kieruje w stronę Ziemi, by rozpadł się i spłonął w atmosferze. Jednak specjaliści spodziewają się, że w przyszłości coraz więcej śmieci będzie opadało na powierzchnię Księżyca. USA i Chiny przygotowują się bowiem do coraz bardziej intensywnych prac na orbicie Srebrnego Globu i na jego powierzchni. Stany Zjednoczone już teraz planują budowę stacji na orbicie Księżyca.
Specjaliści coraz częściej apelują o sprzątanie kosmicznych śmieci. Zwracają też uwagę, że odpadów pozostawionych na dalszych orbitach nikt nawet nie śledzi. W tej chwili nikt się tym nie zajmuje. Myślę, że najwyższy czas, by uregulować tę kwestię, mówi McDowell.
Kosmiczne śmieci już stanowią poważny problem na niskich orbitach. Tylko należący do amerykańskiego Departamentu Obrony Space Surveillance Network śledzi obecnie ponad 27 000 odpadków krążących ponad naszymi głowami. A to tylko duże odpadki. Szacuje się, że na w pobliżu Ziemi krąży też około 500 tysięcy odpadków wielkości około centymetra oraz 100 milionów fragmentów wielkości pomiędzy milimetrem a centymetrem.
Większość z tych pozostałości jest zbyt małych, by je śledzić. Są jednak na tyle duże i poruszają się z tak olbrzymią prędkością – na niskiej orbicie okołoziemskiej wynosi ona ponad 25 000 km/h – że stanowią coraz poważniejsze zagrożenie dla misji kosmicznych. We wrześniu 2020 roku na Międzynarodowej Stacji Kosmicznej ogłoszono alarm i została ona przesunięta, by uniknąć zderzenia z takim odpadkiem. To nie był zresztą pierwszy raz, gdy na ISS przeprowadzano taką operację.
« powrót do artykułu -
By KopalniaWiedzy.pl
Obsługa naziemna Teleskopu Webba rozpoczęła włączanie instrumentów naukowych teleskopu. Po schłodzeniu do temperatury pracy można będzie rozpocząć testy ich działania. Jako cel testowych obserwacji wybrano gwiazdę HD84406 położoną w odległości 241 lat świetlnych od Ziemi, w gwiazdozbiorze Wielkiej Niedźwiedzicy. Nie będą to jednak obserwacje naukowe. Posłużą one sprawdzeniu, czy teleskop jest w stanie skupić się na wybranym obiekcie oraz ustawieniu 18 segmentów zwierciadła głównego tak, by działały jak jedno lustro.
Obserwacje HD84406 będzie prowadził instrument NIRCam. Osiągnął on już wymaganą temperaturę -153 stopni Celsjusza. Zanim wszystkie segmenty zwierciadła nie zostaną prawidłowo ustawione – a ich regulowanie potrwa wiele tygodni – na Ziemię będzie docierało 18 rozmazanych obrazów. Po jednym z każdego segmentu. Specjaliści spodziewają się, że pod koniec kwietnia zwierciadło główne zostanie ustawione. Dopiero wówczas można będzie rozpocząć proces testowania i ustawiania pozostałych trzech instrumentów naukowych teleskopu. Rozpocznie się sprawdzanie ich możliwości w zakresie obserwowania zarówno obiektów znajdujących się w Układzie Słonecznym, jak i tych oddalonych o miliardy lat świetlnych. NASA zapowiada, że pierwsze obrazy o docelowej jakości upubliczni pod koniec czerwca lub na początku lipca.
Teraz więc powinniśmy trzymać kciuki z NIRCam. Żaden inny instrument nie może przejąć jego zadania pomocy w ustawieniu zwierciadła. Obecnie więc cała misja zależy od prawidłowego działania tego instrumentu. Jeśli z NIRCam jest coś nie tak, nie będziemy mogli ustawić zwierciadła. Dlatego też instrument składa się z dwóch kamer. Mamy pełną redundancję. Jeśli jednej z nich coś się stanie, będziemy mieli drugą, wyjaśnia Mark McCaughrean, naukowiec w JWST Science Working Group oraz starszy doradca Europejskiej Agencji Kosmicznej.
Jeden z pozostałych trzech instrumentów naukowych, MIRI, został częściowo włączony jeszcze w czasie gdy Teleskop Webba leciał w kierunku orbity wokół L2. Dwa pozostałe instrumenty, NIRSPec i FGS/NIRiss były podczas podróży ogrzewane przez specjalne podgrzewacze. Dzięki temu pozbyto się z nich ewentualnych resztek pary wodnej, jakie mogły uwięznąć na Ziemi, co zapobiegło kondensacji wody i jej zamarznięciu na instrumentach. Grzałki te zostały właśnie wyłączone. Z budową i zadaniami poszczególnych instrumentów możecie zapoznać się w naszym wcześniejszym tekście.
Proces chłodzenia instrumentów naukowych potrwa kilka tygodni. Docelowa temperatura ich pracy wynosi poniżej -223 stopni Celsjusza. Początkowo instrumenty chłodzą się pasywnie i trzem z nich to wystarczy. Wyjątkiem jest MIRI, który do prawidłowej pracy wymaga ekstremalnie niskich temperatur sięgających -266 stopni Celsjusza. Dlatego też urządzenie wyposażono w specjalistyczny dwustopniowy system chłodzący.
Obecnie najwyższa temperatura po stronie gorącej teleskopu wynosi 55 stopni Celsjusza, a najniższa po stronie zimnej to -213 stopni Celsjusza. NASA dodała też dodatkowe punkty pomiaru temperatury w samym module instrumentów naukowych. Będą one aktualizowane raz dziennie. Dzięki nim wiemy, że temperatura MIRI wynosi obecnie -125 stopni Celsjusza, temperatura NIRCam spadła już do -157 stopni, urządzenie NIRSPec zostało schłodzone do -146 stopni, a FGS-NIRIS osiągnęło -148 stopni. Fine Steering Mirror, niewielkie lustro odpowiedzialne za stabilizację obrazu, osiągnęło zaś temperaturę -195 stopni.
« powrót do artykułu -
By KopalniaWiedzy.pl
Za niecałe 2 miesiące, 12 marca, ma wystartować misja Artemis I, znana do niedawna jako EM-1 (Exploration Mission-1). Będzie to pierwszy, bezzałogowy, test Space Launch System oraz kapsuły Orion MPCV, które w przyszłości mają umożliwić powrót człowieka na Księżyc i załogową wyprawę na Marsa. Jednak Artemis I wyniesie też satelitę – NEA Scout – którego zadaniem będzie przetestowanie żagla słonecznego i dotarcie do najmniejszej asteroidy, jaką kiedykolwiek badano.
Celem wyprawy Near-Earth Asteroid Scout jest obiekt 2020 GE. To bliska Ziemi asteroida o średnicy mniejszej niż 18 metrów. Dotychczas żadna z misji na asteroidę nie badała obiektu o średnicy mniejszej niż 100 metrów. NEA Scout przyjrzy się asteroidzie za pomocą kamery, określając jej kształt, wielkość, tempo obrotu i właściwości powierzchni. Poszuka też pyłu i szczątków, które mogą otaczać 2020 GE.
Kamera o rozdzielczości poniżej 10 cm na piksel pozwoli stwierdzić, czy asteroida jest pojedynczym obiektem czy też składa się ze zlepionych ze sobą skał i pyłu, jak niektóre z dużych asteroid, np. Bennu.
Dzięki naziemnym obserwatoriom badającym asteroidy bliskie Ziemi, mogliśmy zidentyfikować wiele potencjalnych celów misji NEA Scout. Asteroidę 2020 GE wybraliśmy, ponieważ należy do klasy obiektów, o których niewiele wiemy, mówi Julie Castillo-Rogez z Jet Propulsion Laboratory.
NEA Scout to nieduży satelita wielkości sześciu standardowych mikrosatelitów CubeSat. Jest jednym z 10 satelitów, które zostały umieszczone w adapterze łączącym SLS z Orionem. Satelity te mają własne systemy napędowe i zostaną wystrzelone przy okazji misji Artemis I. Każdy z nich ma do wykonania osobną misję.
NEA Scout ma dwa zadania: przyjrzeć się asteroidzie oraz przetestować żagiel słoneczny. Po uwolnieniu z adaptera pojazd rozwinie żagiel o powierzchni 86 m2. Cieńszy od ludzkiego włosa żagiel wykonany jest z aluminium pokrytego tworzywem sztucznym. Będzie on generował napęd dzięki odbijającym się od niego fotonom emitowanym przez Słońce. Dodatkowo pojazd wyposażono w niewielkie silniki manewrowe. NASA chce przetestować możliwość przygotowywania i prowadzenia tanich misji w głębszych obszarach przestrzeni kosmicznej. Satelity CubeSat wyposażone w żagle słoneczne mogłyby z czasem osiągać spore prędkości i latać w odległe regiony Układu Słonecznego.
To nie pierwszy i ostatni test żagla słonecznego. Po raz pierwszy koncepcję żagla słonecznego przetestowano w praktyce przed 14 laty. Jeszcze w bieżącym roku ma wystartować Advanced Composite Solar Sail System, której celem będzie sprawdzenie nowej metody rozwijania żagla słonecznego. A w 2025 roku ruszy Solar Cruiser, który wykorzysta żagiel o powierzchni 1700 m2 i poleci w stronę Słońca.
Na stronie Eyes on Asteroids można śledzić obecne i przyszłe trasy interesujących asteroid oraz związanych z nimi misji badawczych.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.