-
Similar Content
-
By KopalniaWiedzy.pl
Europejska Agencja Kosmiczna opublikowała najdokładniejszą mapę Drogi Mlecznej. Jej tworzenie to główny cel misji sondy Gaia, która od 9 lat pracuje w przestrzeni kosmicznej. Sonda krąży wokół punktu libracyjnego L2, tego samego, w pobliżu którego znajduje się Teleskop Webba.
Udostępniony właśnie 3. zestaw danych z Gai zawiera nowe oraz poprawione informacje o niemal 2 miliardach gwiazd w naszej galaktyce. Znajdziemy tam nowe informacje o składzie chemicznym gwiazd, ich temperaturze, kolorze, masie, wieku i prędkości radialnej, czyli prędkości ich zbliżania się lub oddalania od sondy. Nowy katalog zawiera też informacje o masie i ewolucji 800 tys. gwiazd podwójnych, 156 tys. asteroid w Układzie Słonecznych, dane o 10 milionach gwiazd zmiennych oraz o milionach galaktyk i kwazarów poza Drogą Mleczną.
Jednak tym, co najbardziej zaskoczyło specjalistów jest zaobserwowanie przez Gaię trzęsień gwiazd. To niewielkie ruchy na powierzchni gwiazd, które zmieniają ich kształt. Gaia nie była projektowana do prowadzenia takich obserwacji, stąd zaskoczenie naukowców. To zresztą nie pierwsza niespodzianka.
Gaia już wcześniej zarejestrowała pulsacje radialne gwiazd, podczas których zmieniały one swoją objętość, zachowując przy tym kształt. Teraz jednak mamy do czynienia z pulsacjami nieradiacyjnymi, które przypominają wielkie tsunami i prowadzą do zmiany kształtu gwiazd. Takie zjawiska są trudniejsze do zarejestrowania. Mimo to Gai udało się zaobserwować je w przypadku tysięcy gwiazd. Co interesujące, te silne nieradialne trzęsienia gwiazd zarejestrowano na gwiazdach, które – zgodnie z obecnie obowiązującymi teoriami – nie powinny doświadczać takich zjawisk. Gaja otwiera skarbnicę wiedzy dla astrosejsmologii masywnych gwiazd, stwierdził Conny Aerts z Uniwersytetu Katolickiego w Leuven.
Skład gwiazd może nam wiele powiedzieć o miejscu, w którym powstały, i ich późniejszej wędrówce. Dzięki temu zaś możemy poznać historię Drogi Mlecznej. Najnowszy zestaw danych z Gai to największa mapa chemiczna Drogi Mlecznej przedstawiona w formie trójwymiarowej. Pokazuje ona zarówno bezpośrednie sąsiedztwo Układu Słonecznego jak i niewielkie galaktyki otaczające naszą.
Podczas Wielkiego Wybuchu powstały tylko hel i wodór. Wszystkie cięższe pierwiastki – zwane przez astronomów „metalami” – powstały z czasem wewnątrz gwiazd. Gdy gwiazdy te umierały, uwalniały metale do gazu i pyłu w przestrzeni międzygwiezdnej. Z materii tej powstawały zaś kolejne gwiazdy. Tworzenie się i umieranie gwiazd prowadzi do powstania środowiska bardziej bogatego w metale. Zatem skład chemiczny gwiazd to rodzaj DNA, które zdradza wiele informacji o ich pochodzeniu.
Gaia dostarcza nam informacji zarówno o gwiazdach ubogich w metale, jak i takich jak Słonce, które powstały ze materiału wzbogaconego w metale przez wcześniejsze pokolenia gwiazd. Dzięki temu wiemy, że gwiazdy bliższe centrum Drogi Mlecznej i jej płaszczyźnie zawierają więcej metali niż gwiazdy bardziej odległe. Nasza galaktyka to piękna mieszanina gwiazd. Ta różnorodność jest niezwykle ważna, gdyż opowiada nam historię tworzenia się Drogi Mlecznej. Pokazuje procesy migracji wewnątrz galaktyki oraz akrecji materiału z innych galaktyk. Pokazuje też, że nasze Słońce i my wraz z nim, należymy do ciągle zmieniającego się systemu stworzonego dzięki łączeniu się gwiazd i gazu o różnym pochodzeniu, mówi Alejandra Recio-Blanco z Observatoire de la Côte d’Azur.
« powrót do artykułu -
By KopalniaWiedzy.pl
Astronomowie pracujący przy Event Horizon Telescope (EHT, Teleskop Horyzontu Zdarzeń) pokazali pierwszy obraz Sagittariusa A*, czyli supermasywnej czarnej dziury znajdującej się w centrum Drogi Mlecznej. Co prawda nie jesteśmy w stanie dostrzec samej czarnej dziury, ale możemy zobrazować rozgrzany świecący gaz krążący wokół niej. EHT zarejestrował światło zakrzywione przez potężną grawitację Sgr A*, która jest 4 000 000 razy bardziej masywna od Słońca.
Teleskop Horyzontu Zdarzeń to projekt naukowy, w którym uczestniczą radioteleskopy rozsiane po cały świecie. Celem projektu jest obserwacja Sgr A* i M87*, co ma pozwolić na weryfikację OTW, zrozumienie procesu akrecji oraz powstawania dżetów wokół czarnych dziur.
Byliśmy zaskoczeni tym, jak dobrze rozmiary dysku otaczającego czarną dziurę zgadza się z Ogólną Teorią Względności Einsteina, mówi Geoffrey Bower z EHT. Te bezprecedensowe obserwacje znakomicie uzupełniają naszą wiedzę o tym, co dzieje się w centrum naszej galaktyki i dają nam wgląd w interakcje pomiędzy masywnymi czarnymi dziurami, a otoczeniem.
Przed trzema laty EHT pokazał nam pierwszy w historii obraz czarnej dziury. Zobrazował wówczas M87*, znajdującą się w centrum galaktyki Messier 87.
Teraz widzimy, że Sgr A* jest bardzo podobna do M87*, mimo tego, że jest od niej ponad tysiąc razy mniejsza i mniej masywna. Mamy dwa całkowicie różne typy galaktyk i dwie czarne dziury o zupełnie innych masach. Ale blisko krawędzi dziury te wyglądają zadziwiająco podobnie, stwierdza Sera Makroff z Uniwersytetu w Amsterdamie.
Uzyskanie obrazu Sgr A* było znacznie trudniejsze niż M87*. Gaz w pobliżu obu tych czarnych dziur porusza się z taką samą prędkością bliską prędkości światła. Jednak o ile obiegnięcie M87* zajmuje gazowi dni lub tygodnie, to w przypadku SgrA* są to zaledwie minuty. A to oznacza, że jasność gazu i jej wzorzec szybko się zmieniają. Próba sfotografowania takiego obiektu przypomina próbę uzyskania ostrego zdjęcia szczeniaka próbującego schwytać własny ogon, wyjaśnia Chi-kwan Chan z University of Arizona.
Naukowcy musieli więc opracować zaawansowane narzędzia, które brałyby pod uwagę ruch gazu wokół Sgr A*. O ile zatem M87* była łatwiejszym, bardziej stabilnym obiektem do zobrazowania, w przypadku którego niemal wszystkie zdjęcia wyglądały tak samo, to Sgr A* na każdym z ujęć wyglądała inaczej. Potrzeba było współpracy 300 specjalistów z 80 instytucji na całym świecie, by uzyskać pierwszy uśredniony obraz czarnej dziury w centrum Drogi Mlecznej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy skupieni wokół projektu COSMIC-DANCE poinformowali o odkryciu od 70 do 170 nieznanych dotychczas planet swobodnych (FFP – free-floating planet), czyli takich, które nie są powiązane z żadną gwiazdą i samotnie wędrują przez przestrzeń kosmiczną. Odkrycia dokonali w jednym z najbliższych obszarów gwiazdotwórczych, asocjacji Skorpiona-Centaura.
Nie znamy natury planet swobodnych, nie wiemy, dlaczego nie są powiązane grawitacyjnie z żadną gwiazdą. Być może powstają podobnie jak gwiazdy, w wyniku kolapsu grawitacyjnego niewielkich chmur gazu. A być może formują się podobnie jak inne planety w dysku protoplanetarnym krążącym wokół gwiazd, i potem w wyniku oddziaływania jakichś sił – na przykład sąsiednich planet – zostają wyrzucone ze swojego układu planetarnego. Żeby rozwiązać tajemnicę planet swobodnych potrzebujemy dużej homogenicznej próbki takich planet.
Specjaliści z COSMIC-DANCE postanowili poszukać FFP na obszarze nieboskłonu obejmującym asocjację Skorpiona-Centaura. Asocjacje gwiazd to otwarte gromady, w których gwiazdy nie są ze sobą grawitacyjnie powiązane.
Znalezienie planet swobodnych w gromadach gwiazd jest bardzo trudne. Potrzebna są bardzo czułe instrumenty. Gwiazdy są dość jasne i łatwe do zauważenia. Planety zaś są tysiące razy ciemniejsze, a dodatkową trudnością jest odróżnienie planeto od gwiazd i galaktyk w tle, mówi Núria Miret Roig, która wraz z zespołem zajmowała się poszukiwaniami planet. Naukowcy połączyli dwie techniki. Przeanalizowali publicznie dostępne bazy fotografii astronomicznych oraz bazy danych, w których zamieszczono informacje o ruchu, kolorze i jasności dziesiątków milionów źródeł światła. Dane takie zostały zebrane za pomocą najlepszych dostępnych teleskopów pracujących w podczerwieni i świetle widzialnym.
Dzięki wykorzystaniu ponad 80 000 obrazów i około 100 terabajtów danych zbieranych przez 20 lat członkom COSMIC-DANCE udało się zidentyfikować do 170 możliwych planet swobodnych. Okazało się, że wszystkie one znajdują się w asocjacji Skorpiona-Centaura.
To, jak dotąd, największa grupa planet swobodnych zaobserwowanych bezpośrednio w pojedynczej asocjacji. Niemal podwoiliśmy liczbę znanych FFP. Ich liczba zdecydowanie przekracza liczbę planet swobodnych jaką powinniśmy zaobserwować, gdyby planety takie powstawały w wyniku kolapsu małych chmur molekularnych. To zaś wskazuje, że musi istnieć inny mechanizm ich powstawania. Na podstawie dostępnej nam wiedzy o dynamice układów planetarnych stwierdzamy, że ważnym mechanizmem powstawania planet swobodnych jest ich wyrzucanie z orbit ich gwiazd, stwierdzają naukowcy.
Jeśli zagęszczenie planet swobodnych w innych regionach gwiazdotwórczych jest podobne jak w asocjacji Skorpiona-Centaura, to w całej Drodze Mlecznej mogą istnieć miliardy planet wielkości Jowisza, które nie są powiązane z gwiazdami. Jeszcze więcej może być FFP wielkości Ziemi, gdyż w układach planetarnych występują one częściej.
« powrót do artykułu -
By KopalniaWiedzy.pl
Być może po raz pierwszy udało się odkryć planetę poza Drogą Mleczną, poinformowali naukowcy prowadzący obserwacje za pomocą Chandra X-ray Observatory. Jeśli rzeczywiście zauważyli oni planetę poza naszą galaktyką, oznacza to, że już teraz jesteśmy w stanie wykrywać planety znajdujące się znacznie dalej niż dotychczas. Nowa kandydatka na egzoplanetę został zauważony w galaktyce spiralnej Messier 51 (M51).
Dotychczas odkryto tysiące egzoplanet. Wszystkie one jednak znajdują się w Drodze Mlecznej i niemal wszystkie w odległości mniejszej niż 3000 lat świetlnych od Ziemi. Tymczasem egzoplaneta w M51 byłaby oddalona od nas o około 28 milionów lat świetlnych.
Próbujemy otworzyć całkiem nowy rozdział w poszukiwaniu egzoplanet. Szukamy ich w zakresie promieniowania rentgenowkiego, co umożliwia obserwowanie planet w innych galaktykach, wyjaśnia główna autorka badań, Rosanne Di Stefano z Center for Astrophysics | Harvard & Smithsonian (CfA).
Prawdopodobna planeta została zarejestrowana podobnie jak dotychczas odkryte egzoplanety. Obiekt zauważono metodą tranzytu. Gdy na tle gwiazdy przechodzi planeta, możemy zaobserwować spadek jasności gwiazdy, której światło jest częściowo przesłaniane przez jej towarzyszkę. W ten właśnie sposób odkryto tysiące egzoplanet, prowadząc obserwacje w świetle widzialnym.
Z kolei Di Stefano i jej zespół szukali takich samych zjawisk w układach podwójnych w zakresie promieniowania rentgenowskiego. Zwykle źródłami takiego promieniowania są albo gwiazda neutronowa, albo czarna dziura, wyciągające materię z towarzyszącej jej gwiazdy. Jako, że takie źródła są małe, planeta przechodząca na ich tle powinna zablokować większość lub całość promieniowania. Zatem tego typu tranzyty powinny być łatwe do zauważenia, gdyż źródło promieniowania może okresowo regularnie znikać. Powinniśmy móc je zaobserwować ze znacznie większej odległości niż tranzyty badane w paśmie światła widzialnego. W ich przypadku bowiem przechodząca planeta blokuje minimalną część światła swojej gwiazdy.
Zespół Di Stefano wykorzystał więc metodę obserwacji w paśmie rentgenowskim do znalezienia kandydatki na planetę, znajdującej się w układzie podwójnym M51-ULS-1 w galaktyce M51. Układ ten składa się z czarnej dziury lub gwiazdy neutronowej krążącej wokół gwiazdy o masie ok. 20-krotnie większej od masy Słońca. Naukowcy zauważyli, że źródło promieniowania rentgenowskiego zniknęło na około 3 godziny. Na podstawie zgromadzonych danych stwierdzili, że możemy mieć do czynienia z planetą o rozmiarach Saturna, która krąży wokół gwiazdy neutronowej lub czarnej dziury w odległości 2-krotnie większej niż odległość między Saturnem a Słońcem.
To niezwykle interesująca interpretacja, jednak potrzebujemy więcej informacji, by potwierdzić, że odkryto pierwszą planetę poza naszą galaktyką. Problem w tym, że jeśli to rzeczywiście planeta, która krąży w takiej odległości od gwiazdy lub czarnej dziury, to na kolejny tranzyt musimy poczekać około 70 lat. Niestety, aby potwierdzić, że to planety, będziemy musieli poczekać całe dekady na kolejny tranzyt. A jako, że nie wiemy, w jakim dokładnie czasie obiega ona źródło promieniowania, nie wiemy dokładnie, kiedy powinniśmy patrzeć, mówi współautorka badań Nia Imara z University of California w Santa Cruz.
Jeśli rzeczywiście mamy tutaj do czynienia z planetą, to o bardzo burzliwej historii. Musiała ona bowiem przetrwać eksplozję supernowej w wyniku której powstała gwiazda neutronowa lub czarna dziura. W pewnym momencie dojdzie też do eksplozji gwiazdy towarzyszącej źródłu promieniowania.
Di Stefano i jej zespół poszukiwali tranzytów w trzech galaktykach: M51 (Galaktyka Wir), Messier 101 (M101, Galaktyka Wiatraczek) oraz Messier 104 (M104, Galaktyka Sombrero). W Wirze przyjrzeli się 55 układom podwójnym, w Wiatraczku sprawdzili 64 układy, a w Sombrero – 119. Teraz planują przeszukanie archiwów teleskopów Chandra i XMM-Newton, w poszukiwaniu wcześniejszych tranzytów.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcom z University of Massachusetts w Amherst udało się rozwiązać jedną z podstawowych zagadek astronomii, na którą odpowiedzi szukano od lat. Dzięki ich pracy, opublikowanej na łamach Nature, wiemy, dlaczego niektóre z najstarszych i najbardziej masywnych galaktyk bardzo szybko przestały być aktywne i nie pojawiają się w nich już nowe gwiazdy.
Najbardziej masywne galaktyki we wszechświecie powstały niezwykle szybko, krótko po Wielkim Wybuchu sprzed niemal 14 miliardów lat. Jednak z jakiegoś powodu przestały działać. Już nie powstają w nich nowe gwiazdy, mówi profesor Kate Whitaker. To właśnie formowanie się nowych gwiazd jest jednym z procesów umożliwiających wzrost galaktyk. Od dawna wiemy, że wczesne masywne galaktyki stały się nieaktywne, ale dotychczas nie wiedzieliśmy dlaczego.
Zespół Whitaker połączył dane z teleskopu Hubble'a i ALMA. Pierwszy z nich obserwuje wszechświat w zakresie od ultrafioletu do bliskiej podczerwieni – w tym część zakresu widzialnego dla ludzkiego oka – drugi zaś pracuje w spektrum pomiędzy 0,32 do 3,6 mm, którego nasze oczy nie widzą.
Naukowcy poszukiwali za pomocą ALMA niewielkich ilości zimnego gazu, który stanowi główne źródło energii dla procesu tworzenia się nowych gwiazd. We wczesnym wszechświecie, a więc i w tych galaktykach, było bardzo dużo tego gazu. Skoro galaktyki te przestały szybko tworzyć nowe gwiazdy, to powinno im sporo takiego gazu pozostać", spekulowali uczeni. Jednak okazało się, że w badanych galaktykach pozostały jedynie śladowej ilości zimnego gazu znajdujące się w okolicach ich centrów. To zaś oznacza, że w ciągu kilku pierwszych miliardów lat galaktyki te albo zużyły cały gaz, albo go wyrzuciły. Niewykluczone też, że istnieje jakiś mechanizm, który blokuje uzupełnianie gazu przez galaktyki.
W następnym etapie badań naukowcy chcą sprawdzić, jak bardzo zagęszczony jest ten pozostały w starych galaktykach gaz i dlaczego znajduje się wyłącznie w pobliżu ich centrum.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.