Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Gigantyczna sieć czujników na powierzchni 200 000 km2 pomoże badać neutrina?

Rekomendowane odpowiedzi

Naukowcy skupieni wokół GRAND Collaboration chcą wybudować gigantyczny wykrywacz neutrin obejmujących powierzchnię... 200 000 km2. Siedzibą GRAND (Giant Radio Array for Neutrino Detection) jest francuskie Narodowe Centrum Badań Naukowych (CNRS). GRAND Collaboration odbyła już kilka warsztatów i stworzyła plan budowy gigantycznego detektora.

Uczestnicy GRAND chcą poszukiwać i badań neutrin o bardzo wysokich energiach. Dotychczas takich neutrin nie udało się zaobserwować. Takie neutrina mogą pochodzić z dwóch źródeł. Jednym z nich jest ultrawysokoenergetyczne promieniowanie kosmiczne (UHE), a drugie źródło to interakcja UHE z mikrofalowym promieniowaniem tła.

Naukowców z GRAND szczególnie interesują neutrina taonowe. Neutrina takie powinny być stosunkowo łatwe do wykrycia. Naukowcy z GRAND uważają, że istnieje duże prawdopodobieństwo, iż neutrina z UHE wchodzą w interakcje z materią. Ze wszystkich trzech rodzajów neutrin obecnych w UHE neutrina elektronowe zostają uwięzione w materii, z którą wchodzą w interakcje, a neutrina mionowe przechodzą przez tę materię. Uczeni chcą złapać neutrino taonowe, które wchodzi w reakcje z materią i rozpada się w odległości do 50 kilometrów od miejsca interakcji. Olbrzymi teleskop GRAND miałby rejestrować te rozpady. Z kolei materia, z którą neutrina taonowe mają wchodzić w interakcje to sama Ziemia. Koncepcja jej wykorzystania nie jest nowa. A pomysłodawcy GRAND Collaboration chcą w tym celu wykorzystać tereny górskie. Spróbują złapać neutrina taonowe, które przeszły przez skorupę ziemską i rozpadają się w powietrzu, powodując cały deszcz cząstek.

Pomysł GRAND polega na ustawieniu 200 000 specjalnych czujników. Potrzeba jednego takiego czujnika na 1 km2. Każda z takich stacji będzie składała się ze specjalnej anteny, wzmacniacza oraz sprzętu do rejestrowania i przechowywania danych.
Dotychczas naukowcom udało się zebrać około 160 000 euro i stworzyć 35 prototypowych stacji. Teraz zaczynają wdrażać pilotażowy program GRANDProto300, w ramach którego kosztem 1,6 miliona euro chcą ustawić swoje czujniki na powierzchni 300 km2.

Mają nadzieję, że w ciągu najbliższych 5–10 lat koszt pojedynczej stacji spadnie do około 500 USD. W ten sposób koszty całego projektu, zakładającego budowę czujników oraz stworzenie hotspotu z pełnowymiarową anteną na każde 10 000 km2 powinny zamkną się kwotą 200 milionów euro.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od czasu odkrycia oscylacji neutrin wiemy, że neutrina mają niezerową masę. Dotychczas nie udało się jej precyzyjnie określić. Tymczasem neutrina to najbardziej rozpowszechnione, a jednocześnie najtrudniejsze do zbadania, ze wszystkich znanych nam cząstek. Teraz międzynarodowy zespół naukowcy pracujący przy eksperymencie KATRIN przełamał ważną barierę. Po raz pierwszy wykazano, że masa neutrino jest mniejsza od 1 elektronowolta (eV).
      KATRIN (Karlsruhe Tritium Neutrino Experiment) znajduje się w Karlsruhe Institute for Technology w Niemczech. Uruchomiony w 2018 roku projekt to owoc współpracy Czech, Niemiec, Rosji, USA i Wielkiej Brytanii. Pracuje przy nim około 130 naukowców. Na łamach Nature ogłoszono właśnie, że podczas drugiej kampanii badawczej masę neutrina określono na 0,7 eV, a poziom ufności pomiaru wynosi 90%. W połączeniu z danymi z pierwszej kampanii badawczej KATRIN pracujący przy eksperymencie naukowcy ogłosili, że górny limit masy neutrina wynosi 0,8 eV. Tym samym wiemy, że neutrino jest o co najmniej 500 000 razy lżejsze od elektronu.
      Głównym elementem eksperymentu KATRIN jest największy na świecie spektrometr. Urządzenie ma 23 metry długości i 10 metrów szerokości. Wewnątrz panuje próżnia. Najpierw przeprowadzany jest rozpad beta trytu, w wyniku którego powstaje elektron i antyneutrino. Następnie elektron, bez zmiany jego energii, jest kierowany do spektrometru. Pomiary energii samego neutrina nie są możliwe, ale możemy precyzyjnie mierzyć energię elektronu. Jako, że możemy zmierzyć łączną energię elektronu i antyneutrina oraz energię samego elektronu, jesteśmy w stanie poznać energię czyli masę, antyneutrina.
      Gdy przed 5 laty opisywaliśmy zakończenie prac nad KATRIN i niezwykłą podróż komory próżniowej do miejsca montażu, cytowaliśmy ekspertów, którzy twierdzili, że KATRIN może być ostatnią nadzieją współczesnej fizyki,by bez nowej rewolucyjnej technologii zmierzyć masę neutrina. To koniec drogi, mówił wówczas Peter Doe, fizyk w University of Washington.
      Obecnie fizyk Björn Lehnert z Lawrence Berkeley National Laboratory, który pracuje przy KATRIN, mówi, że przez najbliższe 3 lata naukowcy będą  prowadzili kolejne eksperymenty, by zebrać więcej danych, jednak ze względu na sposób pracy KATRIN nie spodziewa się zmniejszenia poziomu niepewności. Czynnikiem ograniczającym KATRIN jest chemia, ponieważ używamy molekuł trytu (T2). Molekuły to złożone obiekty, mają więcej stopni swobody niż atomy, więc każdy ich rozpad jest nieco inny i inny jest ostateczny rozkład elektronów. W pewnym momencie nie będziemy już mogli udoskonalać pomiaru masy neutrina, gdyż sam początkowy rozpad jest obarczony pewnym marginesem niepewności. Jedynym sposobem na udoskonalenie pomiarów stanie się wówczas wykorzystanie trytu atomowego. Będzie z niego korzystał planowany dopiero eksperyment Project 8. Jest on bardzo obiecujący, ale miną lata zanim zostanie uruchomiony.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy z Oak Ridge National Laboratory zaobserwowali nowy rodzaj interakcji neutrin. Naukowcy pracujący przy eksperymencie COHERENT nie tylko poszerzyli naszą wiedzę z dziedziny fizyki, ale również udoskonalili technologię wykrywaczy neutrin i zdobyli nowe informacje na temat tego, co dzieje się w przestrzeni kosmicznej.
      Prawdopodobnie badanie neutrin pozwoli nam z czasem odpowiedzieć na wiele otwartych obecnie pytań, mówi profesor Rex Tayloe z Indiana University, który nadzorował instalację, pracę i analizę danych z kriogenicznego argonowego wykrywacza neutrin Spallation Neutron Source (SNS).
      Grupa Tayloe'a zaobserwowała, że niskoenergetyczne neutrina wchodzą w interakcje z jądrami argonu w procesie nazwanym koherentnym elastycznym rozpraszaniem neutrino-jądro (CEvNS, coherent elastic neutrino-nucleus scattering). Neutrino uderzając w jądro argonu przekazuje mu minimalną ilość energii, co powoduje, że jądro jest niemal niezauważalnie odrzucane.
      Podstawą do przeprowadzonych obecnie badań było studium opisane w 2017 roku w Science, podczas którego zauważono pierwsze oznaki procesu CEvNS, jaki miał miejsce, gdy neutrino wchodziły w interakcje ze znacznie cięższymi jądrami cezu i jodu. Wówczas odrzut cięższych jąder był jeszcze mniejszy niż zaobserwowany obecnie.
      Model Standardowy przewiduje istnienie koherentnego elastycznego rozpraszania neutrino na jądrze. Zaobserwowanie interakcji neutrino z argonem, najlżejszym jądrem w przypadku którego interakcję tą udało się zmierzyć, pozwoliło na potwierdzenie wcześniejszych obserwacji prowadzonych z cięższymi jądrami. Wykonane przez nas dokładne pomiary pozwalają na określenie granic dla alternatywnych modeli teoretycznych, stwierdziła rzecznik prasowa COHERENT fizyk Kate Scholberg z Duke University.
      Yuri Efremenko, fizyk z Univeristy of Tenessee, którego zadaniem było stworzenie bardziej czułych fotodetektorów, powiedział: Argon stał się dla nas rodzajem „drzwi”. Proces CEvNS jest jak budynek, o którym wiemy tyle, że powinien istnieć. Pierwsze pomiary z udziałem cezu i jodu były jednymi z „drzwi”, którymi weszliśmy do budynku. Teraz otworzyliśmy „drzwi” argonowe. Pomiary dokonane z udziałem argonu są zgodne z granicami błędu dopuszczonymi przez Model Standardowy. Jednak zwiększenie precyzji pomiarów może pozwolić na odkrycie czegoś nowego.
      Szukamy sposobów na zaburzenie Modelu Standardowego. Uwielbiamy go, to bardzo skuteczny model. Ale istnieją kwestie, których na jego gruncie nie można wyjaśnić. Podejrzewamy, że w tych drobnych kwestiach, gdzie możemy zaburzyć Model Standardowy, kryją się odpowiedzi na wielkie pytania o naturę wszechświata, antymaterię czy ciemną materię, dodaje fizyk Jason Newby.
      Teraz, po 18 miesiącach prowadzenia eksperymentów, w czasie których zarejestrowano 159 wydarzeń CEvNS - co jest zgodne z Modelem Standardowym – naukowcy poinformowali o wynikach swoich prac na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki wykryciu neutrin pochodzących z jądra Słońca fizycy byli w stanie potwierdzić ostatni brakujący element opisu fuzji zachodzącej wewnątrz naszej gwiazdy. Potwierdzili tym samym obowiązujący od dziesięcioleci model teoretyczny przewidujący, że część energii słonecznej pochodzi z łańcucha reakcji, w którym udział mają atomy węgla i azotu.
      W procesie tym cztery protony łączą się w jądro helu. Dochodzi do uwolnienia dwóch neutrin, innych cząstek subatomowych i olbrzymich ilości energii. Ten cykl węglowo-azotowo-tlenowy (CNO) nie odgrywa większej roli w Słońcu, gdzie dzięki niemu powstaje mniej niż 1% energii. Uważa się jednak, że gdy gwiazda się starzeje, zużywa wodór i staje się czerwonym olbrzymem, wówczas rola cyklu CNO znacząco rośnie.
      O odkryciu poinformowali naukowcy pracujący przy włoskim eksperymencie Borexino. To wspaniałe, że udało się potwierdzić jedno z podstawowych założeń teorii dotyczącej gwiazd, mówi Marc Pinsonnealut z Ohio State University.
      Borexino już wcześniej jako pierwszy wykrył neutrina pochodzące z trzech różnych etapów reakcji zachodzącej w Słońcu, która odpowiada za produkcję większości energii naszej gwiazdy. Dzięki obecnemu odkryciu Borexino w pełni opisał dwa procesy zasilające Słońce, mówi rzecznik eksperymentu Gioacchino Branucci z Uniwersytetu w Mediolanie. Kończymy wielkim bum!, dodał Marco Pallavicini z Uniwersytetu w Genui. Może to być bowiem ostatnie odkrycie Borexino, któremu grozi zamknięcie z powodu ryzyka dla źródła wody pitnej.
      Odkrycie neutrin pochodzących z cyklu węglowo-azotowo-tlenowego nie tylko potwierdza teoretyczne modele procesów zachodzących w Słońcu, ale rzuca też światło na strukturę jego jądra, szczególnie zaś na koncentrację w nim metali. Tutaj trzeba podkreślić, że astrofizycy pod pojęciem „metal” rozumieją wszelkie pierwiastki o masie większej od wodoru i helu.
      Liczba neutrin zarejestrowanych przez Borexino wydaje się zgodna ze standardowym modelem przewidującym, że metaliczność jądra jest podobna do metaliczności powierzchni. To ważne spostrzeżenie, gdyż w ostatnim czasie pojawiało się coraz więcej badań kwestionujących taki model.
      Badania te sugerowały, że metaliczność jądra jest niższa niż powierzchni. A jako, że to skład pierwiastków decyduje o tempie przepływu energii z jądra, badania te sugerowały jednocześnie, że jądro jest nieco chłodniejsze niż sądzono. Jako, że proces, w którym powstają neutrina jest niezwykle wrażliwy na temperaturę, dane zarejestrowane przez Borexino wskazują raczej na starsze wartości temperatury, nie na te sugerowane przez nowe badania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Opaski fitness czy smartzegarki zapewniają wiele użytecznych informacji, np. o liczbie kroków czy tętnie, ale zazwyczaj nie dają głębszego wglądu w stan czyjegoś zdrowia. Koreańscy naukowcy postanowili więc stworzyć bardziej zaawansowane urządzenie. Efektem ich prac są e-okulary, które monitorują fale mózgowe i ruchy ciała użytkownika, a także spełniają funkcję okularów przeciwsłonecznych i pozwalają kontrolować gry za pomocą ruchów gałek ocznych.
      Jak podkreślają autorzy artykułu z pisma ACS Applied Materials & Interfaces, tego typu urządzenie z funkcją EEG i EOG (elektroencefalografii i elektrookulografii) może w przyszłości pomóc np. w diagnozowaniu padaczki czy zaburzeń snu.
      Zespół Suk-Won Hwanga z Uniwersytetu Koreańskiego uzyskał oprawki okularów za pomocą drukarki 3D. Elastyczne kompozytowe elektrody umieszczono w pobliżu uszu (czujnik EEG) i oczu (czujnik EOG). Pomyślano też o czujnikach ruchu i promieniowania UV, a także o soczewkach z jonożelem. Gdy czujnik wykrywał promieniowanie ultrafioletowe o określonym natężeniu, soczewki zmieniały barwę; w ten sposób okulary mogły pełnić rolę zwykłych okularów i okularów przeciwsłonecznych.
      Czujnik ruchu (przyspieszeniomierz) pozwalał akademikom monitorować postawę i chód użytkownika oraz wykrywać upadki. Sensor EEG wykrywał fale alfa. Czujnik EOG umożliwiał zaś przesuwanie cegieł w popularnej grze wideo.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...