Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Kogut i jego zespół znacząco obniżyli wagę termosów dla teleskopów w balonach stratosferycznych

Rekomendowane odpowiedzi

Teleskopy umieszczone na wysoko latających balonach stratosferycznych prowadzą obserwacje, jakich z Ziemi wykonać nie sposób. Jednak konieczność zabrania dużych systemów chłodzących ogranicza ilość sprzętu naukowego, jaki mogą zabrać balony. Naukowcy  NASA opracowali właśnie technologię pozwalającą na znaczne zmniejszenie wagi takich systemów. Została ona przetestowana podczas misji Balloon-Borne Cryogenic Testbed (BOBCAT).

Wiele interesujących obiektów znajdujących się w przestrzeni kosmicznej – jak odległe galaktyki czy chmury gazu i pyłu, z którego powstają gwiazdy oraz układy planetarne – emituje promieniowanie podczerwone. Jednak atmosfera Ziemi blokuje większość takiego promieniowania, przez co obiekty te trudno jest badać z powierzchni planety. Teleskopy można wysyłać w przestrzeń kosmiczną, jednak jest to niezwykle kosztowne przedsięwzięcie. Bardzo dobrą i znacznie tańszą alternatywą są więc teleskopy wynoszone przez balony.

Lustra takich teleskopów podróżujących w balonie mogłyby mieć nawet 5 metrów średnicy, czyli tyle co średnica pokoju w mieszkaniu. To jednak poważne wyzwanie, gdyż zarówno lustro jak i reszta teleskopu muszą być schłodzone do temperatur bliskich zeru absolutnemu. Jeśli ich się nie schłodzi, ich własne ciepło może zakłócać uzyskany obraz. To efekt podobny do prześwietlenia zdjęcia, wyjaśnia lider zespołu badawczego, Alan Kogut.

Ciekły hel z łatwością chłodzi teleskop, ale żeby tego dokonać, musimy wsadzić urządzenie do gigantycznego termosu zwanego dewarem. Termos wielkości pokoju ważyłby wiele ton, a to przekracza możliwości największych balonów, dodaje Kogut. Waga dewara wynika z faktu, że musi on mieć wystarczająco grube ściany, by wytrzymały różnicę ciśnień próżni pomiędzy ściankami termosu a ciśnieniem na poziomie morza.

Kogut i jego koledzy stwierdzili jednak, że tak naprawdę dewary mogłyby być znacznie lżejsze, gdyż pracują na wysokości 40 km, gdzie ciśnienie wynosi zaledwie 0,3% ciśnienia na poziomie morza.

Dewary opracowane na potrzeby misji BOBCAT składają się z części wewnętrznej zawierającej chłodziwo otoczonej przez część zewnętrzną. Pomiędzy obiema częściami jest próżnia. To standardowa architektura termosu. Jednak dewary Koguta i jego kolegów są niezwykłe, gdyż ich wykonane ze stali nierdzewnej ścianki mają zaledwie 0,5 mm grubości. Są więc niewiele grubsze niż ścianki standardowej puszki do napojów.

Urządzenie Koguta może być wystrzeliwane w temperaturze pokojowej. Jest wyposażone w zintegrowane zawory, przez który powietrze ciągle ucieka w miarę wznoszenia się urządzenia. Wyeliminowano w ten sposób problem pojawiania się dużej różnicy ciśnień. Gdy balon osiągnie wysokość 40 km. zawory są zamykane. Dopiero wówczas ze specjalnych zbiorników do termosu jest pompowany ciekły hel lub azot. Zbiorniki mają standardową konstrukcję, są niewielkie i niezbyt ciężkie.

Kogut i jego zespół rozpoczęli testy swojego urządzenia w sierpniu 2019 roku, wysyłając balon z 827-kilogramowym ładunkiem. Test miał dwa cele. Po pierwsze miał udowodnić, że płyny kriogeniczne (14 litrów ciekłego azotu i 268 litrów ciekłego helu) można rzeczywiście przepompowywać na docelowej wysokości. Po drugie zaś, naukowcy chcieli sprawdzić, jak wiele energii cieplnej przeniknie do dewara w czasie tej operacji. Okazało się, że do termosu trafiło około 2,7 wata, czyli więcej niż 1–2 watów uzyskanych dla tego samego dewara w idealnych warunkach laboratoryjnych.

Teraz naukowcy przygotowują kolejny test. Wykorzystają z nim lżejszy dewar o takiej samej wielkości i sprawdzą, czy uzyskane wyniki się potwierdzą.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Trochę mnie boli hel wylatujący sobie potem gdzieś w kosmos. Mam nadzieję, że ten hel jest jakoś odzyskiwany, ale nie widzę dobrego sposobu poza ewentualnym wykorzystaniem balonetu wewnętrznego w powłoce wypełnionej wodorem.
W przyszłości kiedy już większość helu poleci w kosmos, w kosmos wyleci także jego cena i najprawdopodobniej będzie się używać do chłodzenia zestalonego wodoru.
Upuszczany wodór w obu przypadkach może być źródłem prądu.

Edytowane przez peceed

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Ciekawy pomysł. Nie sądzę, żeby odzyskiwali hel z balonów. Klasycznie te balony się wznoszą dopóki nie pękną i opadają na spadochronie, a następnie są odzyskiwane w promieniu kilku km w zależności od pogody. Z kolei obsługa skanerów MRI jest rozwiązana w ten sposób, że odzyskują hel i szpital płaci dostawcy tylko za utraconą część i obsługę, bo zawsze gdzieś cieknie. Przynajmniej tak jest na zachodzie. Naukowe przedsięwzięcia i medycynę jestem w stanie zrozumieć, ale balony na jarmarkach i imprezach to mi działały na nerwy.

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      O teleskopie Hubble'a słyszeli chyba wszyscy. Nic w tym dziwnego, gdyż jest to jeden z najważniejszych instrumentów naukowych wykorzystywanych obecnie przez człowieka. Niewiele osób jednak wie, że teleskopy wcale nie muszą spoglądać w niebo. Na Antarktydzie powstaje właśnie niezwykłe urządzenie. Teleskop IceCube (Kostka Lodu), jest budowany wewnątrz lodowej czapy pokrywającej południowy biegun naszej planety. Jego zadaniem jest wykrywanie neutrin.
      Neutrino
      Neutrino to jedna z cząstek elementarnych. Należy ona do grupy leptonów i wyróżniamy trzy typy neutrin: taonowe, mionowe oraz elektronowe. Neutrino ma zerowy ładunek elektryczny i niemal nie ma masy. Cząstka jest tak przenikliwa, że na przykład planety nie stanowią dla niej żadnej przeszkody. W każdej chwili przez nasze ciała, przez budynki i przez samą Ziemię przelatuje niezliczona liczba neutrin. Ich głównym źródłem jest oddziaływanie promieni kosmicznych w górnych warstwach atmosfery. Neutrina emitują też np. gwiazdy i reaktory atomowe.
      Istnienie neutrin zostało przewidziane teoretycznie w 1930 roku przez Wolfganga Pauliego, ale musiało minąć aż 26 lat zanim eksperymentalnie udowodniono, że Pauli się nie mylił.

      Cząsteczki te są bardzo łakomym kąskiem dla astronomów. Podróżują z prędkością światła od źródeł promieniowania, a na swej drodze nie napotykają niemal żadnych przeszkód. Neutrina powstają np. we wnętrzach gwiazd i bez najmniejszych problemów przemierzają przestrzeń kosmiczną. Badanie neutrin pozwala więc naukowcom wysnuć wnioski na temat samych źródeł, z których zostały wyemitowane.
      Z tego, co wiemy obecnie, zdecydowana większość istniejących neutrin pochodzi z samych początków wszechświata, powstały w momencie Wielkiego Wybuchu.
      IceCube
      Neutrina badane są od kilkudziesięciu lat i od lat naukowcy opracowują nowe metody ich obserwacji. Teoretycy od dawna uważają, że do obserwacji neutrin pochodzących z bardzo odległych źródeł potrzebny jest instrument długości co najmniej kilometra. Takim instrumentem ma być IceCube. Na miejsce jego budowy wybrano Antarktydę, gdyż jej lody są wyjątkowo czyste i wolne od źródeł promieniowania. Nic nie powinno więc zakłócać pracy niezwykłego teleskopu.
      Będzie się on składał z co najmniej 4200 modułów optycznych zawieszonych na 70 pionowych linach, a te z kolei będą umieszczone na głębokości od 1450 do 2450 metrów pod powierzchnią lodu. Na samej powierzchni znajdzie się kopuła zbudowana z co najmniej 280 modułów optycznych. Powierzchnia IceCube'a będzie wynosiła około 1 kilometra kwadratowego. Jak łatwo obliczyć, objętość tego niezwykłego instrumentu naukowego to około 2,5 kilometra sześciennego. Po ukończeniu prac IceCube będzie działał przez 20 lat.

      Uczeni mają nadzieję, że odpowie on na tak fundamentalne pytania, jak warunki fizyczne rozbłysków gamma czy też pozwoli zbadać naturę fotonów pochodzących z pozostałości po supernowej w gwiazdozbiorze Kraba oraz z nieodległych galaktyk. Być może IceCube pozwoli również potwierdzić teorię strun.
      Obecnie IceCube składa się z 40 lin. Do stycznia 2009 roku przybędzie 9 kolejnych. Rok później mają być już 63 liny, a w marcu 2010 roku urządzenie osiągnie pełną gotowość operacyjną. We wrześniu 2010 roku zakończony zostanie główny etap budowy IceCube'a.
      Obecnie budżet projektu wynosi 271 milionów dolarów. W pracach bierze udział około 200 naukowców i 29 instytucji.
      O skali przedsięwzięcia niech świadczą liczby. Wywiercenie w lodzie każdego z 70 otworów o średniej głębokości 2454 metrów trwa średnio 48 godzin (pierwszy otwór wiercono przez 57 godzin). W tym czasie usuwane jest 757 metrów sześciennych lodu i zużyciu ulega około 2400 litrów paliwa. W każdym otworze umieszczana jest lina. Operacja ta trwa 11 godzin. Praca nie jest łatwa, gdyż Antarktyda to najzimniejsze, najbardziej wietrzne i najbardziej suche miejsce na Ziemi. W niektórych jej punktach nie padało od tysięcy lat, a średnie temperatury na Biegunie Południowym wynoszą latem około -37 stopni Celsjusza. Rekord ciepła na Biegunie to -13,8 stopnia Celsjusza. Rekord zimna na Antarktydzie to -89 stopni Celsjusza.
      Najsilniejsze podmuchy wiatru zanotowano w lipcu 1972 roku. Naukowcy z francuskiej bazy Dumont d'Urville poinformowali wówczas, że wiatr wial z prędkością 320 kilometrów na godzinę. Na Antarktydzie znajduje się też największa pustynia na świecie, a rekordowy zanotowany spadek temperatury wyniósł 36 stopni w ciągu 12 minut.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uniwersytet Jagielloński wyśle w przestrzeń kosmiczną teleskop, który będzie poszukiwał śladów wodoru i deuteru wokół małych ciał Układu Słonecznego. Projekt HYADES, który właśnie został dofinansowany kwotą 3 milionów euro przez Europejską Radę ds. Badań Naukowych, ma na celu zbadanie pochodzenia wody na Ziemi oraz poszukiwanie jej źródeł w Układzie Słonecznym.
      Woda to jeden z najważniejszych składników, niezbędnych do rozwoju życia. Wiemy, że występuje ona na Marsie i wchodzi w skład komet. Jednak jej bezpośrednia obserwacja na kometach jest trudna. Znacznie łatwiej jest zaobserwować atomy wodoru uwolnione w gazowych otoczkach komet wskutek rozpadu cząsteczek wody, mówi kierownik projektu HYADES, doktor Michał Drahus.
      Atomy wodoru emitują dużo światła przez linię widmową Lyman alfa, dzięki czemu są bardzo czułym wskaźnikiem obecności wody. Jednak ten zakres promieniowania jest trudny w obserwacji. Znajduje się bowiem w zakresie dalekiego ultrafioletu, który jest całkowicie pochłaniany przez atmosferę Ziemi. Dlatego też naukowcy z UJ postanowili przenieść swoje obserwacje w kosmos.
      W ramach pięcioletniego projektu powstanie satelita wyspecjalizowany w poszukiwaniu wody. Jego głównym celem będzie zbadanie różnych grup komet pod kątem jej występowania. Jest to o tyle istotne, że zgodnie z obecnym stanem wiedzy, Ziemia uformowała się bez wody. Dopiero później ten życiodajny składnik trafił na naszą planetę. Jedna z hipotez mówi, że została ona przyniesiona przez komety. Dlatego też ich obserwacje mogą pomóc w określeniu, skąd wzięła się woda na Ziemi. O tym, czy komety mogły być źródłem wody na Błękitnej Planecie może świadczyć stosunek izotopów wodoru. Jeśli znajdziemy na kometach wodę o składzie izotopowym takim, jaki ma woda na Ziemi, będzie to silnym potwierdzeniem hipotezy o pochodzeniu wody.
      Misja HYADES może zrewolucjonizować naszą wiedzę na ten temat. O ile bowiem w ciągu ostatnich 35 lat tego typu badania przeprowadzono na próbce 12 komet uzyskując niejednoznaczne wyniki, to polscy naukowcy mają zamiar przebadać 50 komet w ciągu zaledwie 3 lat.
      Na tym jednak możliwości HYADES się nie kończą. Kosmiczny teleskop z UJ poszuka też nieznanych zasobów wody w Układzie Słonecznym. Naukowcy chcą przyjrzeć się m.in. grupie planetoid przypominających komety. Uzyskane informacje na temat sublimacji lodu wodnego z tych ciał dadzą nam unikalny wgląd w zawartość wody w pasie głównym planetoid, mówi doktor Drahus. Niezwykle interesującym celem badawczym mogą być też obiekty międzygwiezdne, które podróżują przez Układ Słoneczny. Obiekty te mają niesłychane znaczenie dla nauki, gdyż uformowały się wokół innych gwiazd, w związku z czym przynoszą nam unikalne informacje o swoich macierzystych układach planetarnych, mówi Michał Drahus. Dotychczas zidentyfikowaliśmy dwa tego typu obiekty – 1I/Oumuamua oraz 2I/Borisov – naukowcy sądzą jednak, że jest ich znacznie więcej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Budowany od 7 lat największy aparat fotograficzny na świecie jest już niemal gotowy. Jeśli wszystko pójdzie zgodnie z planem, w maju 2023 roku aparat zostanie zabrany z clean roomu w SLAC National Accelerator Laboratory w Kalifornii i poleci do Chile, gdzie specjaliści zamontują go w budowanym właśnie Vera C. Rubin Observatory. Wszystkie elementy aparatu zostały już w pełni złożone, mówi inżynier Hannah Pollek.
      Aparat posiada największe na świecie soczewki o średnicy 157 cm. Będzie do nich trafiało światło odbijane od trzech luster. Teleskop Vera C. Rubin Observatory będzie jednorazowo obserwował nieboskłon o szerokości 3,5 stopnia, czyli siedmiokrotnie większej od Księżyca w pełni. Gigantyczny aparat wykona dwa 15-sekundowe ujęcia obserwowanego obszaru, a następnie teleskop zostanie przekierowany na inny obszar nieboskłonu. W ten sposób, całymi latami, nowoczesne obserwatorium astronomiczne będzie badało południowy nieboskłon i sfotografuje około 20 miliardów galaktyk w ciągu 10 lat. Każdej nocy dostarczy astronomom 1,5 TB danych.
      Badania te będą prowadzone za pomocą 3,2-gigapikselowego aparatu fotograficznego. To rozdzielczość tak duża, że pozwala na zarejestrowanie piłeczki golfowej z odległości 25 kilometrów.
      Płaszczyzna ogniskowa aparatu ma szerokość 60 centymetrów i składa się ze 189 czujników CCD o rozdzielczości 16 megapikseli każdy. CCD wraz z towarzyszącą im elektroniką zostały połączone w grupy po 9 CCD w każdej. Powstało w ten sposób 21 modułów, które wraz z 4 dodatkowymi modułami, które służą pozycjonowaniu aparatu, umieszczono na podstawie. Każdy z takich modułów kosztował około 3 milionów dolarów.
      Każdy z pikseli ma szerokość około 10 mikrometrów, a całość jest niezwykle płaska. Nierówności na całej płaszczyźnie ogniskowej nie przekraczają 1/10 grubości ludzkiego włosa. Dzięki tak małym pikselom i tak płaskiej powierzchni, możliwe jest wykonywanie zdjęć w niezwykle wysokiej rozdzielczości. W połączeniu z możliwościami lustra teleskopu Vera C. Rubin Observatory pozwoli na rejestrowanie obiektów, które są 100 milionów razy mniej jasne, niż minimalna jasność wymagana, by zauważyło je ludzkie oko. To właśnie te możliwości sprawiają, że środowisko naukowe z niecierpliwością czeka na uruchomienie nowego obserwatorium.
      Jednak aby osiągnąć tak imponującą czułość, czujniki rejestrujące światło muszą zostać schłodzone. Dlatego za obiektywem zostanie umieszczony m.in. kriostat, który ma utrzymać CCD w temperaturze -100 stopni Celsjusza. To pozowali na wyeliminowanie większości szumu, jaki mogłyby przechwycić czujniki.
      To jednak nie jedyne wyzwanie techniczne. Aparat potrzebuje do pracy ok. 1100 watów energii, a inżynierowie wciąż udoskonalają jego system chłodzenia. Ostatnio zdecydowali się na wykorzystanie innego płynu chłodzącego, co pociągnęło za sobą konieczność przebudowy całej instalacji chłodzącej.
      Do zamontowania pozostało jeszcze sześć filtrów, z których każdy przepuszcza światło o konkretnej długości fali. Pięć filtrów zostanie umieszczonych na karuzeli, a szósty znajdzie się w specjalnym schowku. Mechanizm potrzebuje około 2 minut, by umieścić odpowiedni filtr pomiędzy soczewkami a czujnikami CCD. Po zamontowaniu filtrów aparat zostanie zwrócony obiektywem w stronę podłogi i rozpoczną się testy w warunkach słabego oświetlenia.
      Gdy już całość będzie gotowa to transportu, z aparatu zostaną wymontowane soczewki i inne szklane elementy. Aparat zostanie umieszczony w specjalnie zabezpieczonym kontenerze, a całość poleci z San Francisco do Santiago.
      Obecne plany przewidują, że pierwsze zdjęcie nieba aparat wykona w 2024 roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zmiany klimatu niosą ze sobą wiele różnych zagrożeń. Jedną są bardziej oczywiste, inne mniej. Do kategorii tych drugich należą z pewnością zagrożenia dla... badań astronomicznych. Naukowcy z Uniwersytetu w Bernie, Politechniki Federalnej w Zurichu, Europejskiego Obserwatorium Południowego oraz Uniwersytetu w Reading przeprowadzili analizy wpływu zmian klimatycznych na badania prowadzone przez osiem najważniejszych naziemnych teleskopów. Wynika z nich, że musimy spodziewać się pogorszenia warunków do badań, a co za tym idzie, skrócenia czasu obserwacyjnego dla jednych z najcenniejszych instrumentów badawczych dostępnych nauce.
      Miejsca, w których zostaną wybudowane teleskopy przyszłej generacji są wybierane na dekady zanim urządzenia te rozpoczną swoje obserwacje. Później teleskopy takie pracują przez około 30 lat. Jest zatem niezwykle ważne, by móc określić, z wyprzedzeniem wynoszącym wiele dekad, móc określić, jak będą zmieniały się warunki w miejscu planowanej budowy. Tymczasem obecnie wyboru miejsc dokonuje się na podstawie pomiarów zbyt krótkich, by mogły one dać odpowiedź na pytanie o długookresowe zmiany klimatu.
      Jakość naziemnych obserwacji astronomicznych w dużej mierze zależy od klimatu. Supernowoczesne potężne teleskopy zwykle umieszcza się na dużych wysokościach, by skorzystać z dobrej przejrzystości atmosfery oraz szuka się miejsc o niskiej temperaturze i niskiej zawartości pary wodnej.
      Astrofizyk Caroline Haslebacher z Uniwersytetu w Bernie i jej koledzy zwracają uwagę, że zwykle przy wyszukiwaniu takiego miejsca bierze się pod uwagę ostatnich 5 lat. To zbyt mało. Uczeni postanowili więc zmierzyć się z tym problemem i przeprowadzili analizę, która miała na celu sprawdzić, jak w miejscach, w których znajdują się najważniejsze obecnie teleskopy – na Hawajach, w Chile, na Wyspach Kanaryjskich, w Australii, RPA i Meksyku – będzie zmieniał się klimat. Okazało się, że do roku 2050 wszędzie tam dojdzie do zwiększenia temperatury, wilgotności właściwej oraz zawartości wody opadowej w atmosferze.
      Czynniki te zmniejszą jakość obserwacji i prawdopodobnie doprowadzą do mniej intensywnego wykorzystania urządzeń z powodu złych warunków obserwacyjnych. Na przykład zwiększenie temperatury i wilgotności właściwej może zwiększyć kondensację pary wodnej na urządzeniach oraz będzie miało negatywny wpływ na systemy chłodzenia wewnątrz kopuł teleskopów. Z kolei zwiększenie zawartości wody opadowej będzie wiązało się z większą absorpcją światła, szczególnie podczerwonego, przez atmosferę, a więc mniej światła będzie docierało do teleskopów.
      Problemy szczególnie dotkną obserwatoriów projektowanych z myślą o pracy w szczególnych warunkach. Na przykład Paranal Observatory w Chile może pracować, gdy temperatura powietrza przy powierzchni nie przekracza 16 stopni Celsjusza, a Teleskop Williama Herschela na Wyspach Kanaryjskich nie może pracować, jeśli temperatura jego lustra wynosi 2 stopnie Celsjusza lub mniej powyżej punktu rosy.
      Przeprowadzona analiza nie wykazała za to zmian wilgotności względnej, pokrywy chmur czy turbulencji atmosferycznych. Autorzy badań zastrzegają jednak, że turbulencje jest szczególnie trudno przewidzieć, a w związku ze zmianami temperatury i prądów powietrznych należy się ich spodziewać.
      Antropogeniczne zmiany klimatu powinny być brane pod uwagę przy wybieraniu miejsc budowy teleskopów przyszłej generacji, podsumowuje Haslebacher.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Szanghajskie Obserwatorium Astronomiczne zaproponowało umieszczenie w przestrzeni kosmicznej teleskopu, którego zadaniem byłoby poszukiwanie egzoplanet. Jeśli propozycja zostanie zaakceptowana – a decyzja ma zapaść latem bieżącego roku – Chiny rozpoczną budowę swojego pierwszego teleskopu kosmicznego wykrywającego egzoplanety.
      Zgodnie z propozycją Earth 2.0 Telescope miałby zostać umieszczony w punkcie libracyjnym L2 – tym samym w którym znajduje się Teleskop Webba – gdzie miałby spędzić cztery lata. Uczeni z Szanghaju chcą, by Earth 2.0 obserwował część kosmosu w kierunku centrum Drogi Mlecznej poszukując tam tranzytu planet na tle ich gwiazd macierzystych. Głównym celem zainteresowania teleskopu miałyby być egzoplanety wielkości Ziemi, krążące wokół gwiazd podobnych do Słońca po orbicie podobnej do orbity Ziemi. To oznacza, że teleskop musi być bardzo czuły oraz zdolny do długotrwałej obserwacji tych samych gwiazd, by odnotować tranzyty mające miejsce raz na kilkanaście miesięcy.
      Ge Jian, profesor z Szanghaju mówi, że Earth 2.0 nie byłby w stanie samodzielnie rozpoznawać planet bliźniaczych Ziemi. Zadaniem urządzenia byłoby odnalezienie planety, określenie jej wielkości i czasu obiegu wokół gwiazdy. Dane te byłyby następnie wykorzystywane podczas kolejnych obserwacji za pomocą innych urządzeń. I dopiero te obserwacje powiedziałyby nam, czy Earth 2.0 Telescope znalazł planetę podobną do naszej, która znajduje się w ekosferze swojej gwiazdy. Tacy kandydaci na planety byliby obserwowani za pomocą teleskopów naziemnych, dzięki którym określilibyśmy ich masę oraz gęstość. Następnie niektóre z nich można by dalej śledzić za pomocą naziemnych i kosmicznych spektroskopów w celu określenia widma światła pochodzącego z planety, co pozwoli na zbadanie składu ich atmosfery, mówi uczony.
      Chiński teleskop skupiłby się na tym samym obszarze, który badał słynny Teleskop Keplera. jednak miałby znacznie większe pole widzenia, zatem mógłby obserwować większy obszar i więcej gwiazd.
      Pole widzenia Keplera wynosi 115 stopni kwadratowych. Teleskop obserwował ponad pół miliona gwiazd, odkrył około 2600 egzoplanet, a drugie tyle czeka na potwierdzenie. Earth 2.0. Telescope miałby mieć 500-stopniowe pole widzenia. Warto nadmienić, że cały nieboskłon to około 41 000 stopni kwadratowych. Chiński teleskop byłby zdolny do monitorowania 1,2 miliona gwiazd. Mógłby też obserwować bardziej odległych i mniej jasnych gwiazd niż Teleskop Keplera.
      Profesor Ge mówi, że z obliczeń jego zespołu wynika, iż taki teleskop mógłby odkryć około 30 000 nowych planet, z czego około 5000 byłoby podobnych do Ziemi.
      Zgodnie z projektem Earth 2.0 Telescope składałby się z 6 teleskopów poszukujących planet podobnych do Ziemi i 1 szukającego zimnych lub swobodnych planet wielkości Marsa.
      Decyzja odnośnie ewentualnego sfinansowania projektu ma zapaść w czerwcu. Jeśli zostanie wydana zgoda na przeprowadzenie misji, Earth 2.0 Telescope mógłby zostać wystrzelony już w 2026 roku.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...