Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Po raz pierwszy zaobserwowano powstanie magnetara. I od razu bardzo nietypowego

Rekomendowane odpowiedzi

Dawno temu, gdzieś we wszechświecie pojawił się gigantyczny rozbłysk promieniowania gamma. W ciągu pół sekundy wyemitowane zostało tyle energii, ile nasze Słońce wyprodukuje przez całe swoje życie. Powstała najjaśniejsza ze znanych nam kilonowych, której światło dotarło do Ziemi 22 maja 2020 roku. Naukowcy z Northwestern University, po przeanalizowaniu rozbłysku w zakresie promieniowania radiowego, rentgenowskiego i bliskiej podczerwieni doszli do wniosku, że zarejestrowali – jako pierwsi w historii – narodziny magnetara.

Magnetar powstał w wyniku połączenia się dwóch gwiazd neutronowych. Współczesne teorie mówią, że gdy łączą się dwie gwiazdy neutronowe, powstaje ciężka gwiazda neutronowa, która w ciągu milisekund zapada się w czarną dziurę. Nasze analizy rozbłysku pokazują, że w tym przypadku ciężki obiekt przetrwał. Nie zapadł się w czarną dziurę, a utworzył magnetar – szybko obracającą się gwiazdę neutronową o bardzo silnych polach magnetycznych, która emituje energię do otoczenia, tworząc w ten sposób jasny rozbłysk, który zaobserwowaliśmy, mówi profesor Wen-fai Fong, która stała na czele grupy badawczej.

Rozbłysk został najpierw zaobserwowany przez Neil Gehrels Swift Observatory. Wiadomość o wydarzeniu została przekazana dalej i wiele teleskopów zostało skierowanych, by obserwować nowe zjawisko. Badano je m.in. za pomocą Teleskopu Hubble'a, Keck Observatory, Very Large Array czy Las Cumbres.

Zespół profesor Fong szybko zdał sobie sprawę, że zjawisko nie jest typowe. Uczeni zauważyli, że w odniesieniu do promieniowania rentgenowskiego i radiowego, promieniowanie w bliskiej podczerwieni, które zarejestrował Hubble, było zbyt jasne, Dokładnie aż 10-krotnie jaśniejsze, niż się spodziewano. Informacje dostarczone przez Hubble'a pokazały nam, że musimy porzucić konwencjonalne myślenie i że mamy do czynienia z nieznanym zjawiskiem, mówi współautor badań Tanmoy Laskar z brytyjskiego University of Bath.

Z przeprowadzonych analiz wynika, że w wyniku połączenia dwóch gwiazd neutronowych doszło do powstania magnetara, który obraca się z prędkością 1000 obrotów na sekundę. Wiemy, że magnetary istnieją, bo obserwujemy je w naszej galaktyce. Uważamy, że większość z nich powstała w wyniku eksplozji olbrzymich gwiazd. Dotychczas tylko przypuszczaliśmy, że niewielka część magnetarów pochodzi z połączenia gwiazd neutronowych. Nigdy jednak nie mieliśmy na to dowodów, co czyni nasze odkrycie wyjątkowym, dodaje Fong.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Astronomowie z University of Berkeley poinformowali, że odkryta w 2017 roku gwiazda neutronowa jest nie tylko jednym z najszybciej obracających się pulsarów w Drodze Mlecznej. Pochłonęła ona niemal całą masę towarzyszącej jej gwiazdy, stając się najbardziej masywną ze wszystkich znanych nam gwiazd neutronowych.
      Pulsar PSR J0952-0607 obraca się 707 razy na sekundę, a jego masa wynosi aż 2,35 mas Słońca. Gdyby była nieco bardziej masywna, całkowicie by się zapadła, tworząc czarną dziurę Jej badania pozwolą na lepsze zrozumienie ekstremalnego środowiska tych niezwykle gęstych obiektów. Niewiele wiemy o tym, jak materia zachowuje się w tak gęstych miejscach, jak jądro atomu uranu. Gwiazda neutronowa przypomina takie wielkie jądro, mówi profesor Alex Filippenko.
      Gwiazdy neutronowe są tak gęste, że 1 cm3 ich materii waży około miliarda ton. Są więc najbardziej gęstymi obiektami we wszechświecie. Zaraz po czarnych dziurach. Tych jednych, ukrytych za horyzontem zdarzeń, nie jesteśmy w stanie badać.
      PSR J0952-0607 to tzw. „czarna wdowa”. To oczywiste odniesienie do pająków czarnych wdów, wśród których samica pożera po kopulacji znacznie mniejszego samca. Filippenko i profesor Roger W. Romani od ponad dekady badają systemy „czarnych wdów”, starając się określić górną granicę masy, jaką może osiągnąć pulsar.
      Dzięki połączeniu pomiarów z wielu systemów czarnych wdów, stwierdziliśmy, że gwiazda neutronowa może osiągnąć masę 2,35 ± 0,17 masy Słońca, stwierdza Romani. Jeśli zaś jest to granica limitu masy gwiazdy neutronowej, gwiazda taka zbudowana jest prawdopodobnie z mieszaniny neutronów oraz kwarków górnych i dolnych, ale nie z egzotycznej materii, takiej jak kwarki dziwne czy kaony. Taki limit wyklucza wiele proponowanych stanów materii, szczególnie egzotycznej materii we wnętrzu gwiazdy, dodaje Romani.
      Naukowcy są generalnie zgodni co do tego, że gwiazdy, których masa jądra przekracza 1,4 masy Słońca, zapadają się pod koniec życia, tworząc gęsty kompaktowy obiekt, w którego wnętrzu panuje tak wysokie ciśnienie, że wszystkie atomy tworzą mieszaninę neutronów i kwarków. Powstają w ten sposób gwiazdy neutronowe, które od początku istnienia obracają się. I mimo że w świetle widzialnym świecą zbyt słabo, byśmy mogli je dostrzec, emitują impulsy radiowe, promieniowania rentgenowskiego, a nawet promieniowania gamma, które omiatają Ziemię na podobieństwo latarni morskiej.
      Zwykłe pulsary obracają się z prędkością około 1 obrotu na sekundę. Zjawisko to łatwo wyjaśnić naturalnym obrotem gwiazdy z okresu, przed jej zapadnięciem się. Znamy jednak pulsary obracające się znacznie szybciej, nawet do 1000 razy na sekundę. To tak zwane pulsary milisekundowe. Tak szybki obrót trudno jest wytłumaczyć bez odwoływania się do materii z gwiazdy towarzyszącej, która je wchłaniania przez pulsar i napędza jego ruch.  Jednak w przypadku niektórych pulsarów milisekundowych nie potrafimy wykryć ich towarzysza. Jedno z wyjaśnień mówi, że już go nie ma, gdyż pulsar wchłonął całą jego materię.
      Naukowcy mówią, że gdy towarzysz gwiazdy neutronowej starzeje się i staje się czerwonym olbrzymem, pochodząca z niego materia opada na pulsar, który zaczyna się coraz szybciej obracać. Z obracającej się gwiazdy wydobywa się wiatr cząstek, który uderza w czerwonego olbrzyma i obdziera go z materii. Ten samonapędzający się proces może trwać do czasu, aż czerwony olbrzym skurczy się do wielkości planety, a nawet całkowicie zniknie. Tak właśnie ma dochodzić do pojawienia się samotnych pulsarów milisekundowych.
      Pulsar PSR J0952-0607 potwierdza tę hipotezę. Jego towarzyszem jest niewielka gwiazda, która właśnie traci materię i zbliża się do granicy masy planety, a z czasem może całkowicie zniknąć. Obecnie jej masa jest zaledwie 20-krotnie większa od masy Jowisza, ma więc masę 2% masy Słońca. Znajduje się w obrocie synchronicznym względem pulsara, czyli jest zwrócona do niego zawsze tą samą stroną. Przez to temperatura tej strony wynosi ok. 6000 stopni Celsjusza i sama gwiazda świeci na tyle mocno, że można ją dostrzec za pomocą teleskopu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Egzotyczne, szybko rotujące obiekty, są w kręgu zainteresowań astrofizyków. Polscy astronomowie próbują uzyskać informacje o warunkach fizycznych panujących we wnętrzu szybko rotujących gwiazd neutronowych. W pracy opublikowanej w The Astronomical Journal [PDF] wzbogacili analizy o efekty wynikające ze zjawiska pociemnienia grawitacyjnego.
      Gwiazdy neutronowe są jednymi z ekstremalnych obiektów we Wszechświecie. Gęstość materii w ich wnętrzach dwukrotnie przekracza gęstość jądra atomowego. W takich warunkach, w jądrze gwiazdy, mogą pojawiać się tak egzotyczne stany, jak kondensaty pionów, kaonów, a nawet swobodne kwarki. Centrum gwiazdy może być w stanie nadciekłym lub nadprzewodzącym. Materii w takich warunkach, jakie występują we wnętrzach gwiazd neutronowych, nie jesteśmy w stanie otrzymać w żadnym ziemskim laboratorium. Jedynym sposobem na jej badanie pozostają obserwacje astronomiczne. Stworzone modele teoretyczne opisują strukturę wnętrza gwiazdy neutronowej przy założonych właściwościach i składzie materii ją tworzącej. Użyteczną dla astronomii obserwacyjnej formą przedstawienia tych modeli jest zależność promienia gwiazdy neutronowej od jej masy. Zatem wyznaczenie mas i promieni dla kilku, kilkunastu gwiazd i skonfrontowanie ich z przewidywaniami modeli, pozwoliłoby na weryfikację założeń teoretycznych na temat własności materii wnętrza gwiazdy neutronowej.
      Polski zespół astronomów i astrofizyków, w skład którego wchodzą dr Agnieszka Majczyna (NCBJ), prof. Jerzy Madej (Obserwatorium Astronomiczne UW), prof. Agata Różańska (Centrum Astronomiczne im. M. Kopernika, PAN) oraz mgr Mirosław Należyty, realizuje projekt mający na celu wyznaczenie mas i promieni gwiazd neutronowych. Zaproponowana przez nich metoda polega na modelowaniu widm promieniowania gwiazd neutronowych i dopasowania ich do widm gwiazd neutronowych obserwowanych w zakresie rentgenowskim. Stworzony przez nich model – ATM24 uwzględnia wiele istotnych efektów, jak na przykład rozpraszanie fotonów na gorących elektronach (rozpraszanie Comptona). Niedawno autorzy wzbogacili model o kolejny ważny efekt – pociemnienie grawitacyjne.
      Pociemnienie grawitacyjne występuje w gwiazdach odkształconych zarówno wskutek sił pływowych (w układzie podwójnym gwiazd) jak i rotacji. Gwiazdy neutronowe, choć silnie związane grawitacyjnie, ze względu na szybką rotację, dochodzącą nawet do tysiąca obrotów na sekundę, ulegają odkształceniu. Rotująca gwiazda przypomina elipsoidę obrotową – nieznacznie spłaszczoną na biegunach kulę. Taki kształt gwiazdy powoduje różnicę w wartości przyspieszenia grawitacyjnego, a tym samym temperatury w poszczególnych obszarach na jej powierzchni. Taka gwiazda wygląda na gorętszą, gdy obserwuje się ją od strony bieguna, gdzie grawitacja jest większa, niż gdyby patrzeć na nią w płaszczyźnie równika. W tej klasie obiektów szybko rotujące gwiazdy neutronowe są więc dobrymi kandydatami do badań efektu pociemnienia grawitacyjnego. Efekt pociemnienia grawitacyjnego jest znany od 1924, jednak w teoretycznych modelach atmosfer gwiazdowych, opisujących rozkład widmowy promieniowania, nie był uwzględniany. Powszechnie dotąd przyjmowane założenie jednorodnej grawitacji i temperatury na powierzchni odkształconej gwiazdy jest jedynie przybliżeniem, które autorzy porzucili w ramach swojej pracy.
      Zbadaliśmy wpływ efektu pociemnienia grawitacyjnego na obserwowane widmo szybko rotującej, spłaszczonej gwiazdy neutronowej – mówi dr Agnieszka Majczyna z Zakładu Astrofizyki NCBJ. W naszym modelu widma promieniowania uwzględniamy przyczynki pochodzące od obszarów o różnych wartościach temperatury i przyspieszenia grawitacyjnego na powierzchni gwiazdy neutronowej, widzianej przez odległego obserwatora. Obliczona przez nas siatka modeli jest pierwszą taką w skali światowej. Nasze badania jasno pokazują, że efekt pociemnienia grawitacyjnego silnie wpływa na kształt widma i powinien być uwzględniany w realistycznych modelach atmosfer rotujących gwiazd neutronowych. Naukowcy nadal pracują nad udoskonalaniem modeli widm promieniowania rotujących gwiazd neutronowych. Kolejnym etapem naszego projektu będzie ulepszenie zaproponowanej przez nas metody wyznaczania masy i promienia gwiazdy neutronowej oraz stworzenie rozległej siatki teoretycznych modeli widm promieniowania. Ulepszona metoda dopasowania policzonej siatki modeli, zastosowana do obecnych lub przyszłych widm, obserwowanych pozwoli na nałożenie ograniczeń na własności supergęstej materii, która występuje we wnętrzu gwiazdy neutronowej – dodaje dr Majczyna.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Uczeni z MIT, LIGO oraz University of New Hampshire obliczyli ilość ciężkich pierwiastków jaka powstaje podczas łączenia się czarnych dziur z gwiazdami neutronowymi i porównali swoje dane z ilością ciężkich pierwiastków powstających podczas łączenia się gwiazd neutronowych. Hsin-Yu Chen, Salvatore Vitale i Francois Foucart wykorzystali przy tym zaawansowane systemy do symulacji oraz dane z obserwatoriów fal grawitacyjnych LIGO-Virgo.
      Obecnie astrofizycy nie do końca rozumieją, w jaki sposób we wszechświecie powstają pierwiastki cięższe niż żelazo. Uważa się, że do ich tworzenia dochodzi w dwojaki sposób. Około połowy takich pierwiastków powstaje w czasie procesu s zachodzącego w gwiazdach o niewielkiej masie (0,5–10 mas Słońca) w końcowym etapie ich życia, gdy gwiazdy te znajdują się w fazie AGB. Są wówczas czerwonymi olbrzymami. Dochodzi tam do nukleosyntezy, kiedy to w warunkach niskiej gęstości neutronów i średnich temperaturach nuklidy wyłapują szybkie neutrony.
      Z kolei mniej więcej druga połowa ciężkich pierwiastków powstaje w szybkim procesie r, podczas wybuchu supernowych i kilonowych. Dochodzi wówczas do szybkiego wychwyceniu wielu neutronów, a następnie serii rozpadów, które prowadzą do powstania stabilnego pierwiastka. Do pojawienia się tego procesu potrzebne są wysokie temperatury i bardzo gęste strumienie neutronów. Naukowcy spierają się jednak co do tego, gdzie zachodzi proces r.
      W 2017 roku LIGO-Virgo zarejestrowały połączenie gwiazd neutronowych, które doprowadziło do olbrzymiej eksplozji zwanej kilonową. Potwierdzono wówczas, że w procesie tym powstały ciężkie pierwiastki. Istnieje jednak możliwość, że proces r ma też miejsce zaraz po połączeniu się gwiazdy neutronowej z czarną dziurą.
      Naukowcy spekulują, że gdy gwiazda neutronowa jest rozrywana przez pole grawitacyjne czarnej dziury, w przestrzeń kosmiczną zostaje wyrzucona olbrzymia ilość materiału bogatego w neutrony. Powstaje wówczas idealne środowisko do pojawienia się procesu r. Specjaliści zastrzegają jednak, że w procesie tym musi brać udział czarna dziura do dość niewielkiej masie, która dość szybko się obraca. Zbyt masywna czarna dziura bardzo szybko wchłonie materiał z gwiazdy neutronowej i niewiele trafi w przestrzeń kosmiczną.
      Chen, Vitale i Foucart jako pierwsi porównali ilość ciężkich pierwiastków, jakie powstają w wyniku obu typów procesu r. Przetestowali przy tym liczne modele, zgodnie z którymi proces r mógłby zachodzić.
      Większość symulacji wykazała, że w ciągu ostatnich 2,5 miliarda lat w wyniku łączenia się gwiazd neutronowych przestrzeń kosmiczna została wzbogacona od 2 do 100 razy większą ilością ciężkich pierwiastków niż w wyniku kolizji czarnych dziur z gwiazdami neutronowymi. W modelach, w których czarna dziura obracała się powoli, połączenia gwiazd neutronowych dostarczały 2-krotnie więcej ciężkich pierwiastków, niż połączenia czarnej dziury z gwiazdą neutronową. Z kolei tam, gdzie czarna dziura obraca się powoli i ma niską masę – poniżej 5 mas Słońca – połączenia gwiazd neutronowych odpowiadają aż za 100-krotnie więcej ciężkich pierwiastków powstających w procesie r. Do tego, by połączenia czarnych dziur z gwiazdami neutronowymi odpowiadały za znaczną część pierwiastków powstających w procesie r konieczne jest istnienie czarnej dziury o małej masie i szybkim obrocie. Jednak dane, którymi obecnie dysponujemy, raczej wykluczają istnienia takich czarnych dziur.
      Autorzy badań już planują poprawienie swoich obliczeń dzięki danym z udoskonalanych LIGO i Virgo oraz z nowego japońskiego wykrywacza KAGRA. Wszystkie trzy urządzenia powinny ponownie ruszyć w przyszłym roku. Dokładniejsze obliczenia tempa wytwarzania ciężkich pierwiastków we wszechświecie przydadzą się m.in. do lepszego określenia wieku odległych galaktyk.
      Ze szczegółami badań można zapoznać się na łamach Astrophysical Journal Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.
      Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.
      Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.
      W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.
      Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.
      Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.
      Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.
      Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.
      Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.
      Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.
      Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Konsorcja naukowe Virgo, LIGO i KAGRA ogłosiły pierwsze w historii odkrycie układów podwójnych składających się z czarnej dziury i gwiazdy neutronowej. Było to możliwe dzięki wykryciu w styczniu 2020 r.  sygnałów fal grawitacyjnych wyemitowanych przez dwa układy (nazwane od daty ich rejestracji GW200105 i GW200115) w których wirujące wokół siebie czarna dziura i gwiazda neutronowa połączyły się w jeden zwarty obiekt. Astronomowie już kilkadziesiąt lat temu przewidzieli istnienie takich układów, ale do tej pory nigdy nie zaobserwowano ich z całkowitą pewnością, ani za pomocą sygnałów elektromagnetycznych, ani obserwując fale grawitacyjne. Wyniki nowych obserwacji i ich astrofizyczne implikacje zostały opublikowane w The Astrophysical Journal Letters.
      Od momentu pierwszej spektakularnej detekcji fal grawitacyjnych z koalescencji dwóch czarnych dziur, GW150914, za którą została przyznana nagroda Nobla w 2017, zarejestrowaliśmy sygnały z 50 układów podwójnych obiektów zwartych, ale były to wyłącznie pary łączących się czarnych dziur lub gwiazd neutronowych. Długo wyczekiwane odkrycie układów podwójnych gwiazdy neutronowej z czarną dziurą rzuca światło na narodziny, życie i śmierć gwiazd, jak również na otoczenie, w którym powstały – wyjaśnia prof. Dorota Rosińska
      Te obserwacje pokazują, ze istnieją mieszane układy podwójne zawierające gwiazdy neutronowe i czarne dziury. Istnienie takich układów było przewidziane w wielu scenariuszach, w tym rozwijanych przez mnie wraz z prof. Belczynskim od ponad dwudziestu lat. Ta detekcja jest potwierdzeniem takich przewidywań – mówi prof. Tomasz Bulik
      Sygnały fal grawitacyjnych zarejestrowane w styczniu 2020 r. zawierają cenne informacje o cechach fizycznych zaobserwowanych układów, takich jak ich odległości i masy składników, a także o mechanizmach fizycznych, które takie pary wygenerowały i doprowadziły do ich połączenia. Analiza danych wykazała, że czarna dziura i gwiazda neutronowa, które stworzyły GW200105, są odpowiednio około 8,9 i 1,9 razy masywniejsze od naszego Słońca, a ich połączenie miało miejsce około 900 milionów lat temu. W przypadku zdarzenia GW200115 naukowcy z konsorcjów Virgo i LIGO szacują, że dwa zwarte obiekty miały masy około 5,7 (czarna dziura) i 1,5 (gwiazda neutronowa) mas Słońca i połączyły się niemal miliard lat temu.
      Prof. Rosińska: Spodziewaliśmy się, że podczas koalescencji gwiazdy neutronowej z czarną dziurą, gwiazda zostanie rozerwana przez siły pływowe, gdy znajdzie się dostatecznie blisko czarnej dziury, jednak duża różnica mas obiektów spowodowała, że prawdopodobnie gwiazda neutronowa została połknięta w całości przez czarną dziurę.
      Ogłoszony wynik, wraz z dziesiątkami innych detekcji dokonanych do tej pory przez detektory Virgo i LIGO, pozwala po raz pierwszy na dokładną obserwację jednych z najbardziej gwałtownych i rzadkich zjawisk we Wszechświecie. Badamy proces ich tworzenia oraz miejsce ich narodzin.  Obserwacje koalescencji czarnej dziury i gwiazdy neutronowej, dają możliwość testowania fundamentalnych praw fizyki w ekstremalnych warunkach, których nigdy nie będziemy w stanie odtworzyć na Ziemi. Prof. Rosińska: Mamy nadzieję, że przyszłym obserwacjom łączenia się gwiazdy neutronowej z czarną dziurą może towarzyszyć wykrycie wytworzonego w tym procesie promieniowania elektromagnetycznego, co da nam wgląd w proces rozrywania pływowego gwiazdy neutronowej przez czarną dziurę. Może to dostarczyć informacji o ekstremalnie gęstej materii, z której składają się gwiazdy neutronowe.
      Obserwacja dwóch układów gwiazda neutronowa-czarna dziura pokazuje, że koalescencji tego typu obiektów może być od 5 do 15 rocznie w objętości o promieniu miliarda lat świetlnych. To szacowane tempo łączenia się NSBH można wytłumaczyć zarówno izolowaną ewolucją układów podwójnych jak i dynamicznymi oddziaływaniami w gęstych gromadach gwiazd, ale dostępne do tej pory dane nie pozwalają nam na wskazanie bardziej prawdopodobnego scenariusza.
      W pracach uczestniczyli naukowcy z Obserwatorium Astronomicznego UW: prof. Tomasz Bulik, prof. Dorota Rosińska, mgr Małgorzata Curyło, mgr Neha Singh, dr Przemysław Figura, dr Bartosz Idźkowski, mgr Paweł Szewczyk.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...