Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

LIGO i Virgo udostępniają nowy katalog obserwacji fal grawitacyjnych

Recommended Posts

Kolaboracje LIGO i Virgo zaprezentowały dziś nowy katalog GWTC-2 obserwacji fal grawitacyjnych zaobserwowanych od kwietnia do października 2019 r. podczas pierwszej części kampanii obserwacyjnej O3 (O3a). Zbiór zawiera w sumie 39 zdarzeń. Jednocześnie opublikowano nowe prace badawcze, a także obszerne popularne podsumowania ich wyników.

Wśród ujętych w nowym katalogu zdarzeń znalazły się zjawiska spójne z trzema typami kolizji: dwóch czarnych dziur (ang. binary black holes, BBH), dwóch gwiazd neutronowych (ang. binary neutron stars, BNS) i układów mieszanych złożonych z gwiazdy neutronowej i czarnej dziury (ang. neutron star-black hole, NSBH). Katalog zawiera m.in. wyjątkowo interesujące zdarzenia (opisywane wcześniej w odrębnych publikacjach) takie jak druga w historii obserwacja koalescencji dwóch gwiazd neutronowych, koalescencja dwóch czarnych dziur o największej w historii dysproporcji mas oraz obserwacja bardzo masywnego układu czarnych dziur o łącznej masie około 150 razy większej od masy Słońca. Dane udostępnione dziś wszystkim zainteresowanym badaczom umożliwią prace nad nimi szerokiemu kręgowi naukowców, a także pasjonatom.

Katalog GWTC-2 to rezultat współpracy ponad tysiąca naukowców z całego świata zrzeszonych w konsorcjum LIGO-Virgo, w tym szesnastu z Polski. Dwóch z nich pracuje w Narodowym Centrum Badań Jądrowych (prof. Andrzej Królak i dr Adam Zadrożny). Naukowcy z Narodowego Centrum Badań Jądrowych od 2008 roku biorą udział w pracach konsorcjum LIGO-Virgo, w tym w pracach nad sygnałami pochodzącymi z rotujących gwiazd neutronowych, astronomią wielu nośników (multi-messenger astronomy) oraz nowych metod analizy danych. Narodowe Centrum Badań Jądrowych wnosi wkład w budowę europejskiego detektora fal grawitacyjnych Virgo.

Analiza kolejnych danych z drugiej części kampanii obserwacyjnej O3 (O3b) jest obecnie w toku. Jej wyniki jeszcze bardziej rozbudują katalog zaobserwowanych przejściowych sygnałów fal grawitacyjnych. Obecnie detektory LIGO i Virgo są poddawane dodatkowym inżynieryjnym ulepszeniom w celu poprawienia ich czułości w czasie kolejnej, czwartej już kampanii obserwacyjnej (O4).

Wykrywanie fal grawitacyjnych stało się obecnie rutynowe, i to zaledwie pięć lat po pierwszej detekcji. Dzięki w sumie 50 zarejestrowanym sygnałom fal grawitacyjnych (11 w opublikowanym wcześniej katalogu GWTC-1 i 39 zebranych obecnie w GWTC-2) następuje znaczący postęp w badaniach: jesteśmy w stanie lepiej poznać populację czarnych dziur i gwiazd neutronowych we Wszechświecie, zwiększa się nasze zrozumienie teorii grawitacji, tj. ogólnej teorii względności, a wkrótce, mając do dyspozycji czulsze detektory, zapewne będzie możliwe wykrycie fal grawitacyjnych pochodzących ze zdarzeń obserwowanych także jako tzw. rozbłyski gamma (pierwszy taki przypadek miał już miejsce w 2017 r.). Tym zagadnieniom poświęcone są artykuły publikowane równolegle z nowym katalogiem.

Dane z trzydziestu dziewięciu obserwacji zarejestrowanych podczas pierwszej fazy kampanii obserwacyjnej O3 są umieszczone na serwerze Centrum Otwartych Danych Fal Grawitacyjnych GWOSC (ang. Gravitational Wave Open Science Center) dostępnym poprzez portal https://www.gw-openscience.org/eventapi/html/GWTC-2.

Strona GWOSC zawiera kompletną dokumentację i przykłady kodów do analizy danych oraz tutoriale mogące pomóc każdemu zainteresowanemu w odkrywaniu publicznie dostępnych zbiorów danych.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Na podstawie najnowszych wyników badań z obserwatoriów fal grawitacyjnych LIGO/Virgo, naukowcy przeprowadzili testy Ogólnej Teorii Względności (OTW). Zgodność teorii Einsteina z danymi obserwacyjnymi testowano dziewięcioma różnymi metodami. Żadnych niezgodności nie stwierdzono. W badaniach brali udział polscy naukowcy z grupy Polgraw, w tym uczeni z NCBJ.
      Ogólna Teoria Względności zaproponowana ponad 100 lat temu przez Alberta Einsteina jest obecnie powszechnie przyjętą teorią grawitacji. Jest ona niezwykle elegancka i koncepcyjnie w zasadzie prosta, choć obliczenia wykonywane na jej podstawie do prostych nie należą. Teoria prawidłowo opisuje poznane zjawiska astronomiczne napędzane przez grawitację, a także jest podstawą do budowy scenariuszy kosmologicznych. W miarę postępu badań i obserwacji, w miarę gromadzenia coraz większych, coraz dokładniejszych i coraz lepiej uporządkowanych zbiorów danych, obszar dostępnych nam zjawisk stale się poszerza. W nauce żadnej teorii nie traktujemy jako dogmatu – tłumaczy prof. Marek Biesiada z Zakładu Astrofizyki NCBJ. Dlatego teorie poddajemy testom, stale sprawdzając ich przewidywania. Jak dotąd OTW została potwierdzona bardzo precyzyjnymi obserwacjami w Układzie Słonecznym i w układach podwójnych pulsarów. Fale grawitacyjne emitowane przez zlewające się czarne dziury dostarczają kolejnej możliwości testowania teorii względności. Jest to reżim silnie zakrzywionych czasoprzestrzeni, wcześniej słabo dostępny testowaniu.
      Są przynajmniej dwie przesłanki nakazujące nam sprawdzać, czy OTW wymaga modyfikacji lub zastąpienia nową teorią. Pierwszą z nich są problemy kosmologiczne znane jako ciemna materia i ciemna energia. Problem ciemnej materii polega na tym, że galaktyki i ich gromady przyciągają silniej niż powinny, gdyby uwzględnić całą znaną nam materię. Problem ciemnej energii to fakt, że Wszechświat przyspiesza swą ekspansję, zamiast zwalniać, jak wydaje się przewidywać OTW. Chociaż robocze nazwy ciemna materia i ciemna energia sugerują odpowiedź w postaci nieznanych składników materialnych, pozostaje możliwość, że OTW wymaga modyfikacji. Drugą przesłanką jest wynikająca z OTW konieczność występowania osobliwości, czyli obszarów, gdzie kończą się historie wszystkich cząstek i fotonów. Wydaje się, że problem ten jest związany z kwantową teorią grawitacji, której nie udało się stworzyć w zadowalającej wszystkich postaci. Tu również fale grawitacyjne emitowane przez zlewające się czarne dziury mogą dostarczyć nam wskazówek.
      Współprace badawcze LIGO i Virgo opublikowały w tym tygodniu podsumowanie analiz zebranych przez nie danych pod kątem ich zgodności z przewidywaniami OTW. Analizy zebrano w 9 głównych grup stanowiących testy teorii.
      Pierwszy test dotyczył zgodności rejestrowanego sygnału bazowego (szumu) ze znanym z testów laboratoryjnych szumem detektora. Z OTW wiemy jak sygnał od dwóch zwartych obiektów powinien wyglądać w detektorach fal grawitacyjnych. Jednak to, czym posługujemy się do opisu sygnału jest teorią – jak cała nauka jest pewnym przybliżeniem, najlepszym jakie mamy, opisującym świat, dopóki nie znajdziemy lepszego. Jeśli OTW nie opisywałaby dostatecznie dobrze takich sygnałów to mielibyśmy przewidywanie teoretyczne plus dodatkowy komponent, który wynika z nieuwzględnionych efektów. Aby zobaczyć, czy taki dodatkowy komponent jest obecny, trzeba było sprawdzić, czy po odjęciu przewidywanego sygnału reszta będzie miała charakterystykę normalnego szumu w detektorze. Przeprowadzony test potwierdził słuszność OTW.
      Przeprowadzono też test zgodności przebiegu (kształtu) fal przed i po zlaniu się dwóch obiektów. Źródłami fal grawitacyjnych, które obserwujemy są układy: dwóch gwiazd neutronowych; dwóch czarnych dziur; układ czarna dziura – gwiazda neutronowa. Zdarzenie zlania się tych obiektów następuje w 3 głównych fazach: moment tuż przed zderzeniem, moment zlania się oraz faza stabilizacji. OTW przewiduje, że fazy sprzed zderzenia oraz po powinny generować podobne fale. Przewidywania OTW są zgodne z obserwacjami dla analizowanej próbki. Kolejne dwa testy dotyczyły zachowania się obiektów w pierwszej fazie zlewania, gdy ciała niebieskie okrążają się wzajemnie.
      Wzajemne okrążanie zwartych obiektów, takich jak czarne dziury czy gwiazdy neutronowe, zbliżających się do siebie dzięki utracie energii emitowanej w postaci fal grawitacyjnych, można przybliżyć przez powolny ruch w przybliżeniu słabego pola – nazywa się to post-Newtonowskim przybliżeniem OTW. Podejście to opisane jest kilkoma parametrami, których określenie na tej podstawie można porównać z parametrami otrzymanymi przez OTW. Najnowsze obserwacje wraz z już istniejącymi, pozwalają bardzo dobrze określić ograniczenia wartości tych parametrów. Wyniki te są statystycznie spójne z przewidywaniami OTW.
      Pierwsza faza, przed zlaniem się obiektów, pozwala również na sprawdzenie, czy obserwowany sygnał jest zgodny z przewidywaniami zlania się dwóch rotujących czarnych dziur (czarnych dziur Kerra). Jeśli któryś ze składników (lub oba) będzie rotował – powstały obiekt będzie spłaszczony na biegunach i poszerzony na równiku. Naukowcy są w stanie wyłuskać tę informację z danych obserwacyjnych, dzięki czemu można ustalić, że źródłem fal grawitacyjnych nie są żadne egzotyczne, nieprzewidziane przez OTW, obiekty.
      Podobne podejście zastosowano do określenia parametrów zdarzenia w trakcie i po zlaniu się obiektów. Czas trwania zlewania się i stabilizacji nowego obiektu jest dużo krótszy od fazy zbliżania się, więc obserwowany sygnał jest dużo silniejszy od widocznego szumu. Oszacowane na tej podstawie parametry dają wartości statystycznie zgodne z przewidywaniami OTW.
      Kolejnym jest test propagacji fal grawitacyjnych. Według przewidywań OTW fale grawitacyjne nie podlegają dyspersji, czyli prędkość ich rozchodzenia się nie zależy od ich częstotliwości. OTW można zmodyfikować w taki sposób, by własność ta nie była zachowana. W takiej sytuacji fale pochodzące bezpośrednio ze zlania się obiektów, o wyższej częstotliwości, dotarłyby do obserwatora szybciej, niż fale o mniejszej częstotliwości – pochodzące z fazy początkowej. Nie znaleziono dowodów dyspersji fal grawitacyjnych, co jest zgodne z przewidywaniami OTW.
      Brak zaobserwowanej dyspersji umożliwia nam ograniczenie modeli fizyki cząstek, które zakładają, że grawitony cząstki odpowiadające za oddziaływania grawitacyjne - mają masę (tak zwany model ciężkich grawitonów). W ramach OTW grawitony powinny być bezmasowe i podróżować z prędkością światła. Modele ciężkich grawitonów przewidują jednak istnienie dyspersji w pewnym stopniu, więc obserwacje mogą dać ograniczenie na masę grawitonów. W tych badaniach określono masę grawitonów (o ile ją posiadają) na poniżej 1.3*10-23 eV/c2.
      Ósmy test dotyczy polaryzacji fal grawitacyjnych. W ramach OTW fale grawitacyjne mogą mieć jedynie dwa typy polaryzacji: typu plusa lub typu X. Bardziej ogólna teoria może prowadzić do nawet sześciu unikatowych typów polaryzacji fal. Przeanalizowano dane obu detektorów LIGO oraz detektora Virgo pod kątem polaryzacji, których OTW nie uwzględnia. Testy nie wykazały możliwości istnienia innych polaryzacji niż przewidywanych przez OTW.
      Istnieją alternatywne teorie względem istnienia czarnych dziur. Obiekty takie, nazywane są mimikami czarnych dziur ze względu na to, że mają podobne parametry jak czarne dziury, jednak nie są nimi w sensie OTW. Jedną z najbardziej charakterystycznych cech czarnych dziur jest horyzont zdarzeń, czyli obszar, z którego nic nie jest w stanie uciec - nawet światło. W przypadku mimików, powierzchnia taka miałaby albo częściową, albo pełną refleksyjność, co wywołałoby pewnego rodzaju echo w sygnale z trzeciej fazy zlewania się obiektów. Analizy nie wykazały istnienia tego typu ech, co jest zgodne z przewidywaniami OTW.
      Stawiając się w pozycji przeciwników OTW, naukowcy przeprowadzili 9 testów, które mogłyby wykazać błędność Ogólnej Teorii Względności. Dowodów niezgodności nie znaleziono. Testy z całą pewnością będą kontynuowane, bo taka jest istota badań naukowych. Wszelkie niezgodności jakie ewentualnie wystąpią między obserwacjami, a przewidywaniami OTW, mogą w przyszłości zaowocować poznaniem nowych zjawisk.
      Nie są to wszystkie testy jakim można poddać teorię grawitacji dzięki badaniu fal grawitacyjnych – wyjaśnia dr Adam Zadrożny z Zakładu Astrofizyki NCBJ, członek polskiej grupy badawczej Polgraw. Bardzo ciekawym przykładem był pomiar stałej Hubble’a dla obserwacji fal grawitacyjnych GW170817 i rozbłysku optycznego AT 2017gfo, które były wynikiem tego samego zdarzenia. Zostało to opisane w czasopiśmie Nature w 2017 roku (vol. 551, p. 85–88). Pomiar stałej Hubble’a wykonany przy użyciu danych z detektorów fal grawitacyjnych był zgodny z wynikami uzyskanymi innymi metodami. Warto też dodać, że prof. Andrzej Królak (IM PAN i NCBJ) razem z prof. Bernardem F. Schutzem (Cardiff University) w pracach w latach 80-tych dali postawy wielu metodom analizy danych z detektorów interferometrycznych takich jak LIGO i Virgo.
      Polska od 2008 roku jest częścią projektu Virgo. Polscy uczestnicy projektu tworzą grupę Polgraw, której przewodzi prof. Andrzej Królak (IM PAN, NCBJ). Grupa bierze udział zarówno w badaniach naukowych konsorcjum LIGO-Virgo-KAGRA (LVK) jak i w konstrukcji detektora Virgo. Wśród badań naukowych prowadzonych przez grupę Polgraw, w ramach LVK, są między innymi analiza danych, rozwijanie metod statystycznych, modelowanie źródeł fal grawitacyjnych oraz analizy emisji fal elektromagnetycznych towarzyszących emisji fal grawitacyjnych. W skład grupy Polgraw wchodzi 12 instytucji w tym Instytut Matematyczny PAN, CAMK (Warszawa), Obserwatorium Astronomiczne UW, Uniwersytet Zielonogórski, Uniwersytet w Białymstoku, NCBJ, Uniwersytet Wrocławski, CAMK (Toruń), Obserwatorium Astronomczne UJ, AGH, ACK Cyfronet AGH, Centrum Fizyki Teoretycznej PAN. W skład konsorcjum LVK wchodzą ze strony NCBJ prof. Andrzej Królak, dr Orest Dorosh, dr Adam Zadrożny i mgr Margherita Grespan. Prace prowadzone w NCBJ dotyczą metod detekcji sygnałów pochodzących od rotujących gwiazd neutronowych, infrastruktury umożliwiającej szybką detekcję sygnałów grawitacyjnych oraz nowych metod analizy i lokalizacji sygnału opartych o sieci neuronowe.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Teorie mówią, że nie istnieją gwiazdowe czarne dziury o takiej masie. Ale, jak wiemy, natura zawsze znajdzie jakiś sposób, mówi Stan Woosley, astrofizyk z University of California, Santa Cruz. Uczony skomentował w ten sposób to, co zarejestrowały wykrywacze fal grawitacyjnych LIGO i Virgo. A przechwyciły one sygnał świadczący o niezwykle mało prawdopodobnej kolizji czarnych dziur o rzadko spotykanej masie.
      Eksperci,  którymi kontaktowali się dziennikarze poinformowali, że wśród 22 fal grawitacyjnych zarejestrowanych od kwietnia przez LIGO/Virgo znajduje się taki, który pochodzi od czarnej dziury o masie nawet 100 mas Słońca. Dzisiaj naukowcy potwierdzili, że zauważyli kolizję dwóch czarnych dziur o masach 65 i 85 mas Słońca, w wyniku której powstała czarna dziura o masie 150 mas Słońca.
      Krzysztof Bełczyński, astrofizyk z Uniwersytetu Warszawskiego, był tak pewien, iż zderzenie takich czarnych dziur jest mało prawdopodobne, że w 2017 roku w podczas spotkania w Aspen Center For Physics wraz z Danielem Holzem z University of Chicago zawarli zakład stwierdzając, iż żadna czarna dziura o takiej masie nie zostanie wykryta w pierwszych 100 sygnałach LIGO/Virgo. Do zakładu dołączył później też Woosley. Zakład przyjęło troje innych naukowców. Myślę, że przegramy ten zakład. Ku chwale nauki, mówi Bełczyński.
      W 1967 roku fizycy z Uniwersytetu Hebrajskiego w Jerozolimie odkryli, że jeśli umierająca gwiazda ma bardzo masywne jądro, to nie zapadnie się ono w czarną dziurę. Gwiazda taka zmieni się w supernową niestabilności kreacji par (pair-instability supernova).
      Do jej powstania dochodzi, gdy jądro gwiazdy staje się tak gorące, iż światło spontanicznie zamienia się w nim w pary elektron-pozyton. Dotychczas ciśnienie światła zapewniało stabilność jądra. Gdy zaczyna się ono zamieniać w materię ciśnienie to spada, jądro gwałtownie się kurczy, staje się coraz gorętsze, to z kolei przyspiesza produkcję par elektron-pozyton. Powstaje samonapędzający się mechanizm. W końcu temperatura rośnie do tego stopnia, że dochodzi do fuzji tlenu. W jego wyniku implozja zostanie zatrzymana, a rozpoczyna się proces odwrotny. Następuje eksplozja jądra. Jeśli jądro miało masę 65–130 mas Słońca, cała materia zostaje rozrzucona. Po gwieździe pozostaje mgławica. Jądro nie zapada się, nie powstaje czarna dziura.
      Jeśli natomiast jądro, w którym doszło do niestabilności kreacji par miało masę od 50 do 65 mas Słońca, dochodzi do serii eksplozji, które stopniowo wyrzucają materię dopóty, dopóki masa jądra nie spadnie poniżej limitu, w którym niestabilność kreacji par już nie zachodzi. Z tego wynika, że nie powinny istnieć gwiazdowe czarne dziury o masie pomiędzy 50 a 130 mas Słońca. To bardzo proste obliczenia, mówi Woosley, którego praca z 2002 roku na ten temat jest uważana za ostateczne wyjaśnienie problemu.
      Mogą za to istnieć, i istnieją, czarne dziury o masie większej niż 130 mas Słońca, gdyż implozja tak masywnego jądra nie może zostać zatrzymana, nawet w wyniku fuzji tlenu. Jądro zapada się do czarnej dziury. Jednak, jako że gwiazdy tracą masę przez całe swoje życie, gwiazda, która utworzyłaby jądro o masie ponad 130 mas Słońca musiałaby mieć co najmniej masę 300 mas Słońca. Tak masywne gwiazdy są niezwykle rzadkie. Dlatego też większość ekspertów uznaje, że LIGo/Virgo może wykryć kolizje czarnych dziur o masach nie przekraczających 50 mas Słońca.
      Znamy też supermasywne czarne dziury o masach miliony i miliardy raza większych od masy Słońca, jednak powstają one w inny sposób, a LIGO i Virgo nie są w stanie wykryć ich zderzeń.
      Dlatego tylko niewielu specjalistów uważało, że LIGO i Virgo zauważą kolizje czarnych dziur o masach ponad 50 mas Słońca. Stąd wyzwanie, jakie w formie zakładu rzucili im Bełczyński, Holz i Wooley. Zakład ten przyjęli Carl Rodriguez z MIT, Sourav Chatterjee z Tata Institute for Fundamental Research z Mombasy, do których dołączył później Fred Rasio z Northwestern University. Przegrani mają kupić każdemu z wygranych butelkę wina o wartości 100 USD.
      Rodriguez, Chatterjee i Rasio stwierdzili, że co prawda większość kolizji wykrywanych przez LIGO i Virgo prawdopodobnie ma swój początek w izolowanych układach podwójnych, ale niewielka część z nich może zachodzić w gęstych środowiskach takich jak gromady kuliste. Tam zaś, ich zdaniem, może zdarzyć się tak, że np. czarna dziura o masie 50 mas Słońca najpierw wchłonie czarną dziurę o masie 30 mas Słońca, a później znowu połączy się z jakąś czarną dziurą. LIGO/Virgo może zarejestrować to drugie zdarzenie, zatem zauważy zderzenie czarnych dziur, z których co najmniej jedna będzie miała masę pomiędzy 50 a 130 mas Słońca. Istnieje też jeszcze inna możliwość. Otóż kolizja taka może rozpocząć się również w izolowanym układzie podwójnym. Jeśli jedna z gwiazd układu utworzy czarną dziurę, a układ nadal będzie istniał, to czarna dziura może wchłaniać masę z towarzyszącej jej gwiazdy, rosnąc powyżej „zakazanego” limitu. Później, gdy druga z gwiazd utworzy czarną dziurę, może dojść do kolizji obu czarnych dziur i zarejestrowania tego wydarzenia na Ziemi.
      Krzysztof Bełczyński i jego koledzy przegrali więc zakład. Woosley wciąż uważa, że granica „zakazanej masy” istnieje. Jego zdaniem, wśród olbrzymiej liczby czarnych dziur musi istnieć – mimo nielicznych wyjątków – wyraźny spadek liczby czarnych dziur w zakresie masy od 50 do 130 mas Słońca. A te nieliczne istniejące wyjątki to wynik tego, że natura nie znosi próżni.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół uczonych udostępnił naukowcom i pasjonatom najpełniejszy jak dotąd katalog obiektów pozagalaktycznych obejmujący obszar ponad 3% pełnego kąta bryłowego nieba i zawierający 170 mln. źródeł. Za modelowanie ich widm energetycznych była odpowiedzialna dr hab. Katarzyna Małek z Zakładu Astrofizyki NCBJ.
      Dzięki współpracy naukowców z wielu światowych instytutów, w tym polskich astrofizyków z NCBJ powstał szerokozakresowy katalog obiektów pozagalaktycznych HELP, z ang. Herschel Extragalactic Legacy Project. Katalog ten pokrywa obszar ok 1300 deg2 nieba (łącznie 23 dobrze zdefiniowane i przebadane obszary nieba, jak np. Cosmological Evolution Survey, COSMOS).
      Zawiera on 170 mln źródeł, dla których zebrano, pogrupowano i ujednolicono dane fotometryczne z szerokiego zakresu widmowego fali elektromagnetycznej od części optycznej widma, a nawet ultrafioletu po daleką podczerwień. Wraz z katalogiem autorzy udostępniają wygodne narzędzia dostępu do danych oraz oprogramowanie umożliwiające sprawną analizę tego ogromnego katalogu. Katalog jest również dostępny przez narzędzia Wirtualnego Obserwatorium (z ang. Virtual Observatory, VO). Dzięki temu obiekty skatalogowane w HELP są w wygodny sposób dostępne do analizy przez użytkownika niemal od ręki.
      Pierwsze wydanie katalogu – DR1 jest już dostępne publicznie, a zebrane w jego ramach obiekty oprócz danych fotometrycznych, wraz z daleką podczerwienią z Herschel SPIRE, zawierają wyliczone wartości fotometrycznego przesunięcia ku czerwieni oraz ich parametry fizyczne, takie jak masa gwiazdowa, tempo powstawania gwiazd w galaktyce, czy całkowita jasność galaktyki w podczerwieni. Parametry zostały oszacowane na podstawie modelowania spektralnych rozkładów energii.
      Niewątpliwie HELP jest projektem, który będzie pomocny wielu naukowcom do statystycznej analizy, rozmieszczonych po całym niebie, galaktyk. Jako jedyny tak duży katalog, gromadzący kompletne publicznie dostępne dane fotometryczne jest świetnym laboratorium do badania Wszechświata we wczesnych jego etapach ewolucji. Równocześnie ten ogromny katalog zawiera bardzo unikalne obiekty, bardzo rzadko spotykane we Wszechświecie. To właśnie w trakcie analizy danych z HELP twórcy projektu odkryli super masywną czarną dziurę w galaktyce, istniejącej 1,4 miliarda lat po Wielkim Wybuchu.
      Katalog HELP został też użyty jako katalog bazowy dla obserwacji międzynarodowego projektu LOFAR, z ang. Low Frequency Aray. Autorzy planują aktualizację katalogu na nowe dane obserwacyjne, gdy zajdzie taka potrzeba. Równocześnie upubliczniają też niezbędne oprogramowanie do samodzielnego stworzenia takiego katalogu. Wszystkie użyte w projekcie programy i dane są dostępne publicznie na licencji open source. Kierownikiem projektu HELP jest profesor Seb Oliver z University of Sussex, a polskim przedstawicielem jest dr hab. Katarzyna Małek z Narodowego Centrum Badań Jądrowych w Świerku.
      W projekcie HELP jestem kierownikiem zespołu odpowiedzialnym za oszacowanie parametrów fizycznych wszystkich 170 milionów opublikowanych galaktyk – mówi pani profesor Małek. Moim głównym zadaniem było modelowanie ich widm energetycznych. Obecnie, po opublikowaniu katalogu, wraz z zespołem składającym się z doktorantów szkoły doktorskiej NCBJ i IChTJ, Mahmoudem Hamedem oraz Gabrielem Riccio, badamy właściwości znajdującym się w katalogu HELP galaktyk silnie emitujących w zakresie promieniowania podczerwonego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od czasu przełomowego odkrycia fal grawitacyjnych amerykańskie obserwatorium LIGO we współpracy ze swoim europejskim odpowiednikiem Virgo zarejestrowały dziesiątki zdarzeń, które wygenerowały zmarszczki czasoprzestrzeni. W przyszłości obserwatoria fal grawitacyjnych będą udoskonalane, co  pozwoli na wykrycie większej liczby fal pochodzących z głębszych regionów wszechświata, a co za tym idzie, pozwoli nam lepiej zrozumieć wszechświat i poznać jego tajemnice.
      Fale grawitacyjne powinny ściskać i rozciągać przestrzeń o 1 część na 1021, co oznacza, że cała Ziemia jest ściskana lub rozciągana o 1/100000 nanometra, czyli mniej więcej o grubość jądra atomu. W ramach eksperymentu LIGO zbudowano dwa interferometry ułożone w kształt litery L o długości 4 kilometrów każdy. Na końcach tuneli umieszczono lustra odbijające światło. W stronę luster wystrzeliwany jest promień lasera, który odbija się i powraca do detektorów. Jeśli promienie przebyły drogę o różnej długości, pomiędzy promieniami dojdzie do interferencji. Badając interferencję naukowcy są w stanie zmierzyć relatywną długość obu ramion z dokładnością do 1/10 000 szerokości protonu. To wystarczająca dokładność, by wykryć ewentualne zmiany długości obu ramion interferometrów spowodowane obecnością fal grawitacyjnych. W skład LIGO wchodzą dwa laboratoria - w stanach Luizjana i Waszyngton.
      Jednym z niezwykle ważnych elementów wpływających na czułość obu detektorów wchodzących w skład LIGO jest powłoka wspomnianych luster. Każde z nich waży 40 kilogramów, a w każdym z detektorów znajdują się 4 takie lustra. Im większy współczynnik odbicia luster, tym bardziej czuły interferometr. Jednak te same powłoki, dzięki którym lustra odbijają światło, mogą prowadzić do zwiększenia szumu tła, a to z kolei może zagłuszać sygnał z fal grawitacyjnych. A trzeba wiedzieć, że LIGO jest wrażliwy na ruch uliczny, ruchy tektoniczne czy uderzenia fal na odległym wybrzeżu. Dlatego też ciągle trwają prace nad odpowiednimi powłokami luster.
      Teraz specjaliści z California Institute of Technology (Caltech), pracujący przy LIGO, poinformowali o opracowaniu nowej powłoki wykonanej z tlenku tytanu i tlenku germanu. Za jej pomocą można będzie 2-krotnie zmniejszyć szum tła z luster, co pozwoli na 8-krotnie powiększenie przestrzeni wszechświata, z której LIGO może zbierać sygnały. Poszukujemy najdoskonalszego z obecnie dostępnych materiałów. Nasza zdolność do badania tego, co dzieje się w astronomicznej skali wszechświata jest ograniczona zjawiskami zachodzącymi w mikroskopijnej przestrzeni [powłoki luster - red.], mówi Gabriele Vajente, główna autorka badań nad nową powłoką. Mamy nadzieję, że dzięki nowej powłoce będziemy mogli zwiększyć częstotliwość wykrywania fal grawitacyjnych z obecnej raz na tydzień do raz na dzień lub częściej, dodaje dyrektor LIGO Laboratory na Caltech David Reitze.
      Nawet najmniejsze zakłócenia z otoczenia, takie jak wibracje atomów wywołane temperaturą, mogą wpłynąć na czas odbicia światła lasera od luster i zakłócić pracę interferometru.
      Najważniejsze w naszej pracy było stworzenie lepszych metod testowania różnych materiałów. Teraz możemy sprawdzić ich właściwości w około 8 godzin, a praca taka jest w pełni zautomatyzowana. Wcześniej zajmowało to około tygodnia. Dzięki temu mogliśmy szybciej testować różne połączenia różnych materiałów. Niektóre z nich zupełnie się nie sprawdzały, ale dało nam to wgląd w to, jakich właściwości powinniśmy poszukiwać, wyjaśnia Vajente. W końcu uczeni zauważyli, że odpowiednia kombinacja tlenku tytanu i tlenku germanu najlepiej redukuje wibracje wywołane zmianami temperatury.
      Lustra z nową powłoką mogą zostać zastosowane już w czasie 5. kampanii badawczej LIGO, która ruszy w połowie dekady w ramach programu Advanced LIGO Plus. Latem przyszłego roku rozpocznie się zaś 4. kampania badawcza, ostatnia z programu Advanced LIGO.
      O tym, jak ważne był opracowanie nowej powłoki mówi dyrektor Reitze. To zmieni badania prowadzone w ramach Advanced LIGO Plus. To wspaniały przykład, jak bardzo LIGO jest uzależnione od najnowocześniejszych osiągnięć optyki i badań materiałowych. To największy od 20 lat postęp w optyce wykorzystywanej w LIGO.
      Przydatność przeprowadzonych właśnie badań nie ogranicza się jedynie do wykorzystania ich wyników przy wykrywaniu fal grawitacyjnych. W przyszłości ich wyniki mogą zostać wykorzystane w telekomunikacji czy przemyśle półprzewodnikowym.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...