Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Splątanie dwóch światów. Uzyskali stan splątany między systemem mechanicznym a grupą atomów

Recommended Posts

Splątanie kwantowe to fascynujące zjawisko leżące u podstaw tworzonych właśnie systemów do kwantowej komunikacji, kwantowych obliczeń czy kwantowych czujników środowiskowych. Stan splątany dwóch cząstek oznacza, że mierząc jedną z cząstek możemy poznać właściwości drugiej, mimo że są one od siebie znacznie oddalone i nie ma między nimi kontaktu.

Naukowcy z Uniwersytetu w Kopenhadze splątali właśnie mechaniczny oscylator ze spinem grupy atomów. Ich osiągnięcie kładzie podwaliny pod osiągnięcie stanu splątanego odmiennych systemów, co z kolei może posłużyć m.in. do budowy komputerów kwantowych.

Przed około dekadą zaproponowaliśmy teoretyczny sposób na splątanie mechanicznego oscylatora z oscylatorem spinowym za pomocą fotonów. Wykorzystaliśmy przy tym zasadę, która została później nazwana „wolnymi podprzestrzeniami mechaniki kwantowej” lub „trajektoriami bez kwantowych nieoznaczoności". W naszym najnowszym artykule donosimy o eksperymentalnym zaimplementowaniu naszej teorii, mówi profesor Eugene S. Polzik, który stał na czele grupy badawczej.

W celu uzyskania splątania pomiędzy systemem mechanicznym a spinowym Polzik i jego zespół wykorzystali fakt, że w stanie wzbudzonym dochodzi do redukcji energii spinowego oscylatora, co można postrzegać jako posiadanie przezeń jako posiadanie „ujemnej masy”.

Splątanie pomiędzy systemem mechanicznym a spinowym uzyskujemy poprzez wysłanie światła pomiędzy oboma systemami: mechanicznym oscylatorem o masie dodatniej i spinowym oscylatorem o efektywnej masie ujemnej. Wykonanie pomiaru tego światła wprowadza oba systemy w stan splątany. Kolejne powtarzalne pomiary potwierdzają splątanie pokazując, że kwantowe fluktuacje w obu systemach są silnie ze sobą skorelowane, mówi Polzik.

Eksperyment może też wskazywać, iż możliwe jest poradzenie sobie z zasadą nieoznaczoności Heisenberga. Jak mówi profesor Polzik, wykorzystanie „masy ujemnej” może bowiem pozwolić na osiągnięcie nieograniczonej dokładności pomiaru.

Zespół Polzika przygotowuje teraz eksperyment, którego celem będzie wykazanie potencjalnej przydatności opisanych powyżej badań do udoskonalenia wykrywaczy fal grawitacyjnych LIGO i VIRGO.

Szczegóły badań zostały opublikowane w artykule Entanglement between distant macroscopic mechanical and spin systems


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Po raz pierwszy udało się utworzyć i zmierzyć postulowany od dawna stan powiązania pomiędzy atomami. Naukowcy z Wiednia i Innsbrucku wykorzystali laser do spolaryzowania atomów tak bardzo, że z jednej strony miały ładunki dodatnie, z drugiej ujemne. Dzięki temu mogli związać atomy ze sobą. Oddziaływania pomiędzy nimi były znacznie słabsze niż pomiędzy atomami w standardowej molekule, ale na tyle silne, że można było mierzyć ich wartość.
      W atomie jądro o ładunku dodatnim otoczone jest przez chmurę elektronów o ładunku ujemnym. Całość jest obojętna. Jeśli teraz włączymy zewnętrzne pole elektryczne, rozkład ładunków nieco się zmieni. Ładunki dodatnie przemieszczą się w jednym kierunku, ujemne w w drugim i atom będzie posiadał stronę dodatnią i ujemną, stanie się spolaryzowany, mówi profesor Philipp Haslinger.
      Taką polaryzację atomu można uzyskać też za pomocą światła, które jest szybko zmieniającym się polem elektromagnetycznym. Gdy liczne atomy znajdują się blisko siebie, światło polaryzuje je w ten sam sposób. Więc dwa sąsiadujące ze sobą atomy będą zwrócone do siebie przeciwnymi ładunkami, co spowoduje, że będą się przyciągać.
      To bardzo słabe oddziaływanie, zatem eksperyment trzeba prowadzić bardzo ostrożnie, by móc zmierzyć siłę oddziaływania. Gdy atomy mają dużo energii i szybko się poruszają, to przyciąganie natychmiast znika. Dlatego też użyliśmy podczas eksperymentów ultrazimnych atomów, wyjaśnia Mira Maiwöger z Wiedeńskiego Uniwersytetu Technologicznego.
      Naukowcy najpierw złapali atomy w pułapkę i je schłodzili. Następnie pułapka została wyłączona, a uwolnione atomy rozpoczęły swobodny spadek. Taka chmura opadających atomów była niezwykle zimna, jej temperatura była niższa niż 1/1 000 000 kelwina, ale miała na tyle dużo energii, że podczas spadku rozszerzała się. Jeśli jednak na tym etapie atomy zostaną spolaryzowane za pomocą lasera i pojawi się pomiędzy nimi przyciąganie, rozszerzanie się chmury zostaje spowolnione. W ten właśnie sposób można zmierzyć siłę oddziaływania pomiędzy atomami.
      Polaryzowanie indywidualnych atomów za pomocą lasera nie jest niczym nowym. Kluczowym elementem naszego eksperymentu było jednoczesne spolaryzowanie w sposób kontrolowany wielu atomów i stworzenie mierzalnych oddziaływań pomiędzy nimi, dodaje Matthias Sonnleitner, który opracował teoretyczne założenia eksperymentu.
      Autorzy eksperymentu zwracają uwagę, że zmierzone przez nich oddziaływanie może odgrywać ważną rolę w astrofizyce. W pustce kosmosu małe siły mogą odgrywać duża rolę. Po raz pierwszy wykazaliśmy, że promieniowanie elektromagnetyczne może tworzyć oddziaływania pomiędzy atomami, co może rzucić nowe światło na niewyjaśnione obecnie zjawiska astrofizyczne, dodaje Haslinger.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dwa niezależne zespoły badawcze stworzyły kwantowe wzmacniacze zdolne do przechowywania multipleksowanych sygnałów, przekazywania splątanych cząstek i pracy na częstotliwościach używanych w telekomunikacji. To bardzo ważny krok w rozwoju skalowalnego kwantowego internetu.
      Kwantowa sieć komputerowa nie tylko byłaby siecią znacznie bardziej bezpieczną, ale również pozwalałaby np. na dystrybucję zadań obliczeniowych pomiędzy komputerami kwantowymi, co z kolei umożliwiłoby na rozwiązywanie niezwykle złożonych problemów.
      Zasadniczym elementem kwantowego internetu będą kwantowo splatane połączenia pomiędzy węzłami takiej sieci. Problem jednak w tym, że tworzenie stanu splątanego przy dużym transferze danych na duże odległości jest bardzo trudne. Wynika to z faktu, że kwantowa informacja ulega degradacji podczas przesyłania, a zasady mechaniki kwantowej nie pozwalają na użycie standardowych wzmacniaczy. Potrzebne są więc wzmacniacze kwantowe, wzmacniające informację i podlegające zasadom fizyki kwantowej.
      Dwie niezależne grupy badawcze, jedna z hiszpańskiego Instytutu Nauk Fotonicznych (ICFO – Institut de Ciències Fotòniques), druga zaś z Uniwersytetu Nauki i Technologii Chin (USTC), pokazały, jak kwantowe układy pamięci mogą posłużyć do budowy praktycznych kwantowych wzmacniaczy.
      Oba zespoły użyły źródeł par fotonów, gdzie jeden z fotonów jest składowany w kwantowej pamięci, a drugi jest wysyłany jako sygnał rozgłaszający i potwierdzający splątanie. Multipleksing, rozumiany tutaj jako możliwość jednoczesnego składowania wielu sygnałów w postaci fotonów o różnych długościach fali jest realizowany za pomocą protokołu kwantowego optycznego grzebienia częstości. Dzięki temu taki system nie musi czekać na udane zakończenie rozgłaszania przed wygenerowaniem kolejnej pary fotonów. Co bardzo ważne, całość pracuje na częstotliwościach używanych obecnie w systemach telekomunikacyjnych, jest więc kompatybilna z już istniejącymi sieciami.
      Hiszpanie stworzyli system, który wykorzystuje pamięć kwantową przechowującą fotony w milionach atomów przypadkowo rozrzuconych w krysztale wzbogaconym metalem ziem rzadkich. Użyli przy tym różnych długości fali, 606 nm dla przechowywania i 1436 nm (częstotliwość telekomunikacyjna) dla rozgłaszania splątania. Ich system może przechowywać sygnały przez 25 mikrosekund zanim je uwolni. Splątanie uzyskiwane jest pomiędzy dwoma układami przechowującymi foton w superpozycji. Układy znajdują się w odległości 10 metrów od siebie.
      Z kolei Chińczycy wykorzystali kwantowe układy pamięci bazujące na kryształach wzbogaconych jonami metali ziem rzadkich. Zbudowali dwa węzły i stację pośrednią pomiędzy nimi. W każdym z węzłów przechowywany jest jeden z pary splątanych fotonów. Jeden z fotonów z pary uwalniany jest po 56 nanosekundach w celu analizy, a drugi przechodzi do stacji pośredniej. Dokonywany jest wspólny dla nich pomiar stanu Bella. Węzły dzieli odległość 3,5 metra.
      Musimy jeszcze pokonać sporo przeszkód technologicznych, mówi lider hiszpańskiej grup badawczej, Hugues de Riedmatten. Chcemy uzyskać lepszą stabilizację częstotliwości czy lepszą kontrolę nad liczoną w setkach nanometrów długością łączy optycznych. Pracujemy nad poprawieniem wydajności źródła,z wydłużeniem czasu przechowywania informacji w kwantowej pamięci i systemami odczytu danych. Zmierzamy w kierunku budowy wielowęzłowej sieci i zwiększenia odległości pomiędzy kwantowymi wzmacniaczami.
      Z kolei Zhou Zongquan z USTC powiedział: przeprowadziliśmy kompletną demonstrację podstawowego połączenia w kwantowym wzmacniaczu. Chińczycy zapowiadają ulepszenia źródła światła w celu zwiększenia tempa uzyskiwania splątania. Dodają, że zanim ich system znajdzie praktyczne zastosowanie, konieczne będzie znaczące poprawienie parametrów kwantowej pamięci.
      Ronald Hanson z Uniwersytetu Technologicznego w Delft chwali prace obu zespołów. Mówi, że to ważny krok w kierunku budowy praktycznych wzmacniaczy kwantowych, a niezwykle ważny jest fakt, że urządzenia pracują z częstotliwościami współczesnych sieci telekomunikacyjnych.
      Pod wrażeniem jest też Rodney Van Meter z japońskiego Keio Univeristy. Oba zespoły osiągnęły coś znaczącego: stworzyły dwie pary splątanych fotonów, przechowały po dwa fotony w różnych układach pamięci oddalonych od siebie na pewną odległość, a dwa kolejne wysłały w tym czasie, by przeprowadzić pomiar.
      Osiągnięcia USTC i ICFO zostały opisane na łamach Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rozwiązaniem problemu pomiędzy szybkością działania komputerów kwantowych a koherencją kubitów może być zastosowanie dziur, twierdzą australijscy naukowcy. To zaś może prowadzić do powstania kubitów nadających się do zastosowania w minikomputerach kwantowych.
      Jedną z metod stworzenia kubitu – kwantowego bitu – jest wykorzystanie spinu elektronu. Aby uczynić komputer kwantowy tak szybkim, jak to tylko możliwe, chcielibyśmy mieć możliwość manipulowania spinami wyłącznie za pomocą pola elektrycznego, dostarczanego za pomocą standardowych elektrod.
      Zwykle spiny nie reagują na pole elektryczne, jednak z niektórych materiałach spiny wchodzi w niebezpośrednie interakcje z polem elektrycznym. Mamy tutaj do czynienia z tzw. sprzężeniem spinowo-orbitalnym. Eksperci zajmujący się tym tematem obawiają się jednak, że gdy taka interakcja jest zbyt silna, wszelkie korzyści z tego zjawiska zostaną utracone, gdyż dojdzie do dekoherencji i utraty kwantowej informacji.
      Jeśli elektrony zaczynają wchodzić w interakcje z polami kwantowymi, które im aplikujemy w laboratorium, są też wystawione na niepożądane zmienne pola elektryczne, które istnieją w każdym materiale. Potocznie nazywamy to „szumem”. Ten szum może zniszczyć delikatną informację kwantową, mówi główny autor badań, profesor Dimi Culcer z Uniwersytetu Nowej Południowej Walii.
      Nasze badania pokazują jednak, że takie obawy są nieuzasadnione. Nasze teoretyczne badania wykazały, że problem można rozwiązać wykorzystując dziury – które można opisać jako brak elektronu – zachowujące się jak elektrony z ładunkiem dodatnim, wyjaśnia uczony.
      Dzięki wykorzystaniu dziur kwantowy bit może być odporny na fluktuacje pochodzące z tła. Co więcej, okazało się, że punkt, w którym kubit jest najmniej wrażliwy na taki szum, jest jednocześnie punktem, w którym działa on najszybciej. Z naszych badań wynika, że w każdym kwantowym bicie utworzonym z dziur istnieje taki punkt. Stanowi to podstawę do przeprowadzenia odpowiednich eksperymentów laboratoryjnych, dodaje profesor Culcer.
      Jeśli w laboratorium uda się osiągnąć te punkty, będzie można rozpocząć eksperymenty z utrzymywaniem kubitów najdłużej jak to możliwe. Będzie to też stanowiło punkt wyjścia do skalowania kubitów tak, by można było je stosować w minikomputerach.
      Wiele wskazuje na to, że takie eksperymenty mogą zakończyć się powodzeniem. Profesor Joe Salfi z University of British Columbia przypomina bowiem: Nasze niedawne eksperymenty z kubitami utworzonymi z dziur wykazały, że w ich wypadku czas koherencji jest dłuższy, niż się spodziewaliśmy. Teraz widzimy, że nasze obserwacje mają solidne podstawy teoretyczne. To bardzo dobry prognostyk na przyszłość.
      Praca Australijczyków została opublikowana na łamach npj Quantum Information.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po raz pierwszy w historii udało się przesłać splątane stany kwantowe przewodem łączącym dwa węzły. Specjaliści z Pritzker School of Molecular Engineering na University of Chicago jednocześnie wzmocnili stan kwantowy na tym samym przewodzie, najpierw wykorzystując przewód do splątania po jednym kubicie w każdym z węzłów, a następnie splątując te kubity z kolejnymi kubitami w węzłach.
      Opracowanie metod transferu stanów splątanych jest kluczowym elementem potrzebnym do skalowania kwantowych systemów komputerowych, mówi główny autor badań, profesor Andrew Cleland.
      Aby wysłać stan kwantowy naukowcy stworzyli w każdym z węzłów po trzy nadprzewodzące kubity. Następnie po jednym kubicie z każdego węzła połączyli z przewodem i wysłali stan kwantowy, w formie mikrofalowych fotonów. Dzięki temu, że cały proces trwał zaledwie kilkadziesiąt nanosekund, doszło jedynie do minimalnej utraty informacji.
      Taki system pozwolił im też na „wzmocnienie” splątania kubitów. Najpierw splątali ze sobą po jednym kubicie z obu węzłów, później rozszerzyli splątanie na kolejne kubity. Gdy skończyli, splątane były wszystkie kubity w obu węzłach, które utworzyły pojedynczy globalny stan splątany.
      W przyszłości komputery kwantowe mogą być zbudowane z modułów, w których obliczenia będą dokonywane przez grupy splątanych kubitów. Takie komputery mogą być stworzone z wielu połączonych węzłów. Podobnie zresztą jak dzisiaj buduje się superkomputery, które składa się z wielu węzłów obliczeniowych w jedną wydajną maszynę. Przesłanie stanu splątanego pomiędzy węzłami jest więc bardzo ważnym osiągnięciem na drodze do powstania takich modułowych komputerów kwantowych.
      Takie węzły muszą mieć możliwość przesyłania pomiędzy sobą złożonych stanów kwantowych, a nasza praca to ważny krok w tym kierunku, mówi Cleland i zaznacza, że z takiego podejścia mogą skorzystać też sieci kwantowe.
      Uczeni z Chicago mają nadzieję, że w przyszłości uda im się poszerzyć ich architekturę o kolejny węzeł i stworzą stan splątany z kubitów zgrupowanych w trzech modułach.
      Więcej na ten temat można przeczytać w Nature.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Stany spinów splątanych atomów erbu znajdujących się w krysztale mogą być indywidualnie kontrolowane i odczytywane, donosi na łamach Science Jeff Thompson i jego koledzy z Princeton University. Naukowcom udało się dokonać pomiarów indywidualnych jonów znajdujących się w bardzo bliskiej odległości. Opracowana przez nich technika może pozwolić na stworzenie nowych urządzeń kwantowych, które zostaną zintegrowane w sieciach telekomunikacyjnych.
      Niektóre zanieczyszczenia o skali atomowej występujące w kryształach mają spiny, które są w stanie przetrwać przez długi czas, dzięki czemu mogą pełnić rolę kubitów służąc do przechowywania informacji. Gdy zanieczyszczenia te występują wystarczająco blisko siebie, to ich spiny ulegają splątaniu. Splątanie to można zaś wykorzystać do stworzenia bramek logicznych kwantowych komputerów.
      Problem jednak w tym, że odległość potrzebna do wystąpienia splątania jest zwykle znacznie poniżej limitu dyfrakcji światła widzialnego. To zaś oznacza, że lasery wykorzystywane do kontroli i odczytywania spinów nie są w stanie odróżnić spinów indywidualnych zanieczyszczeń.
      Jedną z obiecujących metod obejścia problemu jest wykorzystanie w roli zanieczyszczeń jonów erbu. Zachowują one spin przez długi czas i wchodzą w interakcje ze światłem o długości fali używanej w telekomunikacji. Najważniejsze jednak, że każdy z jonów erbu w krysztale doświadcza losowego statycznego przesunięcia energii przejścia optycznego. To zaś oznacza, że nawet jeśli grupa jonów erbu jest tak blisko siebie, że nie możemy odróżnić poszczególnych jonów, to ich spiny można kontrolować i odczytywać za pomocą różnych długości fali, które absorbują i emitują po oświetleniu laserem.
      Thompson i jego grupa wzbogacili kryształ ortokrzemianiu itru jonami erbu. Całość umieścili w krzemowej fotonicznej wnęce optycznej, która wzmacniała emisję światła z jonów i tym samym ułatwiała odczytanie ich spinów. Z setek jonów erbu w próbce uczeni wybrali sześć znajdujących się blisko siebie i dobrali długości fali lasera tak, by odpowiadały każdemu z jonów. W ten sposób byli w stanie łatwo kontrolować i odczytywać stany spinowe indywidualnych jonów.
      Amerykanie mają nadzieję, że ich technikę uda się skalować i dostosować do jonów wielu innych pierwiastków. Największą zaletą ich metody jest możliwość łatwej jej integracji z istniejącą infrastrukturą telekomunikacyjną. Technologia taka może już w najbliższej przyszłości posłużyć do tworzenia bezpiecznych sieci telekomunikacyjnych i znaleźć zastosowanie w komputerach kwantowych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...