Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Tajemnicze sygnały w detektorze ciemnej materii. Fizycy proponują ekscytujące wyjaśnienia

Recommended Posts

W czerwcu informowaliśmy, że najczulszy detektor ciemnej materii – XENON1T – zarejestrował niezwykłe sygnały. Jak wówczas pisaliśmy, możliwe są trzy interpretacje tego, co zauważono. Najmniej interesująca z nich to zanieczyszczenie urządzenia. Drugim możliwym wyjaśnieniem jest zarejestrowanie aksjonu, hipotetycznej cząstki tworzącej ciemną materię, a trzecim – równie interesująca możliwość wchodzenia neutrin w niezwykłe interakcje z wypełniającym detektor ksenonem.

Na łamach Physical Review D i Physical Review Letters ukazało się właśnie 5 artykułów, których autorzy dokonują niezwykle interesujących interpretacji sygnałów.

Fuminotu Takahashi, Masaki Yamada i Wen Yin uważają, że zarejestrowane sygnały świadczą o zauważeniu cząstek podobnych do aksjonów. Mają mieć one masę kilku keV/c2 i wchodzić w interakcje z elektronami. Ich zdaniem cząstki o takich właściwościach tłumaczą zarejestrowany sygnał, stanowią ciemną materię i wyjaśniają pewne anomalie obserwowane w białych karłach i czerwonych olbrzymach.

Z kolei niemiecki zespół naukowy, Andreas Bally, Sudip Jana i Andreas Trautner, pisze, że sygnał może pochodzić od nieznanego bozonu cechowania, który pośredniczy w interakcjach pomiędzy pochodzącymi ze Słońca neutrinami a elektronami.

Jeszcze inny pomysł ma Nicole F. Bell z University of Melbourne i jej koledzy z USA. Uważają oni, że źródłem sygnału jest cząstka ciemnej materii o relatywnie niskiej masie. Ich zdaniem cząstka taka można trafiać do detektora w "lekkim stanie" i rozpraszać się do "stanu ciężkiego", który rozpada się z towarzyszącą emisją fotonu. I to właśnie ten foton wchodzi w reakcje z elektronem, dając obserwowany sygnał.

Bartosz Fornal z University of Utah oraz naukowcy z Pekinu i Hongkongu również uważają, że mamy do czyeniania z cząstką ciemnej materii. Ma ona pochodzić z centrum galaktyki. Sygnał zaś bierze się z jej interakcji z elektronami w XENON1T.

Autorami ostatniego artykułu są Joseph Bramante i Ningqiang Song z Kanady. Naukowcy sądzą, że źródłem sygnału są rozpraszające się cząstki ciemnej materii będącej termicznym reliktem wczesnego wszechświata.

Na ostateczne rozstrzygnięcie zagadki będziemy musieli jeszcze poczekać. Uda się to pod warunkiem, że podobny sygnał zostanie zarejestrowany w kolejnych eksperymentach związanych z poszukiwaniem ciemnej materii.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Wszyscy uważają że odkryli w końcu ciemną materię. A ja nie.

Ciekawe kto wyjdzie z tego zwycięsko.
Czemu nie? Bo Model Standardowy jest za dobry żeby go byle co mogło rozwalić. Każdy by chciał ale od lat to się nie udaje.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Po 10 latach pionierskiej pracy naukowcy z amerykańskiego SLAC National Accelerator Laboratory ukończyli wykrywacze ciemnej materii SuperCDMS. Dwa pierwsze trafiły niedawno do SNOLAB w Ontario w Kanadzie. Będą one sercem systemu poszukującego dość lekkich cząstek ciemnej materii. Urządzenia mają rejestrować cząstki o masach od 1/2 do 10-krotności masy protonu. W tym zakresie będzie to najbardziej czuły na świecie wykrywacz ciemnej materii.
      Twórcy detektorów mówią, że przy ich budowie wiele się nauczyli i stworzyli wiele interesujących technologii, w tym elastyczne kable nadprzewodzące, elektronikę działającą w ekstremalnie niskich temperaturach czy lepiej izolowane systemy kriogeniczne, dzięki czemu całość jest znacznie bardziej czuła na ciemną materię. A dodatkową zaletą całego eksperymentu jest jego umiejscowienie 2 kilometry pod ziemią, co pozwoli na wyeliminowanie znaczniej części zakłóceń ze strony promieniowania kosmicznego. SNOLAB i SuperCDMS są dla siebie stworzone. Jesteśmy niesamowicie podekscytowani faktem, że detektory SuperCDMS mają potencjał, by bezpośrednio zarejestrować cząstki ciemnej materii i znacząco zwiększyć nasza wiedzę o naturze wszechświata, mówi Jodi Cooley, dyrektor SNOLAB. Zrozumienie ciemnej materii to jedno z najważniejszych zadań nauki, dodaje JoAnne Hewett ze SLAC.
      Wiemy, że materia widzialna stanowi zaledwie 15% wszechświata. Cała reszta to ciemna materia. Jednak nikt nie wie, czym ona jest. Wiemy, że istnieje, gdyż widzimy jej oddziaływanie grawitacyjne z materią widzialną. Jednak poza tym nie potrafimy jej wykryć.
      Eksperyment SuperCDMS SNOLAB to próba zarejestrowania cząstek tworzących ciemną materię. Naukowcy chcą w nim wykorzystać schłodzone do bardzo niskich temperatur kryształy krzemu i germanu. Stąd zresztą nazwa eksperymentu – Cryogenic Dark Matter Search (CDMS). Uczeni mają nadzieję, że w temperaturze o ułamek stopnia wyższej od zera absolutnego uda się zarejestrować wibracje kryształów powodowane interakcją z cząstkami ciemnej materii. Takie kolizje powinny zresztą wygenerować pary elektron-dziura, które – przemieszczając się w krysztale – wywołają kolejne wibracje, wzmacniając w ten sposób sygnał.
      Żeby jednak tego dokonać, detektory muszą zostać odizolowane od wpływu czynników zewnętrznych. Dlatego też eksperyment będzie prowadzony w SNOLAB, laboratorium znajdującym się w byłej kopalni niklu, ponad 2000 metrów pod ziemią.
      Stopień trudności w przeprowadzeniu tego typu eksperymentów jest olbrzymi. Nie tylko bowiem konieczne było stworzenie nowatorskich wykrywaczy, co wymagało – jak już wspomnieliśmy – 10 lat pracy. Wyzwaniem był też... transport urządzeń. Aby chronić je przed promieniowaniem kosmicznym, należało jak najszybciej dostarczy je z USA do Kanady. Oczywiście na myśl przychodzi przede wszystkim transport lotniczy. Jednak im wyżej się wzniesiemy, tym cieńsza warstwa atmosfery nas chroni, zatem tym więcej promieniowania kosmicznego do nas dociera.
      Wybrano więc drogę lądową, ale... naokoło. Pomiędzy Menlo Park w Kalifornii, gdzie powstały wykrywacze, a kanadyjską prowincją Ontario znajdują się Góry Skaliste. Ciężarówka z wykrywaczami musiałaby więc wjechać na sporą wysokość nad poziomem morza, co wiązałoby się z większym promieniowaniem docierającym do detektorów. Dlatego też jej trasa wiodła na południe, przez Teksas. Już następnego dnia po dotarciu do Ontario urządzenia zostały opuszczone pod ziemię, gdzie czekają na instalację. Jeszcze w bieżącym roku do Kanady trafią kolejne SuperCDMS, a wstępne przygotowania do uruchomiania laboratorium mają zakończyć się w 2024 roku. Naukowcy mówią, że po 3-4 latach pracy laboratorium powinno zebrać na tyle dużo danych, że zdobędziemy nowe informacje na temat ciemnej materii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Troje astronomów –  José Luis Bernal, Gabriela Sato-Polito i Marc Kamionkowski – uważa, że sonda New Horizons mogła zarejestrować rozpadające się cząstki ciemnej materii. Uważają oni, że niespodziewany nadmiar światła zarejestrowany przez sondę, może pochodzić z rozpadających się aksjonów, hipotetycznych cząstek ciemnej materii.
      Na optyczne promieniowanie tła składa się całe światło widzialne emitowane przez źródła znajdujące się poza Drogą Mleczną. Światło to może nieść ze sobą istotne informacje na temat struktury wszechświata. Problem w badaniu tego światła polega na trudności w jego odróżnieniu od światła, którego źródła znajdują się znacznie bliżej, szczególnie od światła Słońca rozproszonego na pyle międzyplanetarnym.
      Wystrzelona w 2006 roku sonda New Horizons znajduje się obecnie w Pasie Kuipera. Pył międzyplanetarny jest tam znacznie bardziej rozproszony niż bliżej Słońca. Niedawno sonda użyła instrumentu o nazwie Long Range Reconnaissance Imager (LORRI) do pomiaru światła. Ku zdumieniu specjalistów okazało się, że optyczne promieniowanie tła jest dwukrotnie bardziej jasne, niż należałoby się spodziewać z ostatnich badań dotyczących rozkładu galaktyk.
      Astronomowie z Uniwersytetu Johnsa Hopkinsa uważają, że ten nadmiar światła może pochodzić z rozpadu aksjonów. Uczeni, chcąc wyjaśnić wyniki obserwacji LORRI, zbadali model, w którym aksjony rozpadałyby się do fotonów. Obliczyli, jak rozkładałaby się energia fotonów z takiego rozpadu i w jaki sposób przyczyniałoby się to zarejestrowania nadmiarowego światła przez LORRI. Wyniki sugerują, że nadmiar fotonów mógłby pochodzić z aksjonów o masie mieszczącym się w zakresie 8–20 eV/c2. Powinny one dawać wyraźny sygnał w przyszłych pomiarach intensywności światła.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Lekkie antyatomy mogą przebyć w Drodze Mlecznej duże odległości zanim zostaną zaabsorbowane, poinformowali na łamach Nature Physics naukowcy, którzy pracują przy eksperymencie ALICE w CERN-ie. Dodali oni do modelu dane na temat antyatomów helu wytworzonych w Wielkim Zderzaczu Hadronów. Pomoże to w poszukiwaniu cząstek antymaterii, które mogą brać swój początek z ciemnej materii.
      Fizycy potrafią uzyskać w akceleratorach cząstek lekkie antyatomy, jak antyhel czy antydeuter. Dotychczas jednak nie zaobserwowano ich w przestrzeni kosmicznej. Tymczasem z modeli teoretycznych wynika, że antyatomy, podobnie zresztą jak antyprotony, mogą powstawać zarówno w wyniku zderzeń promieniowania komicznego z materią międzygwiezdną, jak i podczas wzajemnej anihilacji cząstek antymaterii. Sygnałów takich poszukuje m.in. zbudowany przez CERN instrument AMS (Alpha Magnetic Spectrometer) zainstalowany na Międzynarodowej Kosmicznej.
      Jeśli jednak instrumenty naukowe zarejestrują lekkie antyatomy pochodzące z przestrzeni kosmicznej, skąd będziemy wiedzieli, że ich źródłem jest ciemna materia? Żeby to określić, naukowcy muszą obliczyć liczbę, a konkretne strumień pola, antyatomów, które powinny dotrzeć do instrumentu badawczego. Wartość ta zależy od źródła antymaterii, prędkości tworzenia antyatomów oraz ich anihilacji lub absorpcji pomiędzy źródłem powstania a instrumentem je rejestrującym. I właśnie ten ostatni element stał się przedmiotem badań naukowców skupionych wokół eksperymentu ALICE.
      Uczeni badali jak jądra antyhelu-3, który uzyskano w Wielkim Zderzaczu Hadronów, zachowują sią w kontakcie z materią. Uzyskane w ten sposób dane wprowadzili do publicznie dostępnego oprogramowania GALPROP, które symuluje rozkład cząstek kosmicznych, w tym antyjąder, w przestrzeni kosmicznej. Pod uwagę wzięli dwa scenariusze. W pierwszym z nich założyli, że źródłem antyhelu-3 są zderzenia promieniowania kosmicznego a materią międzygwiezdną, w drugim zaś, że są nim hipotetyczne cząstki ciemnej materii, WIMP (słabo oddziałujące masywne cząstki). W każdym z tych scenariuszy obliczali przezroczystość Drogi Mlecznej dla jądra antyhelu-3. Innymi słowy, sprawdzali, z jakim prawdopodobieństwem takie antyjądra mogą przelecieć przez Drogę Mleczną zanim zostaną zaabsorbowane.
      Dla modelu, w którym antyjądra pochodziły z WIMP przezroczystość naszej galaktyki wyniosła około 50%. Dla modelu interakcji promieniowania kosmicznego z materią międzygwiezdną wynosiła zaś od 25 do 90 procent, w zależności od energii antyjąder. To pokazuje, że w obu przypadkach antyjądra mogą przebyć olbrzymie odległości, liczone w kiloparsekach (1 kpc ≈ 3261 lat świetlnych), zanim zostaną zaabsorbowane.
      Jako pierwsi wykazaliśmy, że nawet jądra antyhelu-3 pochodzące z centrum galaktyki mogą dotrzeć w pobliże Ziemi. To oznacza, że ich poszukiwanie w przestrzeni kosmicznej jest bardzo dobrą metodą poszukiwania ciemnej materii, stwierdzają autorzy badań.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badanie grawitacyjnych deformacji galaktyk karłowatych wydaje się wspierać zmodyfikowane teorie grawitacji, a nie teorię o istnieniu ciemnej materii. Ciemna materia to kluczowy element standardowego modelu kosmologicznego, a jej istnienie wynika z teorii względności Einsteina. Międzynarodowy zespół naukowy opublikował na łamach Monthly Notices of the Royal Astronomical Society wyniki badań, które są niekompatybilne z modelem Lambda-CDM – jednym z najpowszechniej uznawanych modeli kosmologicznych – a wspierają alternatywną zmodyfikowaną dynamikę newtonowską (MOND), która wyjaśnia pewne zjawiska bez odwoływania się do ciemnej materii.
      Zgodnie z powszechnie przyjmowanym poglądem ciemna materia stanowi około 85% materii we wszechświecie. Nie możemy jej dostrzec, jednak widzimy jej wpływ na otoczenie. Jej istnienie nie wyjaśnie jednak wszelkich obserwowanych zjawisk, a fakt, że jej nigdy nie wykryto, przyczynił się do powstania alternatywnych teorii.
      Uważa się, że ciemna materia tworzy halo galaktyk i wpływa na ich rozwój oraz ewolucję. Takie wielkie sferyczne halo ma otaczać też Drogę Mleczną.
      Elena Asencio z Uniwersytetu w Bonn, we współpracy z uczonymi z University of St Andrews w Szkocji, Europejskiego Obserwatorium Południowego w Chile i Uniwersytetu w Oulu w Finlandii poszukiwali halo wokół galaktyk karłowatych w Gromadzie w Piecu. Galaktyki takie, ze względu na swoją niską masę, są szczególnie podatne na działanie sił pływowych działających w samej gromadzie lub pochodzących z sąsiednich większych galaktyk. Działanie sił pływowych byłoby jednak zredukowane, gdyby gromada galaktyk była otoczona halo ciemnej materii. Spodziewany stopień zaburzeń zależy od praw grawitacji oraz obecności dominującego halo ciemnej materii. To zaś czyni galaktyki karłowate użytecznymi obiektami do testowania różnych modeli grawitacji, wyjaśniają autorzy badań.
      Naukowcy obserwowali galaktyki karłowate z Gromady w Piecu, a następnie próbowali odtworzyć zaobserwowane zjawiska za pomocą symulacji komputerowych opartych na standardowym modelu kosmologicznym, który zakłada istnienie ciemnej materii. Okazało się, że model ten nie pasuje do tych galaktyk. Zgodnie z nim galaktyki z Gromady w Piecu powinny zostać rozerwane.
      Uczeni, chcąc sprawdzić, co utrzymuje galaktyki, przeprowadzili kolejne symulacje, tym razem z wykorzystaniem zmodyfikowanej dynamiki newtonowskiej (MOND). W MOND zasady dynamiki Newtona zostały zmodyfikowane o nieliniową zależność siły od przyspieszenia. W 1983 roku Mordechaj Milgrom postanowił wyjaśnić rozbieżności pomiędzy przewidywanymi i obserwowanymi prędkościami orbitalnymi gwiazd bez odwoływania się do ciemnej materii. Zaproponował, że prawo mówiące iż siła jest wprost proporcjonalna do masy i odwrotnie proporcjonalna do kwadratu odległości ulega modyfikacji w momencie, gdy oddziaływanie jest bardzo słabe. MOND nie wyjaśnia problemu brakującej masy, ale za to pozwala na dobre przewidywanie rotacji galaktyk.
      Badania Asencio i jej zespołu pokazały, że na gruncie MOND – w przeciwieństwie do teorii zakładającej istnienie ciemnej materii – można odtworzyć zjawiska obserwowane w Gromadzie w Piecu.
      To już kolejne badania pokazujące, że przyjmując istnienie ciemnej materii nie można wyjaśnić wielu zjawisk, za to dobrze można je opisać na gruncie teorii alternatywnych. Musimy jednak pamiętać, że te teorie alternatywne również mają swoje ograniczenia i nie opisują dobrze zjawisk, które możemy opisać odwołując się do ciemnej materii.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...