Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Skuteczniejsza walka z guzami nerek dzięki naukowcom i studentom PG

Recommended Posts

Naukowcy i studenci z Politechniki Gdańskiej (PG) opracowali nowatorski system do rozpoznawania złośliwości guzów nerek. Dzięki niemu możliwa będzie dokładniejsza diagnoza, a także zmniejszenie liczby niepotrzebnych operacji narażających zdrowie i życie pacjentów.

Większość pacjentów z guzami nerek to osoby starsze, dla których operacja usunięcia guza może okazać się wysoce ryzykowna. Zdaniem lekarzy, jeśli guz nie jest złośliwy, bezpieczniej jest nie wykonywać operacji i pozostawić guz jedynie do dalszej obserwacji.

Określenie złośliwości guza nie jest jednak prostym zadaniem. Szacuje się, że obecnie w Polsce 15-20 proc. operacji usunięcia nerki po wykryciu w niej guza wykonuje się niepotrzebnie, bo guz, początkowo określony jako złośliwy, po operacji i zbadaniu histopatologicznym okazuje się łagodny.

Rocznie w Polsce jest to około 900 operacji, które bez potrzeby narażają zdrowie pacjentów i znacząco pogarszają komfort ich życia, a problem ten będzie w przyszłości tylko narastać. Przyczynić do tego może się również pandemia wirusa SARS-CoV-2, który powoduje choroby nerek nawet u 15 proc. zarażonych nim pacjentów.

System opracowany przez naukowców, lekarzy i studentów

Z pomocą w rozwiązaniu tego problemu przyszli naukowcy i studenci PG. Opracowali oni system TITAN (Technology In Tumor ANalysis), który przy użyciu technologii uczenia maszynowego i algorytmów sztucznej inteligencji określa prawdopodobieństwo złośliwości guza nerki na podstawie zdjęcia tomografii komputerowej jamy brzusznej.

W zespole Radiato.ai, który stoi za projektem TITAN, udało się połączyć kompetencje i możliwości pracowników badawczo-dydaktycznych Wydziału FTiMS PG - dr. inż. Patryka Jasika (Team Leader) oraz dr. inż. Pawła Sytego (Product Owner) - a także studentów Wydziałów FTiMS i ETI: Aleksandra Obuchowskiego (Head AI Architect), Romana Karskiego (Data Scientist), Barbary Klaudel (Medical Image Specialist), Bartosza Rydzińskiego (Backend Developer) i Mateusza Anikieja (Devops). W zespole pracował również lekarz Mateusz Glembin z Oddziału Urologii Szpitala św. Wojciecha w Gdańsku.

Sztuczna inteligencja pomocna w ocenie złośliwości guzów

System informatyczny TITAN wykorzystuje sztuczną inteligencję do oceny złośliwości guzów nerek na podstawie zdjęcia tomografii komputerowej (TK), osiągając skuteczność na poziomie 87 proc. Aby stworzyć bazujący na metodach uczenia maszynowego autorski model predykcyjny, zdobyto ponad 15 tys. zdjęć tomografii komputerowej z niemal 400 przypadków medycznych.

Przy opracowywaniu naszego algorytmu przykładaliśmy szczególną uwagę do rozpoznawania guzów łagodnych, gdyż to właśnie poprawne ich wykrycie może potencjalnie uratować życie pacjenta – tłumaczy Aleksander Obuchowski. Nie było to łatwe zadanie, gdyż guzy łagodne stanowiły tylko 26 proc. naszej bazy danych. Po przeanalizowaniu dziesiątek architektur sieci neuronowych i metod przetwarzania obrazów udało się nam jednak osiągnąć wynik 10/10 poprawnie rozpoznanych guzów łagodnych.

To pozwoliło z kolei na zbudowanie bazy wiedzy, na której wytrenowane zostały algorytmy wykorzystujące głębokie sieci neuronowe, osiągające tak wysoką skuteczność przy jednoczesnym wychwytywaniu 10 na 10 guzów łagodnych. W rezultacie może się to przełożyć na ocalenie nerek i ograniczenie liczby niepotrzebnych operacji.

Dzięki wykorzystaniu systemu TITAN lekarz uzyskuje dodatkową opinię w postaci sugestii algorytmu w ciągu zaledwie kilkunastu sekund – wyjaśnia dr inż. Patryk Jasik. System nie zastępuje jednak diagnozy lekarskiej, a jedynie zwraca uwagę na to, które przypadki mogły zostać błędnie zaklasyfikowane. Dzięki systemowi lekarze są w stanie uważniej przyjrzeć się takim guzom, skonsultować diagnozę z innymi specjalistami bądź skierować pacjenta na dalsze badania. Taka selekcja w rezultacie może znacząco ograniczyć liczbę błędnie zdiagnozowanych guzów.

Dodatkowo, jeżeli w badaniu histopatologicznym okaże się, że guz faktycznie był złośliwy, lekarz może dodać taki przypadek do bazy wiedzy, co usprawni działanie algorytmu w przyszłości.

Pierwsze testy w gdańskim szpitalu

System został stworzony w ramach programu e-Pionier (jest on prowadzony przez Excento, spółkę celową Politechniki Gdańskiej), który łączy zespoły młodych programistów z instytucjami publicznymi w przygotowywaniu innowacyjnych rozwiązań z branży ICT. Problem braku narzędzi diagnostycznych wykorzystujących technologie informatyczne został zgłoszony z ramienia spółki Copernicus Podmiot Leczniczy oraz Szpitala św. Wojciecha w Gdańsku przez dr. n. med. Wojciecha Narożańskiego.

System będzie w najbliższym czasie testowo wdrożony w Szpitalu św. Wojciecha w Gdańsku, gdzie lekarze wykorzystywać go będą w diagnozie bieżących przypadków guzów nerek. Jest to pierwszy tego typu system w Polsce, który będzie wykorzystywany w praktyce.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Opanowanie ognia przez naszych przodków było jedną z największych innowacji w dziejach. Zrozumienie procesu opanowywania ognia przez przodków H. sapiens, poznanie miejsca i czasu jego ujarzmienia może mieć olbrzymie znaczenie dla opisu ewolucji człowieka i naszej wczesnej historii. Może w tym pomóc sztuczna inteligencja, która właśnie odkryła dowody na rozpalanie ognia na izraelskim stanowisku archeologicznym sprzed miliona lat.
      Obecnie istnieje kilka technik rozpoznawania przypadków użycia ognia. Można na przykład szukać zmian kolorów kości poddanych jego działaniu lub deformacji kamiennych narzędzi. Ludzie używali bowiem pirotechnologii do ich obróbki. To jednak wymaga działania temperatur wyższych niż 450 stopni, a tego typu dowody są rzadko znajdowane na stanowiskach liczących więcej niż 500 tysięcy lat.
      W ubiegłym roku na łamach Nature. Human Behaviour izraelscy naukowcy poinformowali o stworzeniu algorytmu sztucznej inteligencji, który rozpoznaje subtelne zmiany w krzemieniu spowodowane oddziaływaniem temperatur pomiędzy 200 a 300 stopni Celsjusza. Izraelczycy zbierali krzemień, podgrzewali go, a następnie trenowali SI tak, by potrafiła rozpoznawać zmiany w reakcji krzemienia na promieniowanie ultrafioletowe.
      Teraz technikę tę postanowili wykorzystać naukowcy pracujący pod kierunkiem Michaela Chazana z University of Toronto. Uczeni wykorzystali algorytm do badania kawałków krzemienia ze stanowiska Evron Quarry w Izraelu. Podczas naszego badania ujawniliśmy obecność ognia na stanowisku z dolnego paleolitu, w którym brakowało widocznych śladów użycia pirotechnologii. Tym samym dodaliśmy to stanowisko do niewielkiej grupy miejsc, dla których istnieją dowody wiążące wczesną produkcję narzędzi przez homininy z użyciem ognia. Ponadto badania te pokazują, że istnieje możliwość uzyskania ukrytych dotychczas informacji na temat wykorzystania pirotechnologii w innych miejscach, czytamy na łamach PNAS.
      Z przeprowadzonych badań wynika, że ludzie używali ognia w Evron Quary około miliona lat temu. Wybraliśmy Evron Quary, gdyż znajduje się tam ten sam typ krzemienia, jaki był używany przez autorów algorytmu SI. Jednak nie mieliśmy żadnych podstaw, by przypuszczać, że wykorzystywano tutaj ogień, przyznaje Chazan.
      Tymczasem algorytm SI wskazał, że wiele znalezionych tutaj krzemiennych narzędzi było podgrzewanych, zwykle do temperatury około 400 stopni Celsjusza. Po tym odkryciu naukowcy jeszcze raz przeanalizowali – za pomocą innych technik – znalezione tutaj fragmenty kości oraz kła. Okazało się, że fragmenty kła poddane były działaniu wysokich temperatur. Dotychczas nikt nie sprawdzał tych kości pod kątem ich wystawienia na działanie ognia. Zdaniem naukowców, znalezienie w jednym miejscu zarówno kamiennych narzędzi, jak i zęba, które miały kontakt z ogniem, wskazuje raczej na celowe działanie niż naturalny pożar. Wnioski takie są tym bardziej uprawnione, że na pobliskim stanowisku Gesher Benot Ya’aqov również znaleziono – pochodzące z podobnego okresu – ślady używania ognia i to w różnych miejscach, co sugeruje na celowe jego rozpalanie.
      Obecnie dysponujemy pewnymi dowodami sugerującymi, że wcześni hominini używali ognia już 1,5 miliona lat temu. Znaleziono je przed dwoma laty na kenijskim stanowisku Koobi Fora.
      Przed około 20 laty grupa antropologów wysunęła hipotezę, że hominini używali ognia już może nawet 2 miliony lat temu. Sztuczna inteligencja może pomóc w zidentyfikowaniu użycia ognia na znanych już paleolitycznych stanowiskach archeologicznych, co pozwoli na zweryfikowanie tej hipotezy.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W sytuacji, gdy dochodzi do wykrycia uwolnienia substancji niebezpiecznych, najważniejsze jest szybkie i precyzyjne zlokalizowanie źródła uwolnienia oraz przewidzenie kierunku rozchodzenia się substancji. Używane obecnie modele dyspersyjne wymagają bardzo dużych zasobów obliczeniowych. Mogą jednak zostać zastąpione przez modele bazujące na Sztucznych Sieciach Neuronowych, SSN (ang. Artificial Neutral Networks, ANN), co pozwoli na monitorowanie skażenia w czasie rzeczywistym. W badaniu możliwości wykorzystania takich modeli uczestniczą naukowcy z Departamentu Układów Złożonych NCBJ.
      Obszar odpowiadający części centralnego Londynu, będący podstawą do przygotowania danych dla SSN, jak również wykorzystany w eksperymencie DAPPLE (skrzyżowanie Marylebone Road i Gloucester Place, 51.5218N 0.1597W)
      Od kilku lat w Centrum Analiz Zagrożeń MANHAZ prowadzone są prace nad algorytmami umożliwiającymi lokalizację źródła skażenia, w oparciu o, pochodzące z sieci detektorów, dane na temat stężeń uwolnionej substancji. Głównym zadaniem istniejących we wszystkich miastach grup reagowania kryzysowego, jest szybkie odpowiadanie na wszelkie zagrożenia dla ludzi i środowiska. Podstawowym czynnikiem decydującym o powodzeniu lub niepowodzeniu danego działania jest czas reakcji.
      Obecnie różne substancje chemiczne są używane w większości dziedzin przemysłu, co sprawia, że transport i przechowywanie materiałów toksycznych wiąże się z ciągłym ryzykiem uwolnienia ich do atmosfery i do zajścia skażenia. Dużym wyzwaniem są sytuacje, w których czujniki rozmieszczone na terenie miasta zgłaszają niezerowe stężenie niebezpiecznej substancji, której źródło nie jest znane. W takich przypadkach ważne jest, aby system był w stanie w czasie rzeczywistym oszacować najbardziej prawdopodobną lokalizację źródła zanieczyszczenia, wyłącznie w oparciu o dane o stężeniu, pochodzące z sieci czujników.
      Algorytmy, które radzą sobie z zadaniem można podzielić na dwie kategorie. Pierwszą są algorytmy opierające się na podejściu wstecznym, czyli analizie problemu zaczynając od jego ostatniego etapu, ale są one dedykowane obszarom otwartym lub problemowi w skali kontynentalnej. Drugą kategorię stanowią algorytmy, które bazują na próbkowaniu parametrów odpowiedniego modelu dyspersji (parametrów takich, jak lokalizacja źródła), aby wybrać ten, który daje najmniejszą różnicę między danymi wyjściowymi, a rzeczywistymi pomiarami stężeń, wykonywanymi przez sieć detektorów. Podejście to sprowadza się do wykorzystania algorytmów próbkowania, w celu znalezienia optymalnych parametrów modelu dyspersji, na podstawie porównania wyników modelu i detekcji zanieczyszczeń.
      Ze względu na efektywność zastosowanego algorytmu skanowania parametrów, każda rekonstrukcja wymaga wielokrotnych uruchomień modelu. Rekonstrukcja w terenie zurbanizowanym, która jest głównym przedmiotem zainteresowania badaczy, wymaga zaawansowanych modeli dyspersji, uwzględniających turbulencje pola wiatru wokół budynków. Najbardziej niezawodne i dokładne są modele obliczeniowej dynamiki płynów (ang. Computational Fluid Dynamics, CFD). Stanowią one jednak bardzo wymagające obliczeniowo wyzwanie. Musimy zdawać sobie sprawę z tego, że aby znaleźć najbardziej prawdopodobne źródło skażenia, model dyspersji trzeba uruchomić dziesiątki tysięcy razy. Oznacza to, że użyty model musi być szybki, aby można go było zastosować w systemie awaryjnym, pracującym w czasie rzeczywistym. Zakładając na przykład, że średni czas potrzebny na wykonanie samych obliczeń modelu dyspersji w terenie zurbanizowanym wynosi 10 minut, pełna rekonstrukcja z jego wykorzystaniem będzie trudna do przeprowadzenia w dopuszczalnie krótkim czasie.
      Rozwiązaniem tego problemu, nad którym pracuje dr Anna Wawrzyńczak-Szaban z Centrum Analiz Zagrożeń MANHAZ w NCBJ, przy współpracy z Instytutem Informatyki UPH w Siedlcach, jest wykorzystanie w systemie rekonstrukcji sztucznej sieci neuronowej, zamiast modelu dyspersji, w terenie zurbanizowanym. Chodzi o to, by sztuczna sieć neuronowa była skuteczna w symulacji transportu zanieczyszczeń w powietrzu, na terenie zurbanizowanym. Jeśli to się powiedzie, SSN może działać jako model dyspersji w systemie lokalizującym w czasie rzeczywistym źródło skażenia. Podstawową zaletą SSN jest bardzo krótki czas odpowiedzi – opisuje dr Anna Wawrzyńczak-Szaban. Oczywiście SSN musi być wytrenowana w stałej topologii miasta, przy użyciu rzeczywistych warunków meteorologicznych z wykorzystaniem odpowiedniego i zwalidowanego modelu dyspersji. Proces ten wymaga wielu symulacji, służących jako zestawy danych treningowych dla SSN. Proces uczenia sieci SSN jest kosztowny obliczeniowo, ale po przeszkoleniu, metoda byłaby szybkim narzędziem do szacowania stężeń punktowych dla danego źródła zanieczyszczenia.
      W pracy opublikowanej przez naukowców1) przedstawiono wyniki trenowania sieci neuronowej w oparciu o dane, uczące rozprzestrzeniania się toksyn w powietrzu w centrum Londynu, wykorzystując domenę testową eksperymentu polowego DAPPLE2). Dane uczące SSN wygenerowano za pomocą modelu dyspersji Quick Urban & Industrial Complex (QUIC). Przetestowaliśmy różne struktury SSN, czyli liczby jej warstw, neuronów i funkcji aktywacji. Wykonane testy potwierdziły, że wyszkolona SSN może w wystarczającym stopniu symulować turbulentny transport toksyn, unoszących się w powietrzu na obszarze silnie zurbanizowanym – objaśnia dr Anna Wawrzyńczak-Szaban. Ponadto pokazaliśmy, że wykorzystując SSN można skrócić czas odpowiedzi systemu rekonstrukcji. Czas wymagany, przez prezentowaną w pracy SSN, do oszacowania trzydziestominutowych stężeń gazu w 196 000 punktów sensorowych wyniósł 3 s W przypadku modelu QUIC, czas został oszacowany jako co najmniej 300 s, co daje nam 100-krotne przyspieszenie obliczeń. Biorąc to pod uwagę, czas rekonstrukcji w rzeczywistej sytuacji awaryjnej może być krótki, co skutkuje szybką lokalizacją źródła zanieczyszczenia.
      W trakcie badań okazało się, że zapewnienie trenowanej SSN pełnej informacji prowadzi czasami do pewnych wyzwań obliczeniowych. Na przykład w pojedynczej symulacji rozproszenia toksyn w powietrzu, na obszarze miejskim, nawet 90% odczytów z czujników może mieć wartość zerową. Prowadzi to do sytuacji, w której postać docelowa SSN obejmuje kilka procent wartości dodatnich i większość zer. W efekcie SSN skupia się na tym, czego jest więcej – na zerach, co sprawia, że nie dostosowuje się do szukanych elementów badanego problemu. Uwzględniając zerową wartość koncentracji w danych treningowych, musimy zmierzyć się z kilkoma pytaniami: jak uwzględnić zero? Jak przeskalować dany przedział, aby „ukryć” zera? Czy w ogóle uwzględniać zera? Czy ograniczyć ich liczbę? – podkreśla dr Wawrzyńczak-Szaban.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      NCBJ koordynuje polski udział w największym w dotychczasowej historii przedsięwzięciu astronomii obserwacyjnej. W polu widzenia teleskopu budowanego w Chile znajdzie się jednorazowo obszar 40-krotnie większy od tarczy Księżyca. Obserwacje zaplanowane na 10 lat dostarczą m.in. danych o obiektach zmiennych. Naukowcy z NCBJ działający w ramach zespołu ASTROdust już dziś przygotowują algorytmy, które wzbogacą zestaw informacji pozyskanych z obserwacji.
      We współczesnej astrofizyce i kosmologii obserwacyjnej bardzo istotną rolę pełnią duże przeglądy nieba. Największym obecnie tego typu przeglądem w zakresie optycznym jest SDSS (ang. Sloan Digital Sky Survey), pokrywający ok. 35% całej sfery niebieskiej i obejmujący głównie Wszechświat lokalny. Dalej – czy też głębiej, jak mówią astronomowie – z pokryciem wynoszącym ~1/3 obszaru obejmowanego przez SDSS, sięga powstający obecnie DES (ang. Dark Energy Survey). Przeglądy te mają jednak podstawową wadę – są statyczne, pokazują obiekty w jednym momencie obserwacji. Nie ujmują one wielu informacji o obiektach zmiennych, których Wszechświat jest pełen – kwazarach, gwiazdach, asteroidach. Lukę w obserwacjach zmiennego Wszechświata ma wypełnić nowy międzynarodowy projekt Legacy Survey of Space and Time (LSST), realizowany w budowanym właśnie Obserwatorium Very Rubin (Vera Rubin Observatory) w Chile. Przegląd, do którego obserwacje mają się rozpocząć już w 2024 roku, przez 10 lat co trzy dni będzie skanował obszar 18 000 stopni kwadratowych południowego nieba. Dzięki temu stanie się nie tylko najgłębszym istniejącym katalogiem, ale też stworzy unikalny film pokazujący, jak będzie zmieniało się niebo w tym okresie.
      Żaden przegląd nie zawiera wszystkich informacji, jakich potrzebujemy, żeby w pełni zrozumieć obserwowane obiekty. LSST będzie tzw. przeglądem fotometrycznym, dostarczającym obrazu nieba w sześciu filtrach optycznych. Jeśli będziemy potrzebowali dodatkowych informacji – np. widm spektroskopowych albo danych zebranych w podczerwieni - będziemy musieli poszukać ich gdzie indziej albo prowadzić dodatkowe obserwacje. Warto jednak wiedzieć z góry, w jakich sytuacjach takie dodatkowe dane będą niezbędne. Badacze z Narodowego Centrum Badań Jądrowych, pod kierunkiem doktoranta Gabriele'a Riccio i jego promotorki prof. Katarzyny Małek, we współpracy z naukowcami z innych międzynarodowych ośrodków postawili sobie pytanie: jak dobrze możemy zmierzyć fizyczne własności galaktyk, korzystając wyłącznie z danych LSST i jak możemy ten pomiar poprawić? W tym celu naukowcy stworzyli symulowany katalog najbardziej typowych galaktyk we Wszechświecie - galaktyk aktywnych gwiazdotwórczo, obserwowanych w przedziale przesunięcia ku czerwieni 0 < z < 2,5 (czyli aż do 11 mld lat świetlnych od nas), tak jak będzie widział je LSST. Symulacje oparto o prawdziwe dane 50 000 galaktyk, zaobserwowanych w ramach przeglądu HELP (ang. Herschel Extragalactic Legacy Project). Dane HELP, zawierające pomiary galaktyk w szerokim zakresie widma od ultrafioletu, przez optykę, do dalekiej podczerwieni, pozwalają mierzyć własności fizyczne galaktyk bardzo dokładnie. Pytanie brzmi: na ile będzie to możliwe, jeśli będziemy mieli do dyspozycji wyłącznie dane LSST?
      Badacze skupili się na takich parametrach, jak całkowita masa gwiazdowa, masa pyłu, całkowita jasność galaktyki w podczerwieni czy tempo powstawania gwiazd w galaktyce. Parametry wyznaczone z symulowanych obserwacji porównano z parametrami wyznaczonymi na podstawie danych obserwacyjnych z katalogu HELP. Okazało się, że podstawowe parametry charakteryzujące część gwiazdową galaktyki, takie jak masa gwiazdowa, będziemy mierzyć bardzo dokładnie. Natomiast wartości parametrów związanych z zapyleniem galaktyki, czyli na przykład tłumienie pyłu czy tempo powstawania nowych gwiazd w otoczeniu chmur pyłowych, wyznaczone wyłącznie na podstawie danych LSST, będą przeszacowane. Co gorsza, stopień przeszacowania zależy od odległości galaktyki od nas. Nie jest to całkiem zaskakujące, bo zarówno procesy gwiazdotwórcze w galaktykach, jak i powiązaną z nimi emisję pyłu najlepiej obserwować w podczerwieni, który to zakres nie będzie dostępny dla LSST. Wiedząc jednak, jakiego błędu się spodziewać, naukowcy byli w stanie zaproponować poprawki, jakie trzeba będzie stosować w pracy z rzeczywistymi danymi LSST. Zespół ASTROdust, pod kierownictwem prof. Katarzyny Małek, wraz z międzynarodowymi współpracownikami z Francji i Chile rozpoczął prace nad zaimplementowaniem tych poprawek w ogólnodostępnych narzędziach umożliwiających modelowanie galaktyk. Praca ta, dotycząca użycia masy gwiazdowej jako wskazówki niezbędnej do wyznaczenia wartości tłumienia pyłu w ultrafioletowym zakresie widma galaktyki, pomoże w poprawnym opisie podstawowych parametrów fizycznych analizowanych galaktyk.
      Badania zespołu ASTROdust to tylko jedna z wielu aktywności naukowców z polskich instytucji, które planowane są w ramach polskiego udziału w Obserwatorium Very Rubin i projekcie LSST. Obecnie w skład polskiego konsorcjum LSST wchodzą: NCBJ jako jednostka koordynująca, UJ, UMK, UW, CAMK PAN oraz CFT PAN. W ramach polskiego wkładu własnego planowana jest m.in. budowa lokalnego centrum danych w Polsce - mówi prof. Agnieszka Pollo kierująca Zakładem Astrofizyki NCBJ i jednocześnie projektem polskiego konsorcjum LSST. Grupa zainteresowanych w Polsce ciągle rośnie, a lista afiliowanych naukowców liczy kilkadziesiąt osób. Wszyscy jesteśmy podekscytowani projektem i nie możemy się doczekać tych petabajtów danych oraz badań i licznych publikacji na ich podstawie. To dane, jakich jeszcze nie było, więc i szansa na zupełnie nowe, nieoczekiwane odkrycia. Ale będą też i wyzwania logistyczne: jak radzić sobie z ogromnymi zbiorami danych? Jak adaptować do nich metody uczenia maszynowego? A wreszcie - jak pokazała omawiana wyżej praca Riccio et al. (2021) - dane LSST same w sobie nie zawsze wystarczą.
      LSST będzie kluczowym elementem układanki wielu zestawów danych – wyjaśnia dr hab. Katarzyna Małek z Zakładu Astrofizyki NCBJ. Co prawda dane pozyskane w ramach LSST będą bardzo dokładne i bardzo szczegółowe, jednak nadal będą to tylko optyczne dane fotometryczne. Będziemy musieli je uzupełniać danymi z innych obserwatoriów - na przykład pozyskanymi przy pomocy teleskopów Europejskiego Obserwatorium Południowego (ESO), wystrzelonego 25 grudnia 2021 roku Teleskopu Jamesa Webba (JWST) albo teleskopu SALT (ang. Southern African Large Telescope), na którym polscy astronomowie mają prawo do 10% czasu obserwacyjnego. Dlatego staramy się teraz dobrze zaplanować nasze miejsce w tej układance.
      Badania astronomiczne i astrofizyczne należą do grupy badań podstawowych, które przede wszystkim poszerzają naszą wiedzę o świecie i prawach nim rządzących. Dzięki badaniom LSST spodziewamy się lepiej zrozumieć naturę materii i energii we Wszechświecie i zweryfikować podstawowe prawa fizyki" – tłumaczy profesor Pollo. "Obserwacje będą też dotyczyć naszej bezpośredniej kosmicznej okolicy - w ramach przeglądu prowadzony będzie monitoring asteroid bliskich Ziemi, co znacząco zwiększy szanse wczesnego wykrycia potencjalnie niebezpieczniej dla nas asteroidy. Od jeszcze bardziej praktycznej strony - dane zebrane przez LSST, bezprecedensowo duże i złożone, będą wymagały rozwinięcia wyrafinowanych metod i algorytmów uczenia maszynowego, które potem zapewne znajdą zastosowanie także i w narzędziach wykorzystywanych w naszym codziennym życiu.
      Informacje o projekcie LSST:
      Legacy Survey of Space and Time (LSST) to międzynarodowy projekt obserwacyjny, który będzie realizowany za pomocą teleskopu o średnicy 8,4 m w Obserwatorium Very Rubin (Vera C. Rubin Observatory), umiejscowionym 2 682 m n.p.m. na górze Cerro Pachón w Chile. Teleskop o polu widzenia ponad 9 stopni kwadratowych (obserwujący jednorazowo ok. 40 razy większy obszar nieba niż tarcza Księżyca w pełni) w ciągu 10 lat mapowania całego południowego nieba dostarczy ok. 500 petabajtów danych w formie zdjęć oraz danych liczbowych – wartości strumieni fotometrycznych. Szacuje się, że w ciągu tygodnia będzie zbierał tyle danych, ile obejmuje cały przegląd SDSS! Główne projekty realizowane w ramach LSST skupione będą na: badaniu ciemnej materii i ciemnej energii, poszukiwaniu bliskich asteroid potencjalnie zagrażających Ziemi (tzw. Near Earth Objects, NEO), badaniu zmienności obiektów kosmicznych oraz mapowaniu Drogi Mlecznej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wiele trapiących nas chorób ma związek z nieprawidłowo działającymi komórkami. Być może udało by się je skuteczniej leczyć, ale najpierw naukowcy muszą szczegółowo poznać budowę i funkcjonowanie komórek. Dzięki połączeniu sztucznej inteligencji oraz technik mikroskopowych i biochemicznych uczeni z Wydziału Medycyny Uniwersytetu Kalifornijskiego w San Diego (UCSD) dokonali ważnego kroku w kierunku zrozumienia komórek ludzkiego organizmu.
      Dzięki mikroskopom możemy dojrzeć struktury komórkowe wielkości pojedynczych mikrometrów. Z kolei techniki biochemiczne, w których wykorzystuje się pojedyncze proteiny, pozwalają na badanie struktur wielkości nanometrów, czyli 1/1000 mikrometra. Jednak poważnym problemem w naukach biologicznych jest uzupełnienie wiedzy o tym, co znajduje się w komórce pomiędzy skalą mikro- a nano-. Okazuje się, że można to zrobić za pomocą sztucznej inteligencji. Wykorzystując dane z wielu różnych źródeł możemy ją poprosić o ułożenie wszystkiego w kompletny model komórki, mówi profesor Trey Ideker z UCSD.
      Gdy myślimy o komórce, prawdopodobnie przyjdzie nam do głowy schemat ze szkolnych podręczników do biologii, z jego mitochondrium, jądrem komórkowym i retikulum endoplazmatycznym. Jednak czy jest to pełny obraz? Zdecydowanie nie. Naukowcy od dawna zdawali sobie sprawę z tego, że więcej nie wiemy niż wiemy. Teraz w końcu możemy przyjrzeć się komórce dokładniej, dodaje uczony. Ideker i Emma Lundberg ze szwedzkiego Królewskiego Instytutu Technicznego stali na czele zespołu, który jest autorem najnowszego osiągnięcia.
      Wykorzystana przez naukowców nowatorska technika nosi nazwę MuSIC (Multi-Scale Integrated Cell). Podczas pilotażowych badań MuSIC ujawniła istnienie około 70 struktur obecnych w ludzkich komórkach nerek. Połowa z nich nie była dotychczas znana. Zauważono np. grupę białek tworzących nieznaną strukturę. Po bliższym przyjrzeniu się naukowcy stwierdzili, że wiąże ona RNA. Prawdopodobnie struktura ta bierze udział w splicingu, czyli niezwykle ważnym procesie składania genu.
      Twórcy MuSIC od lat próbowali stworzyć mapę procesów zachodzących w komórkach. Tym, co różni MuSIC od podobnych systemów jest wykorzystanie technik głębokiego uczenia się do stworzenia mapy komórki bezpośrednio z obrazów mikroskopowych. System został wyćwiczony tak, by bazując na dostępnych danych stworzył model komórki. Nie mapuje on specyficznych struktur w konkretnych lokalizacjach, tak jak mamy to w schematach uczonych w szkole, gdyż niekoniecznie zawsze znajdują się one w tym samym miejscu.
      Na razie w ramach badań pilotażowych uczeni opracowali za pomocą MuSIC 661 protein i 1 typ komórki. Następnym celem badań będzie przyjrzenie się całej komórce, a później innym rodzajom komórek, komórkom u różnych ludzi i u różnych gatunków zwierząt. Być może z czasem będziemy w stanie lepiej zrozumieć molekularne podstawy różnych chorób, gdyż będziemy mogli wyłapać różnice pomiędzy zdrowymi a chorymi komórkami, wyjaśnia Ideker.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Algorytmy sztucznej inteligencji mogą skrócić czas badań cytologicznych i tym samym pozwolić na szybsze diagnozowanie nowotworów u zwierząt. Narzędzie CyfroVet powstaje właśnie w Akademickim Centrum Komputerowym CYFRONET AGH.
      Jak podano w przesłanym PAP komunikacie, obecnie czas oczekiwania na wynik badania cytologicznego wynosi od kilku dni do 2 tygodni, a jego cena to około kilkaset złotych.
      Naukowcy z AHG przekonują, że istnieje możliwość znaczącego skrócenia tego czasu poprzez zastosowanie zautomatyzowanego systemu. Narzędzie takie pozwala na wykonanie zdjęcia próbki materiału cytologicznego, a następnie przeanalizowanie go z wykorzystaniem algorytmów sztucznej inteligencji. Dzięki temu można ocenić zmiany patologiczne w preparacie.
      Dyrektor ACK Cyfronet AGH prof. Kazimierz Wiatr wskazał, że wyzwaniem jest zgromadzenie odpowiedniej liczby zdjęć preparatów cytologicznych o różnorodnym charakterze, które pozwolą na wytrenowanie algorytmu sztucznej inteligencji do rozpoznawania zmian nowotworowych z dużą dokładnością.
      Czasochłonny jest również proces oznaczania tzw. danych uczących, który wiąże się z ręcznym oznaczeniem zmian patologicznych przez lekarza eksperta oraz ich weryfikacji przez dyplomowanego patologa.
      Obecnie w ramach prac prowadzonych w projekcie CyfroVet opracowane zostało rozwiązanie pozwalające na klasyfikację wybranych zmian patologicznych z wykorzystaniem sieci neuronowych. Opracowane zostały również architektury sieci pozwalające na szczegółową detekcję pojedynczych komórek nowotworowych, która pozwala na bardziej dokładną analizę zachodzących zmian patologicznych. Zaprojektowane rozwiązanie pozwala uzyskać dokładności klasyfikacji na poziomie nawet 96 proc. System działa dla wybranych trzech zmian nowotworowych: mastocytomy, histiocytomy oraz chłoniaka – wskazał inicjator prac dr hab. inż. Maciej Wielgosz.
      W ostatnim czasie zespół prowadzi również badania nad holistycznym podejściem do diagnostyki weterynaryjnej, które dotyczy nie tylko zbadania zmian na zdjęciach preparatów cytologicznych pod mikroskopem, ale również informacji o zwierzęciu zebranych przez weterynarza w trakcie wstępnego wywiadu. Wywiad taki dotyczy wieku zwierzęcia, chorób czy lokalizacji zmian na powierzchni skóry. Są to tak zwane dane kategoryczne, które mogą w znaczący sposób wpłynąć na podjęcie przez lekarza decyzji diagnostycznej. Uwzględnienie tych danych w algorytmie sztucznej inteligencji pozwoli potencjalnie podnieść skuteczność jego działania.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...