Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Osoby religijne lepiej postrzegają wzorce w otaczającym nas świecie

Recommended Posts

Jako że ostatnio trochę szperałem w Google o religii i naukowcach teraz dostaję dziwne reklamy na YT, ale to było do przewidzenia. Ciekawe jest to, że w tych reklamach stosują manipulację, aby wypromować religię. Ręce opadają, ale co innego im nie zostaje? :)

Z drugiej strony AI podpowiada mi dobre materiały z Neilem deGrasse Tysonem, Dawkinsem czy Asimovem. Poniżej dość długa dyskusja Neila z Richardem Dawkinsem.

Tak się składa, że poruszali wątki o których dyskutowaliśmy.

06:00 - 10:00, historia o wierzącym naukowcu

23:50 - 27:45, historia o osobie mającej halucynacje

50:00 - 56:00, dyskusja o wspomnianej ankiecie wśród NAS i odpowiedniku w UK

 

 

Edited by cyjanobakteria

Share this post


Link to post
Share on other sites
W dniu 10.10.2020 o 05:01, ex nihilo napisał:

Raczej nie całkiem to tak. Ateizm nie wymaga żadnej wiary. To jest po prostu stan całkowicie naturalny w sytuacji, kiedy nie ma subiektywnie wystarczających dowodów na istnienie czegoś. Można sobie wyobrazić praktycznie nieskończoną ilość bytów nieistniejących i nie ma sensu do każdego z nich się odnosić w kategoriach wiary/niewiary.

To jest kwestia terminologii. Twoja definicja ateizmu pokrywa się bardzo mocno z definicją sceptycyzmu/agnostycyzmu. Powoduje to, że brakuje nam słowa na opis poglądów o których napisałem wcześniej.

Druga sprawa, napisałeś - "praktycznie nieskończoną ilość bytów nieistniejących". Nie wiesz które byty istnieją a które nie, nie wiesz co jest "za wszechswiatem" etc. Możesz tylko ocenić "prawdpododoebięńtswo" ich występowania na podstawie stopnia ich absurdalności, lub (wg mnie lepiej) ilosci przypiswyanych im cech (z której każda jest nie do sprawdzenia). I tak np. Bóg = Prawa Natury jest bardziej sensowny niż Chrześcijański Jahwe. Nie da się zatem z całą pwnością stwierdzić że absolutnie żaden byt który pasowałby do definicji Boga nie istnieje. Jednak stwierdzanie tego bez takiej pewności nosi znamiona wiary, a przynajmniej nie jest w pełni sceptyczne - stąd odróżnienie pomiędzy ateizmem a agnostycyzem.

Chyba, ze ateizmem, nazwiemy tylko i wyłącznie odpowiedź na teizm, wtedy możesz być jednocześnie ateistą i agnostykiem/scetykiem lub ateistą "radykalnym"/"wierzącym".

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Badania na szczurach sugerują, że regularnie spożywanie diety wysokotłuszczowej lub wysokokalorycznej zaburza zdolność mózgu do regulowania ilości przyjmowanych kalorii. Naukowcy z Penn State College of Medicine opublikowali na łamach Journal of Physiology artykuł, z którego dowiadujemy się, że po krótkoterminowym żywieniu dietą wysokokaloryczną mózg adaptuje się do tej sytuacji i redukuje ilość spożywanego pokarmu, by zrównoważyć liczbę przyjmowanych kalorii. Jednak przy długoterminowym spożywaniu takiej diety mechanizm ten zostaje zaburzony.
      Z przeprowadzonych badań wynika, że astrocyty – największe komórki glejowe – kontrolują szlak sygnały pomiędzy mózgiem a układem pokarmowym. Długotrwałe spożywanie diety wysokotłuszczowej/wysokokalorycznej zaburza ten szlak.
      Wydaje się, że w krótkim terminie przyjmowanie kalorii jest regulowane przez astrocyty. Odkryliśmy, że krótkotrwała – od 3 do 5 dni – ekspozycja na dietę wysokotłuszczową ma największy wpływ na astrocyty, uruchamiając szlak sygnałowy kontrolujący żołądek. Z czasem jednak astrocyty tracą wrażliwość na wysokokaloryczne pożywienie. Wydaje się, że po około 10–14 dniach takiej diety astrocyty przestają reagować i mózg nie jest w stanie regulować ilości spożywanych kalorii, mówi doktor Kirsteen Browning.
      Gdy spożywamy wysokokaloryczny pokarm, astrocyty uwalniają glioprzekaźniki i uruchamia się cały szlak sygnałowy kontrolujący prace żołądka. Dzięki temu odpowiednio się on opróżnia i napełnia w reakcji na pożywienie przechodzące przez układ pokarmowy. Zaburzenia pracy astrocytów prowadzą do zaburzeń trawienia, gdyż żołądek nie napełnia się i nie opróżnia prawidłowo.
      Naukowcy prowadzili badania 205 szczurów, które podzielono na grupę kontrolną i grupy badane. Zwierzęta z grup badanych karmiono wysokokaloryczną dietą przez 1, 3, 5 lub 14 dni. Podczas eksperymentów stosowano metody farmakologiczne i genetyczne (zarówno in vitro, jak i in vivo), które pozwalały manipulować wybranymi obszarami układu nerwowego.
      Naukowcy planują teraz poszerzenie swoich badań, gdyż chcieliby się dowiedzieć, czy utrata aktywności astrocytów jest przyczyną czy skutkiem przyjmowania nadmiernej ilości kalorii. Chcemy też wiedzieć, czy możliwe jest odzyskanie utraconej przez mózg regulacji ilości spożywanych kalorii. Jeśli tak, to być może powstaną dzięki temu metody leczenia otyłości u ludzi, stwierdza Browning. O ile, oczywiście, występowanie takiego samego mechanizmu uda się zaobserwować u naszego gatunku.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Częste sprawdzanie mediów społecznościowych przez nastolatków jest powiązane ze zmianami w mózgach, decydującymi o tym, jak młodzi ludzie reagują na otoczenie – informują autorzy jednego z pierwszych długoterminowych badań nad używaniem nowoczesnych technologii a rozwojem układu nerwowego nastolatków. Z badań, których wyniki opublikowano na łamach JAMA Pediatrics wynika, że dzieci, które często sprawdzają media społecznościowe, stają się nadwrażliwe na opinie rówieśników, mówi profesor Eva Telzer z University of North Carolina at Chapel Hill.
      Większość nastolatków zaczyna używać mediów społecznościowych w jednym z najważniejszych w ludzkim życiu momentów rozwoju mózgu, przypomina współautor badań Mitch Prinstein. Wczesne lata nastoletnie to okres intensywnego rozwoju i organizacji mózgu. Pod względem intensywności ustępuje on jedynie wczesnemu dzieciństwu. W tym czasie silnie rozwijają się m.in. regiony związane z reakcją na nagrody i kary społeczne.
      Autorzy badań przez trzy lata śledzili losy 169 uczniów. Na początku badań każdy z nich określił, jak często korzysta z Facebooka, Instagrama i Snapchata. Rozpiętość odpowiedzi wahała się od „mniej niż raz dziennie” do „ponad 20 razy dziennie”. Co roku uczestnikom przeprowadzano badania za pomocą funkcjonalnego rezonansu magnetycznego (fMRI), w czasie których wypełniali zadania związane z interakcją na platformach społecznościowych i reakcjami ich rówieśników. Obrazowanie fMRI pozwoliło na obserwowanie, które regiony mózgu są aktywowane pod wpływem społecznych nagród i jak reakcja taka zmienia się w czasie.
      U osób, które w wieku 12 lat sprawdzały swoje profile społecznościowe więcej niż 15 razy na dobę, w kolejnych trzech latach pojawił się inny wzorzec reakcji mózgu niż u ich rówieśników rzadziej korzystających z mediów społecznościowych. Mózgi takich osób coraz bardziej skupiały się na mediach społecznościowych i coraz silnej reagowały na wyrażane w nich opinie. Młodzi ludzie stawali się nadwrażliwi.
      Autorzy badań nie wiedza, co to oznacza dla przyszłości takich osób. Może to powodować, że ludzie ci będą coraz bardziej wrażliwi na opinie innych i zjawisko to utrzyma się też w dorosłości. Skądinąd wiemy, że częste używanie mediów społecznościowych może prowadzić do zachowań kompulsywnych i uzależnień. Nie można jednak wykluczyć, że zaobserwowane zmiany to adaptacje pomagające radzić sobie w coraz bardziej cyfrowym świecie. Nie wiemy, czy to dobrze czy źle. Jeśli mózg w ten sposób dostosowuje się do cyfrowej przestrzeni, pomaga nastolatkom odnaleźć się w świecie, w którym żyją, może być to bardzo dobre zjawisko. Jeśli jednak będzie to prowadziło do uzależnień i zachowań kompulsywnych oraz zmniejszy możliwość angażowania się w prawidłowe relacje społeczne, to źle, mówi Telzer.
      Specjaliści przyznają, że powyższe badania to ważny krok w kierunku lepszego zrozumienia wpływu mediów społecznościowych i cyfryzacji na mózg nastolatka oraz konsekwencje dla jego dorosłego życia. Ze względu na stopień złożoności mózgu, trudno jest badać i obrazować wszystkie zachodzące w nim procesy. Dlatego też potrzeba jeszcze wielu badań, zarówno obserwacyjnych jak i eksperymentalnych, zanim jednoznacznie będziemy mogli odpowiedzieć na wiele pytań trapiących i specjalistów, i rodziców.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z MIT odkryli w dorosłym mózgu miliony „cichych synaps”. To niedojrzałe połączenia pomiędzy neuronami, które są nieaktywne do czasu, aż zostaną wykorzystane do stworzenia nowych wspomnień. Dotychczas sądzono, że tego typu synapsy istnieją tylko podczas wczesnego stadium rozwoju mózgu, pomagając nabywać wiadomości z pierwszych etapów życia. Teraz naukowcy wykazali, że u dorosłej myszy aż 30% synaps kory mózgowej jest nieaktywnych. To pokazuje, w jaki sposób dorosły mózg może uczyć się i zapamiętywać nowe rzeczy, bez potrzeby modyfikowania już działających synaps.
      Ciche synapsy czekają na nowe połączenia i gdy pojawi się ważna nowa informacja, wzmacniane są połączenia pomiędzy odpowiednimi neuronami. Dzięki temu mózg może tworzyć nowe wspomnienia bez nadpisywania ważnych informacji przechowywanych w dojrzałych synapsach, które są trudniejsze do zmienienia, mówi główna autorka nowych badań Dimitra Vardalaki.
      Po raz pierwszy ciche synapsy zostały zaobserwowane całe dziesięciolecia temu w mózgach młodych myszy i innych zwierząt. Sądzono, że pozwalają one na zapamiętywanie olbrzymich ilości nowych informacji, które nabywa rozwijający się organizm. Naukowcy przypuszczali, że u myszy synapsy te znikają około 12 dnia życia co stanowi odpowiednik kilku pierwszych miesięcy u ludzi. Niektórzy naukowcy uważali, że ciche synapsy mogą istnieć też w dorosłych mózgach. Dowody na ich obecność znajdowano w zwierzęcych modelach uzależnienia.
      Uczeni z MIT nie szukali cichych synaps. Chcieli zweryfikować swoje wcześniejsze spostrzeżenia, że dendryty mogą przetwarzać informacje z synaps w różny sposób, w zależności od lokalizacji. Badali receptory neuroprzekaźników w różnych miejscach dendrytów. Gdy obserwowali dendryty za pomocą opracowanej przez siebie techniki obrazowania eMAP (epitope-preserving Magnified Analysis of the Proteome) dokonali zdumiewającego odkrycia. Wszędzie były wypustki zwane filopodiami. Okazało się, że posiadają one receptory NMDA, ale nie mają receptorów AMPA. Typowe aktywne synapsy posiadają oba typy receptorów. Bez AMPA nie są w stanie przekazywać sygnałów i są cichymi synapsami.
      Badacze postanowili więc sprawdzić, czy filopodia mogą być cichymi synapsami. Okazało się, że poprzez odpowiednią stymulację można doprowadzić do odblokowania receptorów NMDA i akumulacji receptorów AMPA, co pozwala na utworzenie silnego połączenia z pobliskim aksonem. Uruchomienie takiej cichej synapsy jest łatwiejsze niż przeprogramowanie synapsy aktywnej.
      Gdy chcemy podobnie manipulować pracującą synapsą, ten sposób nie działa. Synapsy takie mają znacznie wyżej postawiony próg zmiany, prawdopodobnie dlatego, by tworzone przez nie wspomnienia były trwałe. Nie chcemy, by ciągle były nadpisywane. Z drugiej strony, filopodia mogą zostać wykorzystane do tworzenia nowych wspomnień, mówi profesor Mark Harnett.
      Ze szczegółami odkrycia można zapoznać się w artykule Filopodia are a structural substrate for silent synapses in adult neocortex.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      U większości osób chorujących na COVID-19 pojawiały się objawy ze strony centralnego układu nerwowego, takie jak utrata węchu czy smaku. Naukowcy wciąż badają, w jaki sposób SARS-CoV-2 wywołuje objawy neurologiczne i jak wpływa na mózg. Autorzy najnowszych badań informują, że ciężka postać COVID-19 wywołuje zmiany w mózgu, które odpowiadają zmianom pojawiającym się w starszym wieku.
      Odkrycie to każe zadać sobie wiele pytań, które są istotne nie tylko dla zrozumienia tej choroby, ale dla przygotowania społeczeństwa na ewentualne przyszłe konsekwencje pandemii, mówi neuropatolog Marianna Bugiani z Uniwersytetu w Amsterdamie.
      Przed dwoma laty neurobiolog Maria Mavrikaki z Beth Israel Deaconess Medical Center w Bostonie trafiła na artykuł, którego autorzy opisywali pogorszenie zdolności poznawczych u osób, które przeszły COVID-19. Uczona postanowiła znaleźć zmiany w mózgu, które mogły odpowiadać za ten stan. Wraz ze swoim zespołem zaczęła analizować próbki kory czołowej 21 osób, które zmarły z powodu ciężkiego przebiegu COVID-19 oraz osoby, która w chwili śmierci była zarażona SARS-CoV-2, ale nie wystąpiły u niej objawy choroby. Próbki te porównano z próbkami 22 osób, które nie były zarażone SARS-CoV-2. Drugą grupą kontrolną było 9 osób, które nie zaraziły się koronawirusem, ale przez jakiś czas przebywały na oddziale intensywnej opieki zdrowotnej lub były podłączone do respiratora. Wiadomo, że tego typu wydarzenia mogą mieć poważne skutki uboczne.
      Analiza wykazały, że geny powiązane ze stanem zapalnym i stresem były bardziej aktywne u osób, które cierpiały na ciężką postać COVID-19 niż osób z grup kontrolnych. Z kolei geny powiązane z procesami poznawczymi i tworzeniem się połączeń między neuronami były mniej aktywne.
      Zespół Mavrikaki dokonał też dodatkowego porównania tkanki mózgowej osób, które cierpiały na ciężką postać COVID-19 Porównano ją z 10 osobami, które w chwili śmierci miały nie więcej niż 38 lat oraz z 10 osobami, które zmarły w wieku co najmniej 71 lat. Naukowcy wykazali w ten sposób, że zmiany w mózgach osób cierpiących na ciężki COVID były podobne do zmian w mózgach osób w podeszłym wieku.
      Amerykańscy naukowcy podejrzewają, że wpływ COVID-19 na aktywność genów w mózgu jest raczej pośredni, poprzez stan zapalny, a nie bezpośredni, poprzez bezpośrednie zainfekowanie tkanki mózgowej.
      Uczeni zastrzegają przy tym, że to jedynie wstępne badania, które mogą raczej wskazywać kierunek dalszych prac, niż dawać definitywne odpowiedzi. Mavrikaki mówi, że nie ma absolutnej pewności, iż obserwowane zmiany nie były wywołane innymi infekcjami, ponadto w badaniach nie w pełni kontrolowano inne czynniki ryzyka, jak np. otyłość czy choroby mogące ułatwiać rozwój ciężkiej postaci COVID-19, a które same w sobie mogą prowadzić do stanów zapalnych wpływających na aktywność genów centralnego układu nerwowego.
      Innym pytaniem, na jakie trzeba odpowiedzieć, jest czy podobne zmiany zachodzą w mózgach osób, które łagodniej przeszły COVID-19. Z innych badań wynika bowiem, że nawet umiarkowanie ciężki COVID mógł powodować zmiany w mózgu, w tym uszkodzenia w regionach odpowiedzialnych za smak i węch. Nie wiadomo też, czy tego typu zmiany się utrzymują i na jak długo.
      Ze szczegółami badań można zapoznać się w artykule Severe COVID-19 is associated with molecular signatures of aging in the human brain.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Uniwersytetu w Kopenhadze dokonali niezwykłego odkrycia dotyczącego mózgu ssaków. Okazuje się, że wakuolarna ATPaza (V-ATPase), jeden z kluczowych enzymów umożliwiających przekazywanie sygnałów w mózgu, włącza się i wyłącza według przypadkowych wzorców, czasami robiąc sobie wielogodzinne przerwy.
      W naszych mózgach miliony neuronów bez przerwy przekazują sobie informacje. Wykorzystują do tego celu neuroprzekaźniki wspomagane przez unikatowy enzym. Aktywność mózgu, przepływ informacji między neuronami, są kluczowe dla przetrwania. Dlatego też sądzono, że enzym pośredniczący w przekazywaniu sygnałów jest bez przerwy aktywny. Nic bardziej błędnego. Uczeni z Kopenhagi zauważyli, że aktywuje się on i dezaktywuje według przypadkowych wzorców.
      Po raz pierwszy nauka przyjrzała się działaniu tego enzymu w mózgu na poziomie pojedynczej molekuły. Jesteśmy zaskoczeni wynikiem badań. Wbrew powszechnie żywionym przekonaniom i wbrew temu, co dzieje się z wieloma innymi proteinami, te enzymy mogą przestać pracować na wiele minut, a nawet godzin. A mimo to mózg człowieka i wielu innych ssaków wciąż działa, mówi zaskoczony profesor Dimitrios Stamou. Dotychczas podczas podobnych badań wykorzystywano bardzo stabilne enzymy uzyskane z bakterii. Duńscy uczeni, dzięki wykorzystaniu innowacyjnych metod, mogli zbadać enzymy ssaków wyizolowane z mózgów szczurów.
      Podczas przesyłania informacji pomiędzy dwoma neuronami neuroprzekaźniki są najpierw pompowane do pęcherzyków synaptycznych. Spełniają one rolę pojemników, w których neuroprzekaźniki są przechowywane do czasu, gdy trzeba przekazać wiadomość. Wakuolarna ATPaza odpowiada za dostarczenie energii do pomp neuroprzekaźników. Bez niej pompy nie działają, zatem neuroprzekaźniki nie mogą trafić do pęcherzyków synaptycznych, nie ma więc możliwości przekazania informacji pomiędzy neuronami. Jednak naukowcy z Kopenhagi wykazali, że w każdym z pęcherzyków znajduje się tylko jedna molekuła. Gdy się ona wyłączy, pompa nie działa.
      To niezrozumiałe, że tak krytyczne zadanie, jak pompowanie neuroprzekaźników do pojemnika zostało powierzone pojedynczej molekule. Tym bardziej niezrozumiałe, że przez 40% czasu molekuła nie działa, mówi Dimitrios Stamou.
      Naukowcy zastanawiają się, czy fakt, że wakuolarna ATPaza się wyłącza oznacza, iż w pęcherzykach nie ma neuroprzekaźnika. Jeśli tak, to czy olbrzymia liczba jednocześnie pustych pęcherzyków wpływa na procesy komunikacyjne w mózgu? W końcu zaś, czy jest to „problem”, który w toku ewolucji neurony nauczyły się omijać, czy też jest to nieznany nam sposób kodowania informacji w mózgu.
      Szczegóły odkrycia zostały opisane na łamach Nature.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...