Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Do końca dekady ma powstać P-ONE, gigantyczne podwodne obserwatorium neutrin

Recommended Posts

Fizycy z Niemiec i Ameryki Północnej poinformowali o planach wybudowania u wybrzeży Kanady największego na świecie obserwatorium neutrin. The Pacific Ocean Neutrino Experiment (P-ONE) ma rejestrować najbardziej energetyczne neutrina pochodzące z ekstremalnych zjawisk w Drodze Mlecznej.

Obserwatoria neutrin rejestrują promieniowanie Czerenkowa, które pojawia się, gdy neutrino przechodzące przez Ziemię trafi w jądro atomu, co powoduje powstanie szybko poruszających się cząstek. Obecnie największym tego typu urządzeniem jest opisywane przez nas IceCube, które korzysta z licznych fotodetektorów zawieszonych na linach, które są opuszczone głęboko w lód na Biegunie Południowym. Całość zajmuje 1 km3. W 2013 roku to właśnie IceCube zarejestrował pierwsze neutrino pochodzące spoza naszej galaktyki. Niedawno informowaliśmy o wykryciu tajemniczych sygnałów, które mogą doprowadzić do rewolucji w Modelu Standardowym.

Jak mówi Elisa Resconi w Uniwersytetu w Monachium, która stoi na czele P-ONE, wyniki uzyskane dotychczas przez IceCube dowodzą, że potrzebne są dodatkowe obserwatoria neutrin oraz rozbudowa samego IceCube. Stoimy w przededniu istnienia astronomii opartej o neutrino. Jeśli jednak będzie się ona opierała o jedno obserwatorium, to jej rozwój potrwa bardzo długo, być może całe dekady.

P-ONE ma składać się z 7 grup po 10 lin z czujnikami. Całość ma mieć objętość 3 km3. Dzięki temu, że będzie większe, obserwatorium będzie w stanie wyłapać rzadsze neutrina o większej energii. Będzie najbardziej czułe w zakresie dziesiątku teraelektronowoltów, podczas gdy IceCube jest w stanie zarejestrować neutrina o energiach rzędu pojedynczych TeV. P-ONE będzie obserwowało też inną część nieboskłonu, wyłapując głównie neutrina z południowej hemisfery. Częściowo jednak zakres prac obu obserwatoriów będzie się nakładał, zatem możliwa będzie niezależna weryfikacja obserwacji.

Nowe obserwatorium zostanie umieszczone na głębokości około 2,6 km, w Cascadia Basin około 200 kilometrów od wybrzeży Kolumbii Brytyjskiej. Jego budowniczowie chcą wykorzystać już istniejącą infrastrukturę. Znajduje się tam bowiem 800-kilometrowe okablowanie używane przez Ocean Networks Canada, które zasila i przesyła dane ze znajdujących się na dnie oceanu urządzeń badawczych.

Pierwsze eksperymenty w tym miejscu rozpoczęto w 2018 roku, kiedy to opuszczono dwie liny z czujnikami i stwierdzono, że wybrane miejsce ma odpowiednie właściwości optyczne do wykrywania neutrin. Obecnie P-ONE planuje opuszczenie dodatkowej stalowej liny zawierającej spektrometry, lidary i wykrywacze mionów. Pod koniec 2023 roku ma zostać zainstalowana pierwsza część obserwatorium, pierścień z 7 linami o długości kilometra każda. Jeśli to się uda, naukowcy zwrócą się z wnioskiem o grant w wysokości 50–100 milionów USD na dokończenie budowy obserwatorium. Koszty osobowe pochłoną kolejne 100 milionów USD.

Resconi ma nadzieję, że prace nad budową P-ONE zakończą się przed rokiem 2030, jednak przyznaje, że jest to plan bardzo ambitny. Główną niewiadomą jest działanie czujników w warunkach dużego ciśnienia, obecności soli i stworzeń morskich.
To nie pierwszy pomysł, by umieścić obserwatorium neutrin w morzu. Już w 2014 roku pracę miał rozpocząć umieszczony w Morzu Śródziemnym KM3NeT. Dotychczas udało się zainstalować jedynie 2 z 230 lin. Obecnie planuje się, że rozpocznie on pracę w 2026 roku. Z kolei u wybrzeży Francji powstaje jeszcze inny wykrywacz. Z planowanych 115 lin umieszczono dotychczas jedynie 6. Uruchomienie planowane jest na rok 2024.

Jak mówi Resconi, jedną z największych trudności w budowie obserwatoriów neutrin jest brak odpowiednio przeszkolonych fachowców. Fizycy wiele rzeczy robią samodzielnie. Na przykład zbudowane przez nich skrzynki, które służą do łączenia kabli na dnie morza, zawiodły. Uczona ma nadzieję, że dzięki doświadczeniu pracowników Ocean Networks Canada uda się uniknąć kolejnych błędów. Dzięki zespołowi 30–40 osób zajmujących się budową infrastruktury, fizycy mogą zająć się stroną naukową przedsięwzięcia.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przez 9 lat pracy instrumenty Daya Bay Reactor Neutrino Experiment zarejestrowały 5,5 miliona neutrin. Teraz międzynarodowy zespół pracujący przy eksperymencie poinformował o pierwszych wynikach uzyskanych na podstawie całego zbioru danych. A najważniejszym z nich są najbardziej precyzyjne pomiary theta 13 (θ13), kluczowego parametru potrzebnego nam do zrozumienia oscylacji neutrin.
      Neutrina to cząstki subatomowe, które wypełniają cały wszechświat, a które niezwykle trudno zauważyć. Co sekundę przez nasze ciała przelatują miliardy neutrin. Neutrino może przelecieć przez ścianę ołowiu o grubości roku świetlnego, nie zderzając się przy tym z żadnym atomem.
      Jednym z cech charakterystycznych neutrin jest oscylacja, czyli zmiana pomiędzy trzema zapachami: neutrino minowym, taonowym i elektronowym. Day Bay Reactor Neutrino Experiment zaprojektowano do badania parametrów określających, a jakim prawdopodobieństwem zajdzie oscylacja. Wśród parametrów tych znajdują się kąty mieszania. Gdy projektowano Daya Bay w rok 2007 nieznany pozostawał jeden z kątów mieszania, θ13. Dlatego właśnie eksperyment został zbudowany tak, by z bezprecedensową dokładnością określił ten właśnie parametr.
      Day Bay Reactor Neutrino Experiment znajduje się w Guangdongu w Chinach. Składa się z wielkich cylindrycznych wykrywaczy cząstek zanurzonych w wodzie, a znajdujących się w trzech podziemnych grotach. Osiem detektorów odpowiedzialnych jest za wykrywanie sygnałów z antyneutrin pochodzących z pobliskich reaktorów atomowych.
      Daya Bay projekt międzynarodowy i pierwszy tego typu wielki wspólny projekt fizyczny Chin i USA. Biorą w nich udział liczne instytucje naukowe, na czele których z chińskiej strony stoi Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk, a ze strony amerykańskiej Lawrence Berkeley National Laboratory oraz Brookhaven National Laboratory.
      W każdej z podziemnych grot Daya Bay wykrywa antyneutrina elektronowe. Dwie groty znajdują się w blisko reaktorów atomowych, a trzecia jest od nich sporo oddalona, co daje neutrinom czas na oscylacje. Naukowcy, porównując liczbę antyneutrin elektronowych, które dotarły do wykrywaczy położonych bliżej i dalej od reaktorów, mogą wyliczyć ile z nich zmieniło zapach, a z tego wyprowadzają wartość theta 13.
      W 2012 roku naukowcy pracujący przy Daya Bay ogłosili wyniki pierwszych powszechnie przyjętych pomiarów theta13. Od tego czasu ciągle uściślają swoje pomiary. W grudniu 2020 roku, po 9 latach pracy eksperymentu, zakończono zbieranie danych i zajęto się ich analizą. Okazało się, że Daya Bay znacznie przekroczył oczekiwania. Udało się bowiem zmierzyć wartość θ13 z 2,5-krotnie większą dokładnością, niż przyjęto w założeniach projektu. Żaden obecnie działający i planowany eksperyment nie powinien osiągnąć tak dużej precyzji.
      Liczne zespoły analityków wykonały benedyktyńską pracę szczegółowo analizując cały zestaw danych, biorąc pod uwagę zmiany wydajności czujników w czasie tych 9 lat pracy. Dane te posłużyły nam nie tylko do wyodrębnienia z nich antyneutrin, ale również do udoskonalenia naszej wiedzy o szumie w tle. To pozwoliło nam osiągnąć niezwykłą precyzję, mówi rzecznik prasowy eksperymenty, Jun Cao z Instytutu Fizyki Wysokich Energii.
      Dzięki precyzyjnym pomiarom θ13 naukowcy będą mogli łatwiej badań inne parametry neutrin oraz stworzyć dokładniejsze modele cząstek subatomowych i ich wzajemnego oddziaływania.
      Lepsze poznanie właściwości i oddziaływania antyneutrin może rzucić wiele światła na kwestię nierównowagi pomiędzy materią i antymaterią. Obecnie uważa się, że podczas Wielkiego Wybuchu powstało tyle samo materii i antymaterii. Jeśli jednak tak by się stało, to powinno dojść do całkowitej anihilacji, po której pozostałoby tylko światło. Musi więc istnieć coś, co spowodowało, że współczesny wszechświat składa się z materii. Być może tym czymś są jakieś różnice pomiędzy neutrinami a antyneutrinami. Nigdy nie wykryliśmy żadnych różnic pomiędzy cząstkami i antycząstkami w przypadku leptonów, do których należy neutrino. Znaleźliśmy jedynie różnice między kwarkami i antykwarkami. Jednak różnice te nie wystarczą, by wyjaśnić, dlaczego materia ma we wszechświecie taką przewagę. Może odpowiedź ukrywa się w neutrinach, mówi drugi z rzeczników eksperymentu, Kam-Biu Luk z Berkeley.
      Eksperymenty przyszłej generacji, takie jak DUNE (Deep Underground Neutrino Experiment) będą mogły wykorzystać pomiary wykonane przez Daya Bay do precyzyjnego porównania właściwości neutrin i antyneutrin. DUNE będzie najbardziej precyzyjnym wykrywaczem neutrin na świecie. Będzie on korzystał z budowanego właśnie najpotężniejszego na świecie źródła neutrin, PIP-II, w które zainwestowała Polska.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na terenie Akademickiego Ośrodka Szybowcowego w Bezmiechowej w Bieszczadach ma powstać obserwatorium. Umowę w tej sprawie podpisały właśnie Polska Agencja Kosmiczna (POLSA) i Politechnika Rzeszowska. Porozumienie przewiduje, że POLSA będzie odpowiedzialna za budowę, instalację, obsługę i utrzymanie infrastruktury do obserwacji przestrzeni kosmicznej.
      W Polsce mamy od 50 do 80 pogodnych nocy w roku. To niewiele, tym bardziej, że dodatkowymi czynnikami zakłócającymi obserwacje są przejrzystość atmosfery czy zanieczyszczenie światłem. Najlepsze warunki do obserwacji astronomicznych panują w Bieszczadach. Dlatego też POLSA zdecydowała na podpisanie umowy z Politechniką Rzeszowską, do której należy ośrodek w Rzeszowie.
      Z punktu widzenia POLSA, głównym celem obserwatorium będzie wyszukiwanie i śledzenie na niebie sztucznych satelitów Ziemi. Przy ciągle rosnącej liczbie satelitów jest to konieczne dla unikania zderzeń i zapewnienia bezpieczeństwa kosmicznego, stwierdził prezes Agencji, Grzegorz Wrochna.
      Dzięki nowemu obserwatorium POLSA będzie mogła testować nowe rozwiązania technologiczne, szkolić swój personel w zakresie wykrywania i śledzenia sztucznych satelitów Ziemi oraz udoskonalać swoje procedury operacyjne.
      Obecnie POLSA korzysta z obserwacji dostarczanych przez zewnętrzne podmioty na podstawie umów i porozumień oraz z obserwacji dostarczanych przez własne sensory w Australii. Planowany jest rozwój sieci sensorów w kilku kolejnych, również w odległych, lokalizacjach, dodaje Wrochna.
      Z kolei Politechnika Rzeszowska liczy na wzmocnienie swojego potencjału w dziedzinie badań naukowych dotyczących technologii kosmicznych i technik satelitarnych. Mamy doświadczenie, mamy ludzi i odpowiednie zaplecze, aby temu sprostać. Lotnictwo i kosmonautyka to jedna z wiodących dyscyplin naukowych na Politechnice Rzeszowskiej, co jest związane z obecnością przemysłu lotniczego w regionie. Kosmonautyka to naturalna konsekwencja związku z branżą lotniczą i w tym zakresie prowadzone są badania na naszej uczelni, wyjaśnia rektor PRz, profesor Piotr Koszelnik.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W 2007 roku archeolodzy pod kierunkiem Natalii Chamajko prowadzili prace na ulicy Spaskiej w Kijowie. W przeszłości znajdowało się tutaj wybrzeże, na którym wikingowie wymieniali futra na srebro ze świata islamu. Jednak, jako że wcześniejsze badania niczego interesującego nie przyniosły, nie spodziewano się istotnych odkryć. Tym razem było inaczej, a opublikowane właśnie analizy znalezisk wskazują na istnienie szlaku handlowego pomiędzy dzisiejszą Kanadą a wybrzeżem Dniepru.
      Spowodowany polowaniami gwałtowny spadek populacji morsów na Islandii i Grenlandii to jeden z przykładów globalizacji sprzed czasów współczesnych. Coraz bardziej odległe osady na północy zajmowały się polowaniami, by dostarczyć do Europy poszukiwane tam kły morsów. Wyroby z kłów były cenionym towarem wśród kościelnych i świeckich elit średniowiecznej Europy. Ze skóry tych zwierząt wytwarzano zaś wytrzymałe liny.
      Kły były transportowane wraz z fragmentami czaszek, do których były przytwierdzone. Na zwierzęta polowano na zachód od Grenlandii i – najprawdopodobniej – na terenie dzisiejszej kanadyjskiej Arktyki. Kość był następnie transportowana do Dublina, Trondheim, Bergen czy Szlezwiku, gdzie albo ją rzeźbiono, albo przesyłano dalej. Wszelkie dotychczas zdobyte dowody wskazywały, że na północ i zachód Europy trafiała kość z Grenlandii i – prawdopodobnie – kanadyjskiej Arktyki. Zaś źródłem surowca dla Europy Wschodniej była europejska część rosyjskiej Arktyki. Dotychczas wiedzieliśmy, że ważnym centrum handlu kością morsów na wschodzie Europy był Nowogród Wielki, jedno z najważniejszych miast na ziemiach ruskich. To w Nowogrodzie powstała jedna z największych w Europie kolekcji rzeźbionych kłów morsów. Teraz okazuje się, że i w Kijowie – mieście równie ważnym dla rozwoju i historii Rusi – istniał prężny ośrodek handlu kością morsów.
      W warstwie datowanej na XII wiek Chamajko i jej zespół znaleźli kawałki szkła, złoty drut, fragmenty rzeźbionych kości, żelazny miecz z terenu dzisiejszych Niemiec oraz tysiące zwierzęcych kości. Odkryto też 9 dużych fragmentów kości pyska morsów. To więcej niż w jakimkolwiek północnoeuropejskim centru handlu z wyjątkiem Bergen i Szlezwiku, gdzie znaleziono po 15 kości. Analizy genetyczne DNA ujawniły właśnie, że kości pyska oraz te, na których wykonano rzeźbienia, pochodziły od zwierząt żyjących wyłącznie w zachodniej części Atlantyku, w okolicach Grenlandii i Kanady. Odkrycie jest „ważne i niespodziewane”, mówi Søren Sindbæk z Uniwersytetu w Aarhus.
      W średniowieczu bardzo ceniono kły morsów. Transportowano je przyczepione do fragmentów czaszki. Dotychczas jednak sądzono, że handel tym towarem miał charakter regionalny. Naukowcy niejednokrotnie dowodzili, że artyści ze Skandynawii używali kości zwierząt poławianych w okolicach Grenlandii, a do współczesnej Rosji i Ukrainy trafiła kość z okolic Syberii.
      Tym razem było jednak inaczej. Nie tylko analiza DNA wykazała, że kości morsów z Kijowa pochodzą z zachodniego Atlantyku. Uczeni przeprowadzili też porównawczą analizę chemiczną i wykazali, że znalezisko jest podobne do próbek z Grenlandii i Islandii, ale nie z Morza Barentsa, położonego na północ od Kijowa. Co więcej, cięcia na fragmentach kości czaszki – czy to ozdobne czy też wykonywane podczas oddzielania kłów – odpowiadały podobnym cięciom ze Skandynawii. Jakby jeszcze tych dowodów było mało w pobliżu fragmentów czaszki morsów znaleziono części do popularnej w Europie północnej gry hnefatafl.
      Odkrycie nie tylko wskazuje, że do Kijowa trafiała kość z okolic Grenlandii i Kanady, ale może też wyjaśniać obfitość wyrobów w kości morsów w Nowogrodzie. Miasto położone jest w miejscu, do którego mógł docierać surowiec zarówno z okolic Grenlandii jak i terenów położonych na północy i północnym-wschodzie. Stamtąd zaś trafiał do Kijowa. Dzisiejsza stolica Ukrainy była, jak wiemy z greckich i arabskich źródeł pisanych, ważnym centrum handlowym, łączącym Skandynawię, Niemcy, Polskę i Konstantynopol.
      Specjaliści z Ukrainy, Norwegii i Wielkiej Brytanii, którzy badali kości morsów znalezione w Kijowie, uważają, że surowiec pozyskany na zachód od Grenlandii i w kanadyjskiej Arktyce, trafił do Europy Wschodniej przez Skandynawię.
      W przeciwieństwie do Nowogrodu, w Kijowie znaleziono dotychczas niewiele obiektów wykonanych z kłów morsów. Jednak mamy dowód, że kły były oddzielane od kości czaszki na brzegu rzeki w pobliżu dzisiejszej ulicy Spaskiej 35 w Kijowie. Ta część miasta była miejscem handlu i wytwórstwa. Znajdowała się ona na płaskim terenie pomiędzy rzekami Poczajna i Dniepr z jednej strony, a wzgórzami z drugiej. Rzeka Poczajna służyła za naturalny port, więc dzisiejsza dzielnica Padół była jednym z pierwszych w Kijowie miejsc, gdzie rozwinął się handel, powstały manufaktury, cerkwie, cmentarze i zabudowania mieszkalne. Wykopaliska na Spaskiej prowadziliśmy w pobliżu byłego portu, znajdującego się u ujścia nieistniejącej już tutaj Poczajny, czytamy na łamach Proceedings of The Royal Society B. W miejscu tym znaleziono przedmioty pochodzące zarówno z Niemiec, jak i Bizancjum.
      Prawdopodobnie kły morsów (zwane też „rybimi zębami”) były na Spaskiej 35 przygotowywane do dalszej podróży. Średniowieczny Kijów miał silne związki handlowe i kulturowe z Bizancjum. A wśród transportowanych towarów znajdowały się kły morsów.[...] W XI wieku doszło do zmniejszenia znaczenia ustanowionego przez wikingów szlaku handlowego pomiędzy Skandynawią a Wołgą. Znalezione w Kijowie kości morsów mogą wskazywać, że Dniepr przynajmniej częściowo zastąpił Wołgę w roli szlaku handlowego. Wciąż niewiele możemy powiedzieć o handlu „rybimi zębami” na Wołdze. Jednak nie może być przypadkiem, że najwcześniejsze informacje o takim handlu pochodzą od Al-Mukkadadasiego z lat 985–990, a Grenlandia została zasiedlona około 985 roku. Możemy więc wysunąć hipotezę, że wiele z „rybich zębów”, którymi handlowano za pośrednictwem Kijowa, pochodziło z Grenlandii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykański Departament Energii dał zielone światło do rozpoczęcia budowy PIP-II. To projekt znaczącej rozbudowy kompleksu akceleratorowego znajdującego się w Fermilab. Po ukończeniu prac będzie to najpotężniejsze na świecie źródło wysokoenergetycznych neutrin. W przeszłości w Fermilab pracował legendarny Tevatron, urządzenie niezwykle zasłużone dla fizyki. Teraz laboratorium zyska kolejny wyjątkowy instrument badawczy.
      PIP-II będzie pierwszym w USA akceleratorem cząstek, w budowę którego znaczący wkład wniosą partnerzy międzynarodowi z Polski, Francji, Indii, Włoch i Wielkiej Brytanii. Dzięki ich współpracy powstanie urządzenie zdolne do generowania wiązek protonów o mocy przekraczającej 1 megawat. To o 60% więcej niż obecne możliwości Fermilab. Dzięki supernowoczesnym rozwiązaniom akcelerator będzie w stanie dostarczyć wiązkę o odpowiednich właściwościach dla różnego rodzaju eksperymentów fizycznych.
      Jednym z najważniejszych zadań PIP-II będzie dostarczanie neutrin dla Deep Underground Neutrino Experiment (DUNE). Akceleratory z Fermilab były siłą napędową eksperymentów, które w ciągu ostatnich 50 lat doprowadziły do znaczących przełomów w fizyce. Oficjalne rozpoczęcie budowy PIP-II oznacza, że jesteśmy o krok bliżej do rozbudowy naszych instalacji i wspierania odkryć naukowych przez kolejnych 50 lat, mówi były dyrektor Fermilab, Nigel Lockyer.
      W ramach projektu PIP-II na początku łańcucha akceleratorów znajdujących się w Fermilab powstanie unikatowa potężna elastyczna pierwsze sekcja, wykorzystująca najnowsze osiągnięcia z dziedziny nadprzewodnictwa, wysokoenergetycznych systemów radiowych, sztucznej inteligencji i maszynowego uczenia się. Całość ma pozwolić na szybkie automatyczne dopasowywanie parametrów wiązki do wymagań danego eksperymentu przy minimalnym udziale człowieka.
      PIP-II zostanie ukończony w drugiej połowie obecnej dekady. Prace nad niektórymi jego elementami już zbliżają się ku końcowi. Tak jest na przykład z budynkiem zawierającym elementy kriogeniczne. Ta część PIP-II to główny wkład Departamentu Energii Atomowej Indii. A w PIP-II Injector Test Facility przeprowadzono udane testy dwóch modułów kriogenicznych. To pokazuje, że Fermilab stanie się światowym liderem w dziedzinie wykorzystania akceleratorów do badań nad neutrinami, a PIP-II będzie znaczącym wkładem w ten sukces, stwierdziła Harriet King z DOE.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...