Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Zatwierdzono projekt małego reaktora modułowego. Ożywi on amerykańską energetykę jądrową?

Recommended Posts

U.S. Nuclear Regulatory Commission (NRC) zatwierdziła projekt małego reaktora modułowego (SMR) firmy NuScale Power. To wielka chwila nie tylko dla NuScale, ale dla całego amerykańskiego sektora energetyki jądrowej, mówi dyrektor wykonawczy NuScale John Hopkins.

Zwolennicy SMR od dawna mówią, że mogą stać się one realną alternatywą dla wielkich kosztownych elektrowni atomowych. Tym bardziej w czasach, gdy amerykańska energetyka jądrowa przeżywa kryzys spowodowany konkurencją ze strony gazu oraz energetyki odnawialnej.

Zatwierdzenie projektu oraz związany z tym finalny raport oceny bezpieczeństwa (FSER) nie oznacza jeszcze, że NuScale może rozpocząć budowę małych reaktorów. Jednak pozwala to przedsiębiorstwom produkującym energię na składanie do NRC wniosków o pozwolenie na budowę i uruchomienie reaktora wykonanego według projektu NuScale. Co prawda USA pozostają największym na świecie producentem energii elektrycznej z elektrowni atomowych, jednak nowe reaktory powstałe po 1990 można policzyć na palcach jednej ręki. Obecnie trwa budowa 2 nowych reaktorów, budowę 2 innych wstrzymano. Jednocześnie na terenie USA są obecnie 23 wyłączone reaktory podlegające nadzorowi NRC, które znajdują się na różnych etapach likwidacji. W tej sytuacji pojawienie się małych reaktorów modułowych może ożywić ten rynek.

NuScale rozwijało swój projekt dzięki pomocy Departamentu Energii, który sfinansował prace kwotą niemal 300 milionów USD. Reaktor ma moc 50 MW. To znacznie mniej niż obecnie stosowane duże reaktory, których może przekraczać 1000 MW. Reaktory NuScale można łączyć w grupy do 12 sztuk, co pozwala na osiągnięcie mocy do 600 MW, a to wystarczy do zasilenia miasta średniej wielkości. Ponadto sama NRC spodziewa się, że w roku 2022 NuScale poprosi o zatwierdzenie projektu 60-megawatowego reaktora.

Przemysł jądrowy mówi, że SMR można budować szybciej i taniej niż standardowe reaktory. Główną zaletą małych reaktorów modułowych jest fakt, że można jest produkować w fabrykach i dostarczać na miejsce przeznaczenia. Standardowe reaktory budowane są na miejscu. Rozwiązanie takie jest bardziej elastyczne, gdyż odbiorca może zamawiać i łączyć ze sobą różną liczbę takich jednostek, w zależności od lokalnego zapotrzebowania.

Zwolennicy SMR mówią, że to najlepsza możliwość szybkiego zbudowania infrastruktury potrzebnej do produkcji dużej ilości bezemisyjnej energii. Jej przeciwnicy zauważają, że wciąż pozostaje nierozwiązany problem radzenia sobie z odpadami, ponadto każda technologia wykorzystania energii jądrowej jest droga, a jej wdrożenie wymaga dużo czasu w porównaniu z energetyką odnawialną.

NuScale wierzy jednak, że uda się jej uniknąć drożyzny i wieloletnich opóźnień, czyli problemów trapiących sektor tradycyjnej energetyki atomowej. Diana Hughes, wiceprezes firmy ds. marketingu twierdzi, że w latach 2023–2042 uda się sprzedać od 574 do 1682 SMR. Sprzedaż niemal 1700 reaktorów oznaczałaby, że uzyskiwano by z nich 80 GW, a to już blisko do obecnych 98 GW wytwarzanych przez amerykańską energetykę jądrową.

Firma NuScale podpisała już umowy o możliwym rozpoczęciu współpracy z wieloma potencjalnymi partnerami z USA i zagranicy. Pierwszym projektem, który ma zostać zrealizowany jest umowa z Utah Associated Municipal Power Systems (UAMPS), organizacją, która dostarcza energię do niewielkich operatorów w kilku stanach. Pierwszy reaktor ma trafić do UAMPS w 2027, które realizuje zlecenie Idaho National Laboratory. Reaktor ma rozpocząć pracę w 2029 roku. Z kolei do roku 2030 ma zostać uruchomionych 11 połączonych ze sobą reaktorów, które będą wchodziły w skład 720-megawatowego projektu. Część energii z nich będzie kupował Departament Energii, reszta trafi do komercyjnych klientów UAMPS. Niektóre samorządy terytorialne, w obawie o wysokie koszty, wycofały się z tego projektu.

Eksperci wyrażają powątpiewanie odnośnie bezpieczeństwa i kosztów NuScale SMR. Jednym z takich krytyków jest profesor M. V. Ramana, ekspert ds. energetyki atomowej z University of British Columbia. To, co oni planują jest ryzykowne i kosztowne, mówi uczony. Zauważa, że w ciągu ostatnich 5 lat szacunkowe koszty projektu realizowanego przez UAMPS wzrosły z około 3 do ponad 6 miliardów USD. Przypomina też, że początkowe plany NuScale mówiły, iż pierwszy SMR rozpocznie pracę w 2016 roku. Już w tej chwili wiemy, że opóźnienie przekroczy dekadę. Dobrze oddaje to problemy, z jakimi boryka się energetyka jądrowa. Ramana mówi, że cena energii produkowanej przez SMR może być dla konsumentów znacznie wyższa niż energii ze Słońca, wiatru czy innych źródeł odnawialnych.

Pozostają też kwestie bezpieczeństwa. Jak przypomina Edwin Lyman z Union of Concerned Scientist, NuScale złożyło raport o bezpieczeństwie mimo zastrzeżeń wnoszonych zarówno przez ekspertów NRC jak i zewnętrznej komisji doradczej. W lipcu 2020 roku Shanlai Lu z NRC złożył raport, w którym opisywał problem znany jako rozcieńczenie boru, co może spowodować problemy z paliwem i doprowadzić do pojawienia się niebezpiecznej sytuacji. W jej wyniku, nawet jeśli zabezpieczenia zadziałają i reaktor zostanie wyłączony, reakcja może samodzielnie się rozpocząć i dojdzie do niebezpiecznego wzrostu mocy. W innym raporcie NRC’s Advisory Committee on Reactor Safeguards wspomina o innych ryzykach, ale rekomenduje NRC wydanie dokumentu o bezpieczeństwie. NRC zastrzega jednak, że te nierozwiązane kwestie będą podlegały ocenie na etapie wydawania zgody na budowę reaktorów w konkretnych miejscach. Pani Hughes zapewnia, że NRC i NuScale przyjrzały się problemowi rozcieńczania boru i uznały, iż projekt reaktora jest bezpieczny.

NRC ponownie przyjrzy się projektowi, gdy NuScale złoży wniosek o zatwierdzenie 60-megawatowego reaktora.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przed dwoma dniami odbyła się oficjalna uroczystość, podczas której zainaugurowano montaż reaktora termojądrowego, tokamaka ITER. Dziesięć lat po rozpoczęciu budowy projekt ITER wszedł w decydującą fazę. W miesiącach poprzedzających niedawną uroczystość do Francji dostarczono główne elementy tokamaka, w tym cewki toroidalne – jedna Europy i dwie z Japonii. Kilka dni przed uroczystością z Korei dotarła pierwsza część komory próżniowej.
      Rozpoczynamy montaż ITER. To historyczny moment. Mija sto lat od chwili, gdy naukowcy zrozumieli, że Słońce i gwiazdy są zasilane przez fuzję jądrową, i sześć dekad od czasu, gdy w Związku Radzieckim zbudowano pierwszy tokamak. [...] Musimy jak najszybciej zastąpić paliwa kopalne [...] Posuwamy się do przodu tak szybko, jak to możliwe, mówił dyrektor generalny ITER, Bernard Bigot.
      ITER ma być urządzeniem badawczym. Największym dotychczas zbudowanym tokamakiem i pierwszym, w którym uzyskany zostanie dodatni bilans energetyczny. Naukowcy od kilkudziesięciu lat pracują nad fuzją termojądrową, ale dopiero niedawno udało się uzyskać z takiej reakcji więcej energii niż w nią włożono. Dokonali tego w 2013 roku specjaliści z amerykańskiego National Ignition Facility.
      Z fuzją termojądrową wiązane są olbrzymie nadzieje na uzyskanie źródła naprawdę czystej bezpiecznej energii. Różnica pomiędzy reaktorem fuzyjnym, a standardowym reaktorem atomowym polega na tym, że w reaktorze atomowym energię uzyskuje się z rozpadu ciężkich izotopów radioaktywnych. Zaś w elektrowni termojądrowej ma ona powstawać w wyniku łączenia się lekkich izotopów wodoru. Proces ten, podobny do procesów zachodzących w gwiazdach, niesie ze sobą dwie olbrzymie korzyści.
      Po pierwsze w reaktorze termojądrowym nie może zajść niekontrolowana reakcja łańcuchowa, podobna do tej, jaka zaszła w Czarnobylu. Po drugie, nie powstają tam odpady radioaktywne, które trzeba by przez tysiące lat przechowywać w specjalnych bezpiecznych warunkach.
      Fuzja jądrowa ma olbrzymi potencjał. Z 1 grama wodoru i trytu można teoretycznie uzyskać tyle energii, co ze spalenia 80 000 ton ropy naftowej. Deuter i tryt są łatwo dostępnymi, powszechnie występującymi na Ziemi pierwiastkami. ITAR zaś posłuży to badań i stworzenia technologii, które pozwolą na zbudowanie komercyjnych elektrowni fuzyjnych. Obecnie przewiduje się, że pierwszy zapłon ITER nastąpi w 2025 roku, a 10 lat później rozpoczną się regularne prace z kontrolowaną syntezą termojądrową.
      Obecnie przewiduje się, że pierwsze komercyjne elektrownie termojądrowe powstaną w latach 50. obecnego wieku.
      Uczestnikami projektu ITER są Unia Europejska, Chiny, Indie, Japonia, Korea Południowa, Rosja i Stany Zjednoczone. UE pokrywa 45,4% kosztów projektu, a pozostałe koszty są po równo (po 9,1%) podzielone pomiędzy resztę członków.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fińskie, norweskie i szwedzkie służby poinformowały o wykryciu nieco zwiększonego poziomu radioaktywności w atmosferze. Zdaniem holenderskich urzędników źródło skażenia może znajdować się w północnej Rosji i może być nim paliwo z elektrowni jądrowej. Rosyjska agencja TASS cytuje tymczasem rzecznika Rosenergoatomu, który twierdzi, że ani w położonej koło St. Petersburga elektrowni Leningrad, ani w elektrowni Kola koło Murmańska nie doszło do wycieku.
      Skażenie jest niewielkie i nie zagraża zdrowiu ludzi. Ani Szwedzi, ani Finowie, ani Norwedzy nie wskazują na możliwe źródło. Oświadczenie o możliwym źródle w Rosji wydał holenderski Narodowy Instytut Zdrowia Publicznego i Środowiska Naturalnego.
      Radionuklidy są sztucznego pochodzenia to znaczy wykonane przez człowieka. Ich skład może wskazywać uszkodzenie elementu paliwowego w elektrowni atomowej, czytamy w oświadczeniu. Podkreślono w nim, że ze względu na zbyt małą ilość danych, nie można określić dokładnej lokalizacji źródła skażenia.
      Obie elektrownie pracują normalnie. Nie przekazano nam sygnałów o problemach. Nie zostaliśmy powiadomieni o żadnym wypadku związanym z uwolnieniem się materiału radioaktywnego, zapewnia cytowany przez TASS anonimowy rzecznik Rosenergoatomu.
      Przypomnijmy, że do podobnego skażenia doszło przed dwoma laty. Także wówczas Rosjanie zaprzeczali.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dzięki wykryciu neutrin pochodzących z jądra Słońca fizycy byli w stanie potwierdzić ostatni brakujący element opisu fuzji zachodzącej wewnątrz naszej gwiazdy. Potwierdzili tym samym obowiązujący od dziesięcioleci model teoretyczny przewidujący, że część energii słonecznej pochodzi z łańcucha reakcji, w którym udział mają atomy węgla i azotu.
      W procesie tym cztery protony łączą się w jądro helu. Dochodzi do uwolnienia dwóch neutrin, innych cząstek subatomowych i olbrzymich ilości energii. Ten cykl węglowo-azotowo-tlenowy (CNO) nie odgrywa większej roli w Słońcu, gdzie dzięki niemu powstaje mniej niż 1% energii. Uważa się jednak, że gdy gwiazda się starzeje, zużywa wodór i staje się czerwonym olbrzymem, wówczas rola cyklu CNO znacząco rośnie.
      O odkryciu poinformowali naukowcy pracujący przy włoskim eksperymencie Borexino. To wspaniałe, że udało się potwierdzić jedno z podstawowych założeń teorii dotyczącej gwiazd, mówi Marc Pinsonnealut z Ohio State University.
      Borexino już wcześniej jako pierwszy wykrył neutrina pochodzące z trzech różnych etapów reakcji zachodzącej w Słońcu, która odpowiada za produkcję większości energii naszej gwiazdy. Dzięki obecnemu odkryciu Borexino w pełni opisał dwa procesy zasilające Słońce, mówi rzecznik eksperymentu Gioacchino Branucci z Uniwersytetu w Mediolanie. Kończymy wielkim bum!, dodał Marco Pallavicini z Uniwersytetu w Genui. Może to być bowiem ostatnie odkrycie Borexino, któremu grozi zamknięcie z powodu ryzyka dla źródła wody pitnej.
      Odkrycie neutrin pochodzących z cyklu węglowo-azotowo-tlenowego nie tylko potwierdza teoretyczne modele procesów zachodzących w Słońcu, ale rzuca też światło na strukturę jego jądra, szczególnie zaś na koncentrację w nim metali. Tutaj trzeba podkreślić, że astrofizycy pod pojęciem „metal” rozumieją wszelkie pierwiastki o masie większej od wodoru i helu.
      Liczba neutrin zarejestrowanych przez Borexino wydaje się zgodna ze standardowym modelem przewidującym, że metaliczność jądra jest podobna do metaliczności powierzchni. To ważne spostrzeżenie, gdyż w ostatnim czasie pojawiało się coraz więcej badań kwestionujących taki model.
      Badania te sugerowały, że metaliczność jądra jest niższa niż powierzchni. A jako, że to skład pierwiastków decyduje o tempie przepływu energii z jądra, badania te sugerowały jednocześnie, że jądro jest nieco chłodniejsze niż sądzono. Jako, że proces, w którym powstają neutrina jest niezwykle wrażliwy na temperaturę, dane zarejestrowane przez Borexino wskazują raczej na starsze wartości temperatury, nie na te sugerowane przez nowe badania.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykański Departament Energii (DOE), chcąc ożywić sektor energetyki jądrowej, rozpoczął Advanced Reactor Demonstrating Program. W jego ramach ma zamiar wybrać dwa nowe prototypowe reaktory atomowe oraz wspomóc ich budowę. Reaktory mają powstać w ciągu 7 lat.
      W bieżącym roku podatkowym program pochłonie 230 milionów USD. Każdy z reaktorów zostanie w połowie sfinansowany przez DOE, a w połowie przez prywatnego partnera. Maksymalna kwota, jaką Departament przeznaczy na każdy z reaktorów została określona na 4 miliardy dolarów.
      To może zupełnie zmienić reguły gry. Najwyższy czas, by przejść z fazy projektowania do fazy budowania reaktorów, mówi Jacopo Boungiorno, inżynier z MIT. Jednym z takich reaktorów może być zaprojektowany przez Terrestrial Energy USA reaktor chłodzony płynnymi solami.
      Jednak nawet niektórzy ze zwolenników energetyki atomowej wątpią, czy program DOE spowoduje, że zaczną powstawać komercyjne reaktory atomowe. Problemem jest konkurencja cenowa ze strony energii pozyskiwanej z gazu oraz źródeł odnawialnych. Nowe reaktory nie są w stanie konkurować z energetyką odnawialną. Na pewno nie w tej chwili, mówi Rober Rosner, fizyk z University of Chicago.
      Obecnie reaktory atomowe zapewniają USA 20% zapotrzebowania na energię elektryczną i produkują 50% energii ze źródeł nie emitujących węgla. Jednak sektor energetyki jądrowej od lat przeżywa w USA problemy. Obecnie w Stanach Zjednoczonych pracuje 96 reaktorów. Na początku lat 90. było ich 113. Planuje się zamknięcie wielu reaktorów i prawdopodobnie udział energetyki jądrowej w produkcji energii elektrycznej w USA będzie spadał. O problemach tych pisaliśmy niejednokrotnie. Mimo tego pojawiają się projekty reaktorów, które mają być bardziej wydajne i bezpieczne.
      Administracja prezydenta Trumpa chce tchnąć nowe życie w energetykę jądrową. W kwietniu DOE ogłosił, że ma zamiar zwiększyć wydobycie uranu i stworzy narodowe rezerwy tego pierwiastka.
      W ramach Advanced Reactor Demonstrating Program DOE współpracuje też z firmami, które dopiero rozwijają swoje koncepcje. Jedną z nich jest NuScale, pracujące nad małymi modułowymi reaktorami, które można by produkować w fabrykach. Departament ma zamiar stworzyć inkubator pomysłów nowatorskich projektów reaktorów.
      Jak mówi Buongiorno, nowe projekty reaktorów skupiają się na urządzeniach mniejszych niż tradycyjne reaktory o mocy liczonej w gigawatach. Obecnie wykorzystywany standardowy reaktor wykorzystuje uran-235 wzbogacony do 3-5 procent. Nowe projekty, wykorzystujące w roli chłodziwa np. stopione sole, mają korzystać z paliwa wzbogaconego do 20%, co powinno uczynić je bardziej wydajnymi.
      Plany DOE zostały skrytykowane jako nierealistyczne. Fizyk z kanadyjskiego University of British Columbia, M. V. Ramana mówi, że niezwykle trudno będzie wybrać najbardziej obiecujące projekty. Będą porównywać jabłka z pomarańczami, gruszkami, śliwkami, ze wszystkim, stwierdza. Jego zdaniem nierealistyczny jest też 7-letni horyzont budowy nowych reaktorów tym bardziej, że DOE chce, by reaktory uzyskały licencję Nuclear Regulatory Commission, co zwykle zajmuje kilka lat. Absurdem jest myśl, że dadzą radę to zrobić", mówi uczony.
      Optymistą jest za to Buongiorno, który zauważa, że jako iż wspomniane dwa reaktory mają być budowane na terenie Idaho National Laboratory, to mogą jednocześnie być budowane i starać się o licencję NRL. Od 1949 roku w INL zbudowano 52 różne eksperymentalne reaktory.
      Ramana wątpi jednak, czy amerykański przemysł energetyki jądrowej da się uratować. Wciąż pozostają takie problemy jak stosunek opinii publicznej do energetyki jądrowej czy problem ze składowaniem odpadów. Jednak największa przeszkoda to olbrzymie koszty. Budowa nowego reaktora może pochłonąć ponad 7 miliardów dolarów. Na wolnym rynku firmy nie są w stanie ponosić tak olbrzymich kosztów kapitałowych. Dlatego też Ramana uważa, że źródła odnawialne mogą ostatecznie zastąpić energetykę jądrową. To schyłkowy przemysł. Im szybciej się to przyzna, tym lepiej, dodaje uczony.
      Inni specjaliści twierdzą jednak, że koszty odnawialnych źródeł energii będą rosły, źródła te nie są w stanie zapewniać energii w sposób ciągły i kontrolowany, z czasem energetyka jądrowa może stać się od nich tańsza. Jeśli do roku 2030 Stany Zjednoczone  będą miały duży wybór zaawansowanych nowoczesnych projektów, to warto będzie w nie zainwestować, gdyż będziemy potrzebowali tych reaktorów, twierdzi Rosner. Aby jednak działanie takie było możliwe, konieczne jest podtrzymanie zdolności do budowy i eksploatacji nowych reaktorów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      US Air Force zapowiedziały kolejną misję tajemniczego mini wahadłowca X-37B. Pojazd wystartuje 16 maja. Będzie to już jego szósty pobyt w przestrzeni kosmicznej. O wcześniejszych misjach nie wiemy praktycznie niczego, poza tym, że przeprowadzano podczas nich tajne testy. Tym razem Amerykanie uchylili jednak rąbka tajemnicy.
      Wiemy, że USA posiadają dwa mini-wahadłowce tego typu. Długość każdego z nich to 8,8 metra, a rozpiętość skrzydeł wynosi 4,6 metra. Duże wahadłowce miały długość 37 metrów, przy rozpiętości skrzydeł 24 metrów. Pierwszy start X-37B odbył się w kwietniu 2010 roku, a pojazd wrócił na Ziemię po 224 dniach. Kolejne misje były coraz dłuższe. Ostatnia, najdłuższa, odbyła się pomiędzy 7 września 2017 a 27 października 2019 roku. Trwała więc 779 dni. W czasie pierwszych czterech pojazd był wynoszony przez rakietę Atlas V, podczas ostatniej wykorzystano Falcona 9.
      Najbliższa misja, OTV-6, wystartuje na pokładzie Atlasa V. W ramach tej ważnej misji przeprowadzili więcej badań niż podczas którejkolwiek z wcześniejszych. Znajdą się wśród nich dwa eksperymenty NASA, poinformowała sekretarz US Air Force, Barbara Barrett. Wyjaśniła, że jeden z eksperymentów dla NASA będzie badał wpływ promieniowania kosmicznego na nasiona, a podczas drugiego zostanie sprawdzone zachowanie się różnych materiałów w przestrzeni kosmicznej.
      Znacznie bardziej interesująco wygląda inny eksperyment, który zostanie przeprowadzony na zlecenie U.S. Naval Research Laboratory. W jego ramach badana będzie technologia zamiany energii słonecznej na energię mikrofalową i jej transfer na Ziemię.
      Nie zdradzono przy tym żadnych szczegółów, jednak z wcześniejszych informacji napływających z Naval Research Laboratory wiemy, że z technologią taką wiązane są duże nadzieje,  Dzięki niej Amerykanie mogliby stworzyć drony pozostające w powietrzu przez bardzo długi czas, może nawet bezterminowo, gdyż otrzymywałyby energię z satelitów. Ponadto satelity byłyby zdolne do przekazywania energii w dowolne miejsce na Ziemi, ewentualnie do pojazdów kosmicznych czy innych satelitów.
      Dzięki takiej technologii jednostki wojskowe czy zespoły naukowe działające w odległych miejscach globu nie musiałyby polegać na mało wydajnej technologii fotowoltaicznej czy na ciężkich, hałaśliwych zużywających sporo paliwa generatorach. Wystarczyłoby urządzenie z anteną odbierającą mikrofale. Ta sama technologia przydałaby się w regionach katastrof, gdzie zapewniłaby energię na długo zanim możliwe byłoby odbudowanie infrastruktury.
      Przypomnijmy, że po powrocie (maj 2017) X-37B z misji OTV-4 przyznano, że w czasie misji testowano zaawansowane systemy nawigacyjne, kontrolne, napędowe, ochrony termicznej oraz systemy lotu autonomicznego, lądowania i wejścia w atmosferę. Zauważono też wówczas, że X-37B latał niezwykle nisko. Pojawiły się sugestie, że USA testują technologie pozwalające satelitom szpiegowskim na latanie nisko nad Ziemią. To pozwoliłoby na wykonywanie bardziej dokładnych zdjęć, ale wymagałoby znacznie więcej paliwa.
      Wiemy też, że w ramach OTV-6 z pokładu mini wahadłowca zostanie wypuszczony niewielki satelita FalconSat-8, który przeprowadzi pięć eksperymentów na potrzeby U.S. Air Force Academy.
      Nie wiemy za to, jak długo potrwa misja OTV-6.

      « powrót do artykułu
×
×
  • Create New...