Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wokół Słońca krążyła kiedyś inna gwiazda? Nowa teoria wyjaśnia istnienie Planety X i Obłoku Oorta

Rekomendowane odpowiedzi

Astrofizycy z Uniwersytetu Harvarda opublikowali na łamach The Astrophysical Journal Letters teorię, zgodnie z którą Słońce było kiedyś częścią układu podwójnego. Nasza gwiazda miała krążącego wokół niej towarzysza o podobnej masie. Jeśli teoria ta zostanie potwierdzona, zwiększy to prawdopodobieństwo istnienia Obłoku Oorta w takim kształcie, jak obecnie przyjęty i będzie można uznać teorię mówiącą, że tajemnicza Dziewiąta Planeta (Planeta X) została przez Układ Słoneczny przechwycona, a nie uformowała się w nim.

Autorzy nowej teorii – profesor Avi Loeb i jego student Amir Siraj – postulują, że obecność towarzysza Słońca w klastrze, w którym gwiazdy się uformowały, pozwala wyjaśnić istnienie Obłoku Oorta. Naukowcy mówią, że dotychczasowe teorie pozostawiały wiele niewyjaśnionych zagadnień związanych z Obłokiem Oorta. Przyjęcie, że Słońce było częścią układu podwójnego, pozwala wyjaśnić liczne wątpliwości. Tym bardziej, że nie jest to wcale nieprawdopodobne. Większość gwiazd podobnych do Słońca zaczyna życie w układach podwójnych, mówią uczeni.

Jeśli Obłok Oorta rzeczywiście został utworzony z obiektów przechwyconych dzięki pomocy towarzysza Słońca, to będzie to niosło istotne implikacje dla naszego rozumienia uformowania się Układu Słonecznego. Układy podwójne znacznie efektywniej przechwytują różne obiekty niż pojedyncze gwiazdy. Jeśli Obłok Oorta rzeczywiście tak się utworzył, będzie to znaczyło, że Słońce miało towarzysza o podobnej masie, stwierdza Loeb.

Przyjęcie teorii o układzie podwójnym ma też znaczenie dla wyjaśnienia pojawienia się życia na Ziemi. Obiekty z zewnętrznych części Obłoku Oorta mogły odgrywać istotną rolę historii Ziemi. Mogły dostarczyć tutaj wodę i spowodować zagładę dinozaurów. Zrozumienie ich pochodzenia jest bardzo ważne, przypomina Siraj.

Obaj naukowcy podkreślają, że ich teoria ma też znacznie dla wyjaśnienia zagadki Planety X. Dotyczy to nie tylko Obłoku Oorta ale również ekstremalnie dalekich obiektów transneptunowych, takich jak Dziewiąta Planeta. Nie wiadomo, skąd one pochodzą, jednak nasz model przewiduje, że jest więcej obiektów o orbitach takich jak Dziewiąta, stwierdza Loeb.

Obecnie nie posiadamy instrumentów, które pozwoliłyby zaobserwować Obłok Oorta czy Dziewiątą Planetę. Jednak już w przyszłym roku ma zacząć działać Vera C. Rubin Observatory (VRO). Będzie ono w stanie zweryfikować istnienie Dziewiątej Planety. Jeśli VRO potwierdzi, że Dziewiąta Planeta istnieje i została przechwycona oraz zaobserwuje podobnie przechwycone planety karłowate, wtedy model binarny zyska przewagę nad obecnymi teoriami o początkach Słońca, mówi Siraj.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Najbliższe Ziemi czarne dziury znajdują się w gromadzie Hiady, informuje międzynarodowy zespół naukowy na łamach Monthly Notices of the Royal Astronomical Society. Hiady (Dżdżownice) to najbliższa Układowi Słonecznemu gromada otwarta. Najnowsze badania pokazują, że znajduje się tam co najmniej kilka czarnych dziur. Gromady otwarte to luźno powiązane grawitacją grupy setek do tysięcy zwykle młodych gwiazd. W Hiadach gwiazd jest około 300, a większości z nich nie widać gołym okiem.
      Dzięki obserwacjom prowadzonym przez należące do ESA obserwatorium kosmiczne Gaia znamy dokładne prędkości i pozycje gwiazd w Hiadach. Naukowcy z Włoch, Hiszpanii, Chin, Niemiec i Holandii przeprowadzili symulacje ruchu wszystkich gwiazd w Hiadach i porównali je z danymi z Gai. "Nasze symulacje odpowiadają rzeczywistej masie i rozmiarom Hiad tylko wówczas, gdy w centrum gromady znajdują się – lub znajdowały się niedawno – czarne dziury", mówi Stefano Torniamenti z Uniwersytetu w Padwie.
      Obserwowane właściwości Hiad najlepiej odpowiadają symulacjom, gdy przyjmiemy, że w gromadzie znajdują się 2-3 gwiazdowe czarne dziury. Symulacje, w których dziury zostały wyrzucone z gromady nie dawniej niż 150 milionów lat temu (Hiady mają ok. 600 milionów lat), także – choć nie tak dobrze – odpowiadają danym obserwacyjnym.
      Czarne dziury znajdujące się w Hiadach lub w pobliżu są zatem najbliższymi nam obiektami tego typu. Ich odległość od Układu Słonecznego wynosi około 45 parseków, czyli ok. 150 lat świetlnych. Dotychczas najbliższa nam znaną czarną dziurą była Gaia BH1 o odległości 480 parseków (1560 l.ś.) od Słońca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astrofizyk Avi Loeb z Uniwersytetu Harvarda ma nadzieję, że zorganizowanej przez niego ekspedycji udało się zebrać szczątki pierwszego znanego meteorytu pochodzącego spoza Układu Słonecznego. Uczony wraz ze współpracownikami przez 10 dni przeczesywał za pomocą specjalnego magnetycznego urządzenia dno oceaniczne u wybrzeży Papui Nowej Gwinei. Udało się zebrać ponad 700 metalicznych sferuli, które będą badane zarówno w laboratorium Loeba, jak i w 2 niezależnych laboratoriach, które poprosił o pomoc. Miejsce poszukiwań zostało wybrane dzięki analizie danych z Departamentu Obrony oraz odczytów z dwóch pobliskich stacji sejsmicznych.
      Loeb sądzi, że wiele ze sferuli, drobnych kulek szklanych ze stopionego meteorytu, pochodzi spoza Układu Słonecznego. Jeśli analizy laboratoryjne wykażą, że ich skład jest różny od wszystkiego, co dotychczas znaleźliśmy, będzie do silna przesłanka na poparcie hipotezy uczonego. Jeśli ma rację, będziemy mieli do czynienia z trzecim – po asteroidzie Oumuamua i komecie Borisov – znanym nam gościem spoza Układu Słonecznego i pierwszym, którego szczątki opadły na Ziemię.
      Każdego roku na Ziemię opada ponad 5000 ton mikrometeorytów. Mamy więc olbrzymią liczbę sferuli z kosmosu, inne powstają w wyniku erupcji wulkanicznych oraz zanieczyszczeń emitowanych przez człowieka. Potrafimy odróżnić materiał pochodzący z Ziemi od materiału z przestrzeni kosmicznej. Możemy być też w stanie odróżnić ten z Układu Słonecznego od materiału spoza niego.
      Meteoryt IM1 (od Interstellar Meteor 1) eksplodował nad Pacyfikiem 8 stycznia 2014 roku. Loeb uważa, że przeszukał obszar, na który mogły spaść jego szczątki oraz nie wyklucza, że udało mu się je zebrać. Wielu astronomów powątpiewa jednak w jego słowa. Zwracają uwagę, że nie wiadomo, czy IM1 pochodził spoza Układu Słonecznego, a jeśli nawet tak, to czy jakiekolwiek jego szczątki dotarły do Ziemi. Profesor Steven Desch z Arizona State University zwraca uwagę, że zgodnie z jego wyliczeniami, a opierał się na danych z Departamentu Obrony, meteor wszedł w atmosferę z prędkością 45 km/s. Jeśli składał się z żelaza, to jeszcze w atmosferze odparowało 99,9999% jego masy. Znalezienie pozostałości po nim jest więc niezwykle mało prawdopodobne, tym bardziej, że rozproszyły się one na powierzchni wielu kilometrów kwadratowych.
      Loeb odpowiada, że wraz ze studentami opublikował artykuł, w którym – na podstawie obliczeń – wskazywali miejsce, gdzie powinny znajdować się tysiące sferuli. I rzeczywiście, znaleźliśmy je, mówi. Uczony dodaje, że dopiero analizy laboratoryjne pozwolą na rozstrzygnięcie sporu.
      Na razie spór trwa. Niektórzy przypominają, że dane z czujników Departamentu Obrony są niejednokrotnie niedokładne, gdyż wojsko nie udostępnia surowych odczytów z tajnych urządzeń. Przypominają, że niejednokrotnie pojawiały się twierdzenia o znalezieniu meteorytów spoza Układu Słonecznego i nigdy się one nie potwierdziły. Loeb odpowiada, że tym razem jest inaczej, gdyż US Space Command wykonało bezprecedensowy ruch i poinformowało NASA, że przeprowadzone obliczenia – mówiące o pochodzeniu meteorytu z przestrzeni międzygwiezdnej – są prawidłowe.
      Wyniki badań laboratoryjnych, które rozstrzygną spór, powinniśmy poznać w ciągu najbliższych tygodni.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Problem grzania korony słonecznej pozostaje nierozwiązany od 80 lat. Z modeli obliczeniowych wynika, że temperatura we wnętrzu Słońca wynosi ponad 15 milionów stopni, jednak na jego widocznej powierzchni (fotosferze) spada do około 5500 stopni, by w koronie wzrosnąć do około 2 milionów stopni. I to właśnie ta olbrzymia różnica temperatur pomiędzy powierzchnią a koroną stanowi zagadkę. Jej rozwiązanie – przynajmniej częściowe – zaproponował międzynarodowy zespół naukowy z Polski, Chin, USA, Hiszpanii i Belgii. Zdaniem badaczy za podgrzanie części korony odpowiadają... chłodne obszary na powierzchni.
      W danych z Goode Solar Telescope uczeni znaleźli intensywne fale energii pochodzące z dość chłodnych, ciemnych i silnie namagnetyzowanych regionów fotosfery. Takie ciemniejsze regiony mogą powstawać, gdy silne pole magnetyczne tłumi przewodzenie cieplne i zaburza transport energii z wnętrza naszej gwiazdy na jej powierzchnię. Naukowcy przyjrzeli się aktywności tych chłodnych miejsc, przede wszystkim zaś włóknom plazmy powstającym w umbrze, najciemniejszym miejscu plamy słonecznej. Włókna te to stożkowate struktury o wysokości 500–1000 kilometrów i szerokości około 100 km. Istnieją one przez 2-3 minuty i zwykle ponownie pojawiają się w tym samym najciemniejszym miejscu umbry, gdzie pola magnetyczne są najsilniejsze, wyjaśnia profesor Vasyl Yurchyshyn z New Jersey Institute of Technology (NJIT).
      Te ciemne dynamiczne włóka obserwowane były od dawna, jednak jako pierwsi byliśmy w stanie wykryć ich oscylacje boczne, które są powodowane przez szybko poruszające się fale. Te ciągle obecne fale w silnie namagnetyzowanych włóknach transportują energię w górę i przyczyniają się do podgrzania górnych części atmosfery Słońca, dodaje Wenda Cao z NJIT. Z przeprowadzonych obliczeń wynika, że fale te przenoszą tysiące razy więcej energii niż ilość energii tracona w aktywnych regionach atmosfery. Rozprzestrzenianie się tej energii jest nawet o 4 rzędy wielkości większa niż ilość energii potrzebna do utrzymania temperatury korony słonecznej.
      Wszędzie na Słońcu wykryto dotychczas różne rodzaje fal. Jednak zwykle niosą one ze sobą zbyt mało energii, by podgrzać koronę. Szybkie fale, które wykryliśmy w umbrze plam słonecznych to stałe i wydajne źródło energii, które może podgrzewać koronę nad plamami, wyjaśnia Yurchyszyn. Odkrycie to, jak mówią naukowcy, nie tylko zmienia nasz pogląd na umbrę plam, ale również jest ważnym krokiem w kierunku zrozumienia transportu energii i podgrzewania korony.
      Jednak, jak sami zauważają, zagadka grzania korony słonecznej nie została rozwiązania. Przepływ energii pochodzącej z plam może odpowiadać tylko za podgrzanie pętli koronalnych, które biorą swoje początki z plam. Istnieją jednak inne, wolne od plam, regiony Słońca powiązane z gorącymi pętlami koronalnymi. I czekają one na swoje wyjaśnienie, dodaje Cao.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zespół Thiago Ferreiry z Uniwersytetu w São Paulo poinformował o odkryciu dwóch egzoplanet okrążających gwiazdę podobną do Słońca. Zwykle egzoplanety wykrywa się metodą tranzytu, badając zmiany jasności gwiazdy macierzystej, na tle której przechodzą. Tym razem odkrycia dokonano rejestrując zmiany prędkości radialnej gwiazdy spowodowane oddziaływaniem grawitacyjnym planet. Tą metodą odnaleziono dotychczas około 13% z ponad 5000 znanych nam egzoplanet.
      Naukowcy obserwowali gwiazdę HIP 104045. To gwiazda typu G5V, należy do ciągu głównego, a jej rozmiary i masa są zaledwie kilka procent większe od rozmiarów i masy Słońca. Temperatura powierzchni gwiazdy wynosi 5825 kelwinów, a jej wiek to 4,5 miliarda lat. Jest więc bardzo podobna do Słońca, gwiazdy typu G2V o temperaturze 5778 kelwinów i wieku ok. 4,6 miliarda lat.
      Planeta HIP 104045 c to super-Neptun położony blisko gwiazdy. Jej masa jest około 2-krotnie większa od masy Neptuna, znajduje się w odległości 0,92 jednostki astronomicznej od gwiazdy, którą obiega w ciągu 316 dni. Z kolei HIP 104045 b ma masę co najmniej połowy Jowisza, położona jest w odległości 3,46 j.a. od gwiazdy i obiega ją ciągu 2315 dni.
      Okazuje się, że gwiazda HIP 104045 jest podobna do Słońca również pod względem składu chemicznego, chociaż istnieją pewne różnice mogące wskazywać, że HIP 104045 mogła wchłonąć nieco materiału z planety skalistej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astrofizyk Stephen Kane z Uniwersytetu Kalifornijskiego w Riverside przeprowadził symulacje komputerowe, w których uzupełnił dwie rzucające się w oczy luki w Układzie Słonecznym. Pierwsza z nich to brak super-Ziemi, druga zaś to jej lokalizacja. Z symulacji wynika, że ich uzupełnienie zakończyło by historię życia na Ziemi.
      Największą planetą skalistą Układu Słonecznego jest Ziemia. Najmniejszym gazowym olbrzymem jest zaś Neptun o 4-krotnie większej średnicy i 17-krotnie większej masie. Nie ma żadnej planety o pośrednich cechach. W innych układach znajduje się wiele planet o wielkości i masie pomiędzy Ziemią a Neptunem. Nazywamy je super-Ziemiami, wyjaśnia Kane. Druga z luk to odległość od Słońca. Merkury położony jest o 0,4 jednostki astronomicznej (j.a.) od naszej gwiazdy, Wenus dzieli od niej 0,7 j.a., Ziemię – 1 j.a., a Marsa – 1,5 j.a. Kolejna planeta, Jowisz, znajduje się już 5,2 j.a. od Słońca. Kane w swoich symulacjach postanowił wypełnić tę lukę. Symulował więc istnienie tam planety o różnej masie i sprawdzał, jak jej obecność wpływała na inne planety.
      Wyniki symulacji – w ramach których Kane badał skutki obecności planety o masie 1-10 mas Ziemi na orbicie odległej od Słońca o 2-4 j.a. – opublikowane na łamach Planetary Science Journal, były katastrofalne dla Układu Słonecznego. Taka fikcyjna planeta wpłynęłaby na orbitę Jowisza, co zdestabilizowałby cały układ Słoneczny. Jowisz, największa z planet, ma masę 318-krotnie większa od Ziemi. Jego grawitacja wywiera więc duży wpływ na otoczenie. Jeśli super-Ziemia lub inny masywny obiekt zaburzyłby orbitę Jowisza, doszłoby do znacznych zmian w całym naszym otoczeniu. W zależności od masy i dokładnej lokalizacji super-Ziemi jej obecność – poprzez wpływ na Jowisza – mogłaby doprowadzić do wyrzucenia z Układu Słonecznego Merkurego, Wenus i Ziemi. Podobny los mógłby spotkać Urana i Neptuna. Jeśli zaś super-Ziemia miałaby znacznie mniejszą masę niż ta prowadząca do katastrofy i znajdowałaby się dokładnie po środku pomiędzy Marsem a Jowiszem, układ taki mógłby być stabilny. Jednak każde odchylenie w jedną lub drugą stronę skończyłoby się katastrofą.
      Badania Kane'a to nie tylko ciekawostka. Pokazują, jak delikatna jest równowaga w Układzie Słonecznym. Ma też znaczenie dla poszukiwania układów planetarnych zdolnych do podtrzymania życia. Mimo że podobne do Jowisza, odległe od swoich gwiazd, gazowe olbrzymy znajdowane są w zaledwie 10% układów, to ich obecność może decydować o stabilności orbit planet skalistych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...