Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Kwantowe go do testowania sztucznej inteligencji. Czy SI poradzi sobie z grami takimi jak mahjong?

Recommended Posts

Fizycy z Chin zaprezentowali wersję gry go opierającą się na mechanice kwantowej. W swojej symulacji naukowcy wykorzystali splątane fotony do ustawiania kamieni na planszy, zwiększając w ten sposób trudność gry. Ich technologia może posłużyć jako pole testowe dla sztucznej inteligencji.

Wielkim wydarzeniem końca XX wieku było pokonanie arcymistrza szachowego Garry'ego Kasparowa przez superkomputer Deep Blue. Jednak go stanowiło znacznie trudniejsze wyzwanie. Ta gra o bardzo prostych zasadach posiada bowiem więcej kombinacji niż szachy. Jednak 20 lat później, w 2016 roku dowiedzieliśmy się, że SI pokonała mistrza go.

Jednak szachy i go to gry o tyle łatwe dla komputerów, że na bieżąco znany jest stan rozgrywki. Nie ma tutaj ukrytych elementów. Wiemy co znajduje się na planszy i co znajduje się poza nią. Zupełnie inne wyzwanie stanowią takie gry jak np. poker czy mahjong, gdzie dochodzi element losowy, nieznajomość aktualnego stanu rozgrywki – nie wiemy bowiem, co przeciwnik ma w ręku – czy też w końcu blef. Także i tutaj maszyny radzą sobie lepiej. Przed rokiem informowaliśmy, że sztuczna inteligencja wygrała w wieloosobowym pokerze.

Xian-Min Jin z Szanghajskiego Uniwersytetu Jiao Tong i jego koledzy postanowili dodać element niepewności do go. Wprowadzili więc doń mechanikę kwantową. „Kwantowe go” zostało po raz pierwszy zaproponowane w 2016 roku przez fizyka Andre Ranchina do celów edukacyjnych. Chińczycy wykorzystali tę propozycję do stworzenia systemu, który ma podnosić poprzeczkę sztucznej inteligencji wyspecjalizowanej w grach.

W standardowej wersji go mamy planszę z 19 liniami poziomymi i 19 pionowymi. Na przecięciach linii gracze na przemian układają swoje kamienie, starając się ograniczyć nimi jak największy obszar planszy. W kwantowej wersji go ustawiana jest natomiast para splątanych kamieni. Oba kamienie pozostają na planszy dopóty, dopóki nie zetkną się z kamieniem z sąsiadującego pola. Wówczas dochodzi do „pomiaru”, superpozycja kamieni zostaje zniszczona i na planszy pozostaje tylko jeden kamień, a nie splątana para.

W go gracz może zbić kamienie przeciwnika wówczas, gdy ustawi swoje kamienie na wszystkich sąsiadujących z przeciwnikiem polach. Jednak by do takiej sytuacji doszło w „kwantowym go” wszystkie otoczone kamienie przeciwnika muszą być kamieniami klasycznymi, żaden z nich nie może pozostawać w superpozycji z innym kamieniem na planszy. Jednak gracze nie wiedzą, który z kamieni w jakim stanie się znajduje, dopóki nie dokonają pomiaru.

Jin i jego koledzy wyjaśniają, że ich symulacja pozwala na dostrojenie procesu pomiaru poprzez manipulacje splątaniem. Jeśli kamienie w danej parze są splątane w sposób maksymalny, to wynik pomiaru będzie całkowicie przypadkowy, nie potrafimy przewidzieć, który z kamieni po pomiarze pozostanie na planszy. Jeśli jednak splątanie będzie mniej doskonałe, jeden z kamieni będzie miał większą szansę na pozostanie na planszy. To prawdopodobieństwo będzie znane tylko temu graczowi, do którego kamień należy. Gra traci w tym momencie swoją całkowitą nieprzewidywalność, jednak pozostaje w niej duży element niedoskonałej informacji.

Chińczycy przekuli teorię na praktykę tworząc pary splątanych fotonów, które były wysyłane do rozdzielacza wiązki, a wynik takiego działania był mierzony za pomocą czterech wykrywaczy pojedynczych fotonów. Jeden zestaw wyników reprezentował „0” a inny „1”. W ten sposób oceniano prawdopodobieństwo zniknięcia jednej z części pary wirtualnych kamieni ustawianych na przypadkowo wybranych przecięciach linii przez internetowe boty.

Poprzez ciągłe generowanie splątanych fotonów i przechowywaniu wyników pomiarów naukowcy zebrali w ciągu godziny około 100 milionów możliwych wyników zniknięcia stanu splątanego. Taka ilość danych pozwala na przeprowadzenie dowolnej rozgrywki w go. Uczeni, analizując rozkład zer i jedynek w czasie potwierdzili, że nie występuje znacząca korelacja pomiędzy następującymi po sobie danymi. Tym samym, dane są rzeczywiście rozłożone losowo.

Jin mówi, że rzeczywista złożoność i poziom trudności kwantowego go pozostają kwestią otwartą. Jednak, zwiększając rozmiary wirtualnej planszy i włączając do tego splątanie, można – jego zdaniem – zwiększyć trudność samej gry do takiego stopnia, by dorównywała ona takim grom jak mahjong, gdzie większość informacji jest ukrytych. Dzięki temu kwantowe go może stać się obiecującą platformą do testowania nowych algorytmów sztucznej inteligencji.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Sztuczna inteligencja lepiej niż technik-elektroradiolog ocenia i diagnozuje funkcjonowanie serca na podstawie badań ultrasonograficznych, wynika z badań przeprowadzonych przez naukowców z Cedars-Sinai Medical Center. Randomizowane testy prowadzili specjaliści ze Smidt Heart Institute i Division of Articifial Intelligence in Medicine.
      Uzyskane wyniki będą miały natychmiastowy wpływ na obrazowanie funkcji serca oraz szerszy wpływ na całe pole badań obrazowych serca, mówi główny autor badań, kardiolog David Ouyang. Pokazują bowiem, że wykorzystanie sztucznej inteligencji na tym polu poprawi jakość i efektywność obrazowania echokardiograficznego.
      W 2020 roku eksperci ze Smidt Heart Institute i Uniwersytetu Stanforda stworzyli jeden z pierwszych systemów sztucznej inteligencji wyspecjalizowany w ocenie pracy serca, a w szczególności w ocenie frakcji wyrzutowej lewej komory. To kluczowy parametr służący ocenie pracy mięśnia sercowego. Teraz, bazując na swoich wcześniejszych badaniach, przeprowadzili eksperymenty, w ramach których wykorzystali opisy 3495 echokardiografii przezklatkowych. Część badań została opisana przez techników, część przez sztuczną inteligencję. Wyniki badań wraz z ich opisami otrzymali kardiolodzy, którzy mieli poddać je ocenie.
      Okazało się, że kardiolodzy częściej zgadzali się z opisem wykonanym przez sztuczną inteligencję niż przez człowieka. W przypadku SI poprawy wymagało 16,8% opisów, natomiast kardiolodzy wprowadzili poprawki do 27,2% opisów wykonanych przez techników. Lekarze nie byli też w stanie stwierdzić, które opisy zostały wykonane przez techników, a które przez sztuczą inteligencję. Badania wykazały również, że wykorzystanie AI zaoszczędza czas zarówno kardiologów, jak i techników.
      Poprosiliśmy naszych kardiologów, by powiedzieli, które z opisów wykonała sztuczna inteligencja, a które technicy. Okazało się, że lekarze nie są w stanie zauważyć różnicy. To pokazuje, jak dobrze radzi sobie sztuczna inteligencja i że można ją bezproblemowo wdrożyć do praktyki klinicznej. Uważamy to za dobry prognostyk dla dalszych testów na wykorzystaniem SI na tym polu, mówi Ouyang.
      Badacze uważają, że wykorzystanie AI pozwoli na szybszą i sprawniejszą diagnostykę. Oczywiście o ostatecznym opisie badań obrazowych nie będzie decydował algorytm, a kardiolog. Tego typu badania, kolejne testy i artykuły naukowe powinny przyczynić się do szerszego dopuszczenia systemów AI do pracy w opiece zdrowotnej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na University of Leeds powstał system sztucznej inteligencji (SI), który analizuje skany oczu wykonywane podczas rutynowych wizyt u okulisty czy optyka i wskazuje osoby narażone na... wysokie ryzyko ataku serca. System analizuje zmiany w miniaturowych naczyniach krwionośnych siatkówki, o kórych wiemy, że wskazują na szerszy problem z układem krążenia.
      Specjaliści z Leeds wykorzystali techniki głębokiego uczenia się, by przeszkolić SI w automatycznym odczytywaniu skanów oraz wyławianiu osób, które w ciągu najbliższego roku mogą doświadczyć ataku serca.
      System, który został opisany na łamach Nature Machine Intelligence, wyróżnia się dokładnością rzędu 70–80 procent i zdaniem jego twórców może być wykorzystany przy diagnostyce chorób układu krążenia.
      Choroby układu krążenia, w tym ataki serca, to główne przyczyny zgonów na całym świecie i druga przyczyna zgonów w Wielkiej Brytanii. To choroby chroniczne, obniżające jakość życia. Ta technika może potencjalnie zrewolucjonizować diagnostykę. Skanowanie siatkówki to tani i rutynowy proces stosowany w czasie wielu badań oczu, mówi profesor Alex Frangi, który nadzorował rozwój nowego systemu. Osoby badane przez okulistę czy optometrystę mogą niejako przy okazji dowiedzieć się, czy nie rozwija się u nich choroba układu krążenia. Dzięki temu leczenie można będzie zacząć wcześniej, zanim pojawią się inne objawy.
      System sztucznej inteligencji trenowano na danych okulistycznych i kardiologicznych ponad 5000 osób. Uczył się odróżniania stanów patologicznych od prawidłowych. Gdy już się tego nauczył, na podstawie samych skanów siatkówki był w stanie określić wielkość oraz wydajność pracy lewej komory serca. Powiększona komora jest powiązana z większym ryzykiem chorób serca. Następnie SI, łącząc dane o stanie lewej komory serca z informacjami o wieku i płci pacjenta, może przewidzieć ryzyko ataku serca w ciągu najbliższych 12 miesięcy.
      Obecnie rozmiar i funkcjonowanie lewej komory serca jesteśmy w stanie określić za pomocą echokardiografii czy rezonansu magnetycznego. To specjalistyczne i kosztowne badania, które są znacznie gorzej dostępne niż badania prowadzone w gabinetach okulistycznych czy optycznych. Nowy system nie tylko obniży koszty i poprawi dostępność wczesnej diagnostyki kardiologicznej, ale może odegrać olbrzymią rolę w krajach o słabiej rozwiniętym systemie opieki zdrowotnej, gdzie specjalistyczne badania są bardzo trudno dostępne.
      Ten system sztucznej inteligencji to wspaniałe narzędzie do ujawniania wzorców istniejących w naturze. I właśnie to robi, łączy wzorce zmian w siatkówce ze zmianami w sercu, cieszy się profesor Sven Plein, jeden z autorów badań.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zróżnicowanie komórek mózgowych może prowadzić do szybszego uczenia się, odkryli naukowcy z Imperial College London (ICL). Spostrzeżenie to może zwiększyć wydajność systemów sztucznej inteligencji. Uczeni zauważyli, że gdy w symulowanych sieciach neuronowych indywidualnie dobierali właściwości elektryczne poszczególnych komórek, sieci takie uczyły się szybciej, niż sieci złożone z komórek o identycznych parametrach.
      Okazało się również, że gdy mamy zróżnicowane komórki, sieć neuronowa potrzebuje ich mniej, a całość zużywa mniej energii niż sieć o identycznych komórkach.
      Zdaniem autorów badań, może to wyjaśniać, dlaczego mózgi tak efektywnie potrafią się uczyć. Mózg musi być wydajny energetycznie, a jednocześnie zdolnym do rozwiązywania złożonych zadań. Nasza praca sugeruje, że zróżnicowanie neuronów – zarówno w mózgach jak i w systemach sztucznej inteligencji – pozwala spełnić oba warunki, mówi główny autor badań, doktorant Nicolas Perez z Wydziału Inżynierii Elektrycznej i elektronicznej.
      Odkrycie powinno też zachęcić twórców sieci neuronowych do budowania ich tak, by były bardziej podobne do mózgu. Nasze mózgi składają się z neuronów. Pozornie są one identyczne, ale przy bliższym przyjrzeniu się, widoczne są liczne różnice. Z kolei każda komórka sztucznych sieci neuronowych jest identyczna, różnią się one tylko połączeniami. Pomimo dużych postępów w rozwoju systemów sztucznej inteligencji, bardzo daleko im do mózgów. Dlatego też uczeni z ICL zastanawiali się, czy przyczyną nie jest brak zróżnicowania komórek sztucznych sieci neuronowych.
      Rozpoczęli więc badania, w ramach których emulowali różne właściwości komórek składających się na siec sztucznej inteligencji. Zauważyli, że zróżnicowanie komórek spowodowało zwiększenie szybkości uczenia się i spadek zapotrzebowania na energię. Ewolucja dała nam niesamowicie funkcjonujący mózg. Dopiero zaczynamy rozumieć, jak on działa, stwierdził doktor Dan Goodman.
      W ramach badań uczeni manipulowali „stałą czasową”, czyli tym, jak szybko każda komórka sztucznej sieci neuronowej decyduje, co ma zrobić w zależności od tego, co robią połączone z nią komórki. Niektóre z tak manipulowanych komórek podejmowały decyzję bardzo szybko, natychmiast po tym, jak działania podjęły komórki z nimi połączone. Inne zaś odczekały chwilę i podejmowały decyzję na podstawie tego, co przez pewien czas robiły komórki z nimi połączone.
      Po zróżnicowaniu „stałej czasowej” swoich komórek, naukowcy przeprowadzili zestaw testów dla uczenia maszynowego się, takich jak rozpoznawanie gestów, pogrupowanie ubrań czy ręcznie napisanych cyfr oraz zidentyfikowanie wypowiadanych komend oraz cyfr.
      Eksperymenty pokazały, że połączenie komórek o różnej „stałej czasowej” powoduje, że cała sieć lepiej rozwiązuje złożone zadania. Okazało się przy okazji, że najlepiej sprawuje się sieć o takiej konfiguracji, której zróżnicowanie jest najbliższe zróżnicowaniu komórek w mózgu. To z kolei sugeruje, że nasz mózg ewoluował w kierunku osiągnięcia najlepszego poziomu zróżnicowania dla optymalnego uczenia się.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na australijskim University of Queensland powstał pierwszy mikroskop wykorzystujący efekt splątania kwantowego, który przewyższa obecnie dostępne mikroskopy. Pozwala on dostrzec niewidoczne dotychczas struktury biologiczne. Mikroskop będzie niezwykle przydatny w biotechnologii, a wykorzystane przezeń techniki mogą znaleźć szereg zastosowań od nawigacji po obrazowanie medyczne.
      Ten przełom pozwoli na rozwój wielu nowych technologii, od doskonalszych systemów nawigacyjnych po lepsze maszyny do rezonansu magnetycznego, mówi profesor Warwick Bowen z Quantum Optics Lab i ARC Centre of Excellence for Engineered Quantum Systems.
      W końcu pokazaliśmy czujnik, który przewyższa istniejące technologie niekwantowe. To niezwykle ekscytujące. Mamy tutaj pierwszy dowód na to, że wykorzystanie splątania kwantowego w obrazowaniu może prowadzić do całkowitej zmiany paradygmatu, stwierdza Bowen.
      W opracowanej przez australijską armię Quantum Technology Roadmap, czujniki kwantowe mają dokonać rewolucji w dziedzinie opieki zdrowotnej, inżynierii, transporcie czy wykorzystaniu surowców.
      Największym osiągnięciem australijskich naukowców jest przekroczenie niepokonanej dotychczas bariery, z którą zmagała się mikroskopia optyczna. Najlepsze mikroskopy optyczne wykorzystują lasery, których światło jest miliardy razy jaśniejsze niż światło słoneczne. Delikatne systemy biologiczne, jak ludzkie komórki, mogą przetrwać w takich warunkach jedynie przez krótki czas. To poważny problem. Tymczasem dzięki kwantowemu splątaniu uzyskaliśmy w naszym mikroskopie 35-procentową poprawę jakości obrazu bez jednoczesnego niszczenia komórek. To pozwoliło nam na zobrazowanie miniaturowych struktur, które normalnie pozostałyby niewidoczne, wyjaśnia Bowen.
      Badania Australijczyków zostały opisane na łamach Nature. Były one finansowane przez Biuro Badań Naukowcy US Air Force oraz Australian Resarch Council.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rynkowy sukces lub porażka układu scalonego zależą w dużej mierze od etapu jego projektowania. Wtedy właśnie zostają podjęte decyzje odnośnie umiejscowienia na krzemie modułów pamięci i elementów logicznych. Dotychczas zadania tego nie udawało się zautomatyzować, a etap projektowania zajmuje inżynierom całe tygodnie lub miesiące. Inżynierowie Google'a poinformowali właśnie, że stworzony przez nich system sztucznej inteligencji poradził sobie z częściowym zaprojektowaniem chipa w ciągu godzin.
      Współczesne układy scalone składają się z miliardów tranzystorów, dziesiątek milionów bramek logicznych, tysiące bloków logicznych i łączących je kilometrów ścieżek. Lokalizacja poszczególnych układów i bloków logicznych odgrywa kluczową rolę dla przyszłej wydajności chipa. Specjaliści od dziesięcioleci pracują nad rozwiązaniami pozwalającymi zautomatyzować proces projektowania.
      Jako że bloki logiczne to duże elementy, tysiące i miliony razy większe od bramek logicznych, bardzo trudno jest jednocześnie umieszczać bloki i bramki. Dlatego współcześni projektanci układów najpierw umieszczają na krzemie bloki, a wolne miejsca zostają zapełnione pozostałymi bramkami logicznymi.
      Już samo rozmieszczenie bloków jest niezwykle wymagające. Eksperci Google'a obliczyli, że liczba możliwych kombinacji rozmieszczenia makrobloków, które brali pod uwagę w swoich badaniach, wynosi 102500.
      Planując rozmieszczenie bloków, inżynierowie muszą pamiętać o pozostawieniu miejsca na inne elementy i ich łączenie. Azalia Mirhoseini i jej zespół poinformowali na łamach Nature o stworzeniu metody automatycznego wstępnego projektowania chipa w czasie krótszym niż 6 godzin, które swoimi wynikami dorównuje lub nawet przewyższa to, co potrafią doświadczeni inżynierowie.
      naukowcy z Google'a wykorzystali techniki maszynowego uczenia się do wytrenowania swojego programu tak, by rozmieszczał na planie makrobloki. Po umieszczeniu każdego z nich program dokonuje oceny całego chipa, a następnie wykorzystuje to, czego się nauczył, do zaplanowania jak najlepszego kolejnego kroku.
      Co interesujące, projekty tworzone przez google'owską SI znacząco różnią się od tego, jak projektuje człowiek. Sztuczna inteligencja rozpoczyna od największych makrobloków. Ponadto w jakiś sposób unika ciągłego poprawiania tego, co już zostało zrobione. Inżynierowie, po umieszczeniu kolejnych bloków, bardzo często poprawiają rozmieszczenie następnych. SI tego nie robi. Mimo to udało jej się zaprojektować układy, w których sygnał pomiędzy poszczególnymi elementami biegnie równie sprawnie, co między układami zaprojektowanymi przez ludzi.
      Google już stosuje metody opracowane prze Mirhoseini do projektowania układów dla przyszłej generacji systemów sztucznej inteligencji. Tymczasem producenci układów scalonych próbują odtworzyć osiągnięcie Google'a i wdrożyć podobne rozwiązania do własnego procesu projektowania.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...