Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Naukowcy z Uniwersytetu Hokkaido opisali hydrożel, który naśladuje zdolność ludzkiego mózgu do zapamiętywania i zapominania. Wyniki ich badań ukazały się w piśmie Proceedings of the National Academy of Sciences (PNAS).

Ludzki mózg uczy się różnych rzeczy i zapomina informacje, gdy nie są już istotne. Odtworzenie dynamicznego procesu pamięciowego w materiałach wyprodukowanych przez człowieka stanowi wyzwanie. Ostatnio japońscy naukowcy uzyskali hydrożel, który naśladuje dynamiczną funkcję pamięciową naszego mózgu.

Hydrożele są doskonałymi kandydatami do odtwarzania funkcji biologicznych, ponieważ są miękkie i wilgotne jak ludzkie tkanki. Jesteśmy podekscytowani, mogąc zademonstrować, jak hydrożel naśladuje pewne funkcje pamięciowe tkanki mózgowej - cieszy się prof.  Jian Ping Gong.

Podczas testów akademicy umieszczali cienką warstwę hydrożelu (o ok. 45% zawartości wody) między płytkami. W górnej wycięty był kształt, np. samolot, albo wyraz, np. "GEL". Na początku żel umieszczano w zimnej wodzie, a potem przenoszono go do gorącej kąpieli. Żel wchłaniał wodę w odsłoniętej części. W ten sposób wzorzec był nanoszony na materiał jak informacja.

Kiedy zawierający poliamfolity żel przenoszono z powrotem do zimnej wody, odsłonięty obszar stawał się ciemniejszy, przez co przechowywana informacja była wyraźnie widoczna. W niższej temperaturze hydrożel stopniowo się kurczył, uwalniając wchłoniętą wodę. Wzór coraz bardziej bladł.

Japończycy zauważyli, że im dłużej żel pozostawał w gorącej kąpieli, tym ciemniejszy (bardziej intensywny) był wzór i tym więcej czasu zajmowało blaknięcie czy, inaczej mówiąc, zapominanie informacji. Zespół wykazał także, że wyższe temperatury intensyfikowały "wspomnienia".

Wygląda to podobnie jak u ludzi. Im więcej czasu spędzasz na uczeniu się czegoś lub im silniejszy jest bodziec emocjonalny, tym dłużej się zapomina - wyjaśnia prof. Kunpeng Cui.

Uczeni zademonstrowali, że pamięć hydrożelowa jest stabilna przy wahaniach temperatury i dużym rozciąganiu. Co ciekawe, można zaprogramować proces zapominania, dostrajając czas uczenia termicznego lub temperaturę. Gdy do poszczególnych liter wyrazu GEL zastosowano, na przykład, różne czasy uczenia, litery zanikały sekwencyjnie.

Przypominający działanie mózgu hydrożelowy system pamięciowy można eksplorować pod kątem pewnych zastosowań, np. w wiadomościach, które znikają ze względów bezpieczeństwa - podsumowuje Cui.

 

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To naśladowanie ludzkiego mózgu to jest troszkę przegięcie chyba :P Tzn. jest to prawda, ale na baaardzo wysokim poziomie generalizacji. W zasadzie na poziomie wykresu zależności siły bodźca od czasu (~zapominania). Natomiast w niczym to nie przypomina neurobiologicznych podstaw uczenia się. 

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, Warai Otoko napisał:

To naśladowanie ludzkiego mózgu to jest troszkę przegięcie chyba :P Tzn. jest to prawda, ale na baaardzo wysokim poziomie generalizacji. W zasadzie na poziomie wykresu zależności siły bodźca od czasu (~zapominania). Natomiast w niczym to nie przypomina neurobiologicznych podstaw uczenia się. 

W zasadzie można by powiedzieć, że większe podobieństwo osiągnięto pod względem "konsystencji" materiału (zawartości wody itp.). Jeśli chodzi o mechanizm zachodzących zmian, jest rzeczywiście inaczej, ale ciekawi mnie kierunek, w jakim ci badacze podążają :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Coś mnie ogarnia ciężki sceptycyzm. Tu naprawdę nie ma żadnego porównania. Hydrożel być może zostanie wykorzystany do produkcji jakiegoś gadgetu- zabawki dla dzieci, czy reklamy.Przecież chodzi o złożoność procesu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
53 minuty temu, Anna Błońska napisał:

Jeśli chodzi o mechanizm zachodzących zmian, jest rzeczywiście inaczej, ale ciekawi mnie kierunek, w jakim ci badacze podążają :)

Rozumiem to, przypomina mi się scena z filmu "ex machina", tam były takie "żelowe cybermózgi" z tego co pamiętam.  

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
24 minuty temu, Warai Otoko napisał:

Rozumiem to, przypomina mi się scena z filmu "ex machina", tam były takie "żelowe cybermózgi" z tego co pamiętam.  

Chyba tego nie oglądałam. Plan na wieczór jest jest ;)

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Opracowany w Kalifornii nowatorski biomateriał po dożylnym podaniu zmniejsza stan zapalny i pomaga w regeneracji uszkodzonych tkanek i komórek. Został on już przetestowany na gryzoniach i większych zwierzętach, udowadniając swoją skuteczność w regeneracji tkanki po ataku serca. Jego twórcy opracowali też prototypową metodę wykorzystania biomateriału w urazach mózgu oraz nadciśnieniu płucnym.
      Nasz biomateriał regeneruje tkankę od wewnątrz. To nowe podejście do inżynierii regeneracyjnej, mów profesor Karen Christman z University of California San Diego, której zespół stworzył biomateriał. Uczona dodaje, że testy bezpieczeństwa i skuteczności biomateriału na ludziach mogą rozpocząć się w ciągu 1-2 lat.
      Każdego roku w Polsce zawału serca doświadcza około 80 tysięcy osób. Po zawale w mięśniu sercowym pojawiają się blizny, które pogarszają jego funkcjonowanie i mogą prowadzić do kolejnych chorób.
      Już podczas wcześniejszych badań zespół Christman opracował hydrożel zbudowany z macierzy pozakomórkowej, który można było podać przez cewnik w mięsień sercowy, co pobudzało wzrost nowych komórek i naprawę tkanki mięśnia sercowego. Udaną pierwszą fazę testów klinicznych przeprowadzono w 2019 roku. Jednak metoda wprowadzania żelu – bezpośrednia injekcja w mięsień – powodowała, że leczenie można było zastosować nie wcześniej niż tydzień po zawale. Wcześniejsze wprowadzanie igły groziło dodatkowymi uszkodzeniami mięśnia. Dlatego też naukowcy z San Diego postanowili opracować metodę, którą będzie można stosować bezpośrednio po zawale. A to oznaczało konieczność stworzenia biomateriału, który można by wprowadzać do naczyń krwionośnych w sercu podczas przeprowadzania innych procedur ratunkowych, lub też podawać dożylnie.
      Potrzebowaliśmy biomateriału, który można dostarczyć do trudno dostępnych miejsc, postanowiliśmy więc wykorzystać naczynia krwionośne, mówi doktor Martin Spang. Jedną z zalet nowego żelu jest fakt, że poprzez naczynia krwionośne równomiernie dociera on do całej uszkodzonej tkanki. Żel podawany przez cewnik pozostawał w miejscu podania i nie rozprzestrzeniał się.
      Christman i jej grupa rozpoczęli więc pracę od żelu opracowanego przed kilku laty, który dowiódł swojego bezpieczeństwa w 2019 roku. Uczeni wiedzieli, że nadaje się on do podawania dożylnego, jednak cząstki hydrożeli były zbyt duże, by spełnić swoje zadanie. Naukowcy wpadli więc na pomysł, by hydrożel odwirować w centryfudze. W ten sposób oddzielono zbyt duże cząstki, pozostawiając te w skali nano. Tak uzyskany materiał poddano dializie za pomocą błony półprzepuszczalnej, filtrowaniu i sterylizacji, a następnie liofilizacji. Uzyskano w ten sposób proszek, który po dodaniu wody do injekcji zmienia się w hydrożel gotowy do wstrzyknięcia.
      Materiał przetestowano na mysim modelu zawału serca. Naukowcy spodziewali się, że hydrożel przeniknie z naczyń krwionośnych do tkanki, gdyż podczas ataku serca pojawiają się szczeliny pomiędzy komórkami śródbłonka naczyń. Okazało się, że żel nie tylko przenika do tkanki, ale również zamyka szczeliny pomiędzy komórkami naczyń krwionośnych i przyspiesza ich gojenie, zmniejszając stan zapalny. Taki sam efekt zaobserwowano podczas testów na świniach. Naukowcy wysunęli i z powodzeniem przetestowali hipotezę, że ich hydrożel pomaga również w szczurzym modelu stanu zapalnego po urazie mózgu i w nadciśnieniu płucnym. Planują więc przeprowadzenie kolejnych badań w tym kierunku. Większość przeprowadzonych przez nas badań dotyczy serca, jednak widzimy, że istnieje możliwość leczenia w ten sposób innych trudno dostępnych tkanek, mówi Spang.
      Profesor Christman oraz startup Ventrix Bio, którego jest współzałożycielką, chcą teraz postarać się o zgodę FDA (Agencja ds. Żywności i Leków) na rozpoczęcie testów na ludziach. Mogłyby się one rozpocząć w ciągu 1-2 lat. Łatwa do zastosowania metoda naprawy mięśnia sercowego pomogłaby w uniknięciu komplikacji i rozwoju schorzeń pojawiających się po zawale.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na szwedzkim Uniwersytecie Technologicznym Chalmersa powstał nowy materiał, który zapobiega infekcjom ran. To specjalny hydrożel, skuteczny przeciwko wszystkim typom bakterii, w tym lekoopornym. Jego opracowanie może przyczynić się do lepszej walki z antybiotykoopornymi bakteriami, które stanowią coraz bardziej poważny problem.
      Po przetestowaniu naszego hydrożelu na różnych typach bakterii, zaobserwowaliśmy, że jest on wysoce efektywny, również przeciwko bakteriom, które stały się oporne na antybiotyki, mówi profesor Martin Andersson.
      Substancją aktywną w mikrożelu są peptydy, niewielkie proteiny, które występują naturalnie w układzie odpornościowym. "Ryzyko, że bakterie rozwiną oporność na te peptydy jest bardzo małe, gdyż atakują one najbardziej zewnętrzną błonę bakterii. To powód, dla którego się nimi zainteresowaliśmy", stwierdza Andersson.
      Naukowcy od dawna próbowali wykorzystać te peptydy, jednak dotychczas bez powodzenia. Problem w tym, że po kontakcie z płynami organizmu, np. z krwią, bardzo szybko ulegają one rozpadowi. Szwedzcy naukowcy uwięzili te peptydy w specjalnym hydrożelu, który je chroni.
      To bardzo obiecujący materiał. Jest nieszkodliwy dla komórek, łagodny dla skóry. Z naszych badań wynika, że przyłączone do niego peptydy ulegają znacznie wolniejszej degeneracji niż normalnie, stwierdza doktorant Edvin Blomstrand z Wydziału Chemii i Inżynierii Chemicznej. Spodziewaliśmy się dobrych wyników, ale ten materiał naprawdę pozytywnie nas zaskoczył, dodaje Andersson.
      Komercjalizacją wynalazku zajmie się firma Amferia AB, której Andersson jest założycielem. Obecnie w wielu krajach Europy trwają testy kliniczne żelu. Badana jest też jego przydatność w weterynarii. Najprawdopodobniej będzie on stosowany w formie opatrunku. Niewykluczone, że na rynek trafi już w przyszłym roku.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Posługując się polem magnetycznym i hydrożelem, naukowcy ze Szkoły Medycyny Uniwersytetu Pensylwanii zademonstrowali potencjalną metodę odtwarzania złożonych tkanek. Za jej pomocą można by sobie radzić np. z degeneracją tkanki chrzęstnej. Wyniki badań zespołu opublikowano w piśmie Advanced Materials.
      Odkryliśmy, że jesteśmy w stanie organizować obiekty, takie jak komórki, w taki sposób, by utworzyć [...] złożone tkanki, nie zmieniając samych komórek. By uzyskać reakcję na pole magnetyczne, inni musieli dodawać do komórek cząstki magnetyczne. Zabieg ten może jednak wywierać niepożądany długofalowy wpływ na zdrowie komórki. Zamiast tego manipulowaliśmy więc magnetycznym charakterem otoczenia komórki; dzięki temu mogliśmy organizować obiekty za pomocą magnesów - opowiada Hannah Zlotnick.
      U ludzi ubytki w chrząstce naprawia się za pomocą różnych sztucznych i biologicznych materiałów. Ich właściwości odbiegają jednak od oryginału, dlatego należy się liczyć z ograniczeniami takiego rozwiązania. Zlotnik wskazuje też na naturalny gradient chrząstki (powierzchniowo występuje większa liczba komórek).
      Mając to wszystko na uwadze, Amerykanie postanowili poszukać innego rozwiązania. Podczas eksperymentów odkryli, że gdy do hydrożelu mającego formę ciekłą doda się ciecz magnetyczną, można porządkować komórki i inne obiekty, w tym mikrokapsułki do dostarczania leków, według specyficznego wzorca, który przypomina naturalną tkankę. Wystarczy przyłożyć zewnętrzne pole magnetyczne.
      Po działaniu pola magnetycznego całość wystawiano na oddziaływanie ultrafioletu (naukowcy prowadzili fotosieciowanie, utrwalając rozmieszczenie obiektów).
      W porównaniu do standardowych jednolitych materiałów syntetycznych [...], takie "odwzorowane magnetycznie" tkanki lepiej przypominają oryginał pod względem rozmieszczenia komórek i właściwości mechanicznych [uczeni odtworzyli chrząstkę stawową] - podkreśla dr Robert Mauck.
      Technikę badano na razie wyłącznie in vitro.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Międzynarodowy zespół naukowców zaprojektował hydrożel, który pozwala hodować wykorzystywane w immunoterapii nowotworów limfocyty T. Hydrożele te imitują węzły chłonne, gdzie limfocyty T się namnażają. Zespół ma nadzieję, że technologia szybko znajdzie zastosowanie w klinikach.
      Uczeni, których artykuł ukazał się w piśmie Biomaterials, rozpoczęli projekt, którego celem jest drukowanie nowego hydrożelu w 3D. Ma to przyspieszyć transfer technologii na rynek.
      Hydrożele 3D są wykonywane z 1) poli(tlenku etylenu), biokompatybilnego polimeru szeroko wykorzystywanego w biomedycynie, oraz 2) drobnocząsteczkowej heparyny. Polimer zapewnia właściwości strukturalne i mechaniczne konieczne do wzrostu limfocytów T, a heparyna "kotwiczy" różne biocząsteczki, np. cytokinę CCL21; CCL21 występuje w węzłach chłonnych i odgrywa ważną rolę w migracji i proliferacji komórek.
      Naukowcy wyjaśniają, że w leczeniu nowotworów można stosować adoptywną terapię komórkową (ang. adoptive cell therapy). Polega ona na wykorzystaniu zmodyfikowanych in vitro własnych komórek odpornościowych pacjenta i zwrotnym ich podaniu do krwiobiegu.
      Jej zastosowanie jest ograniczane przez obecne podłoża hodowlane, ponieważ nie są one na tyle skuteczne, by umożliwić namnażanie i wzrost odpowiedniej liczby terapeutycznych limfocytów T w krótkim czasie i w opłacalny ekonomicznie sposób - podkreśla Judith Guasch z Institut de Ciència de Materials de Barcelona (ICMAB-CSIC).
      Zespół będzie próbował drukować kompatybilne z bioreaktorami duże hydrożele 3D. Celem ma być namnażanie limfocytów T w bardziej wydajny sposób. Obecnie trwa poszukiwanie partnerów przemysłowych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzięki ponad 100-godzinnemu skanowaniu w aparacie do rezonansu magnetycznemu uzyskano najbardziej jak dotąd szczegółowy obraz 3D ludzkiego mózgu. Naukowcy podkreślają, że rozdzielczość jest tak doskonała, że na obrazie można potencjalnie dostrzec obiekty o średnicy poniżej 0,1 mm. Wideo i dane są publicznie dostępne.
      Mogąc obejrzeć najdrobniejsze szczególiki różnych struktur, np. ciała migdałowatego, akademicy mają nadzieję zrozumieć, w jaki sposób niewielkie zmiany anatomiczne wiążą się z zaburzeniami, w tym zespołem stresu pourazowego (PTSD). Zdjęcia mają potencjał, by zaawansować wiedzę nt. ludzkiej anatomii w zdrowiu i chorobie.
      Zespół z Massachusetts General Hospital w Bostonie badał mózg 58-letniej kobiety, która zmarła na wirusowe zapalenie płuc. Jej podarowany do badań mózg uznano za zdrowy. Po zakonserwowaniu przechowywano go przez blisko 3 lata.
      Przed rozpoczęciem skanowania Amerykanie wyprodukowali specjalną sferoidalną obudowę uretanową. Miała ona podtrzymywać mózg i jednocześnie umożliwiać wydostawanie się bąbli powietrza. Zabezpieczony mózg trafił do maszyny na prawie 5 dni.
      Obrazy w tak wysokiej rozdzielczości uzyskano dzięki temu, że 1) mózg był całkowicie nieruchomy (badania nie zakłócały np. procesy fizjologiczne, w tym oddech czy przepływ krwi), 2) skanowanie trwało tak długo, a 3) naukowcy dysponowali 7-teslowym urządzeniem.
      Wyniki zostały opublikowane w piśmie bioRxiv.
       


      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...