Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Jedyny taki ultrakompaktowy laser z Politechniki Wrocławskiej

Recommended Posts

Naukowcy z Wydziału Elektroniki Politechniki Wrocławskiej stworzyli ultrakompaktowy laser, który pomoże dokładnie zobrazować siatkówkę i wcześniej wykrywać choroby oczu. Wyniki ich badań ukazały się właśnie w renomowanym czasopiśmie naukowym Biomedical Optics Express.

Dr hab. Grzegorz Soboń, prof. uczelni, wraz ze swoim zespołem od 2018 roku pracuje nad nowego typu laserami, będącymi tzw. optycznymi grzebieniami częstotliwości. W ramach projektu "Fiber-based mid-infrared frequency combs for laser spectroscopy and environmental monitoring", finansowanego przez Fundację na rzecz Nauki Polskiej, stworzyli właśnie prototyp ultrakompaktowego lasera.

Jest to tzw. laser femtosekundowy, który można stosować w obrazowaniu tkanek biologicznych – wyjaśnia dr hab. Grzegorz Soboń, lider projektu. Znajdzie on zastosowanie m.in. w obrazowaniu in vivo siatkówki oka, umożliwiając tym samym stworzenie narzędzi do zaawansowanej i wczesnej diagnostyki chorób oczu.

Prosty, tańszy i skuteczny

Prototyp, który powstał na Wydziale Elektroniki PWr, ma unikatowe parametry, nieosiągalne przez inne systemy dostępne obecnie na rynku. Laser generuje ultrakrótkie impulsy o czasie trwania 60 fs (60×10-15 sekundy) i długości fali 780 nm (tj. z pogranicza pasma widzialnego i podczerwieni) oraz umożliwia przestrajanie częstotliwości powtarzania impulsów (tzn. regulowanie odstępu czasowego pomiędzy kolejnymi impulsami). Szczególnie ta ostatnia cecha jest niezmiernie istotna i kluczowa do zastosowań w mikroskopii wielofotonowej, gdyż pozwala dostosować częstotliwość impulsów do konkretnych fluoroforów.

Pokazaliśmy, że zwiększenie odstępu między impulsami, przy zachowaniu ich czasu trwania, pozwala zwiększyć intensywność sygnału fluorescencyjnego mierzonej próbki – opowiada dr hab. Grzegorz Soboń. Jest to istotne w przypadku badań tkanek wrażliwych na uszkodzenie, takich jak ludzkie oko, dla których nie można zastosować dużej mocy optycznej.

Naukowcom zależało też na maksymalnym uproszczeniu konstrukcji lasera. I to się im udało. Prototyp nie wymaga żadnego justowania ani kalibracji, może być obsługiwany przez personel medyczny, lekarzy, biologów. Jest to laser światłowodowy, tzn. światło jest "uwięzione" we włóknach optycznych i opuszcza je dopiero na samym końcu układu, przed mikroskopem dwufotonowym – wyjaśnia naukowiec z PWr. Dzięki prostej konstrukcji, wykorzystującej nasze "know-how" w zakresie wzmacniania ultrakrótkich impulsów laserowych oraz zjawisk nieliniowych zachodzących w światłowodach, urządzenie to jest także dużo tańsze w produkcji niż konkurencyjny laser tytanowo-szafirowy – dodaje.

Dzięki współpracy z grupą prof. Macieja Wojtkowskiego (laureat Nagrody FNP, tzw. "Polskiego Nobla", pionier w dziedzinie optycznej tomografii koherencyjnej oka) z Instytutu Chemii Fizycznej Polskiej Akademii Nauk wrocławski laser został zintegrowany z dwufotonowym mikroskopem fluorescencyjnym zbudowanym w IChF.

Zastosowaliśmy laser do obrazowania wybranych tkanek biologicznych ex vivo, takich jak wątroba żaby, skóra szczura czy wybranych roślin – opowiada dr hab. Grzegorz Soboń. Pokazaliśmy, że przy zmniejszonej częstotliwości powtarzania impulsów możliwe jest uzyskanie proporcjonalnie większej odpowiedzi fluorescencyjnej, co umożliwia uzyskiwanie znakomitej jakości obrazów tkanek, bez ryzyka ich uszkodzenia. Warto podkreślić, iż parametry promieniowania generowanego przez laser również spełniają wymagania bezpieczeństwa pod kątem zastosowania u ludzi – mówi naukowiec.

Główną konstruktorką lasera jest dr inż. Dorota Stachowiak z Katedry Teorii Pola, Układów Elektronicznych i Optoelektroniki, natomiast badania nad mikroskopią fluorescencyjną zostały przeprowadzone przez dr. inż. Jakuba Bogusławskiego, który doktorat uzyskał na PWr, a obecnie pracuje w Instytucie Chemii Fizycznej PAN. W zespole pracują też Aleksander Głuszek i Zbigniew Łaszczych.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Wrocławskiej zbadali enzym, który może okazać się kluczowy w walce z koronawirusem SARS-CoV-2. Proteaza SARS-CoV-2 Mpro (Main Protease) odpowiedzialna jest za cięcie białek i jest wirusowi niezbędna do replikacji.
      Powstrzymanie tego procesu zabiłoby wirusa, zatem byłoby dobrą strategią w opracowaniu leku. Jak piszą sami naukowcy, praca zespołu profesora Marcina Drąga zapewnia ramy do zaprojektowania inhibitorów [substancji powstrzymujących działanie – red.], które mogą posłużyć do stworzenia środków zwalczających wirusa lub testów diagnostycznych.
      O pracach profesora Drąga wspominaliśmy już w 2018 roku.
      SARS-CoV-2 Mpro znana jest badaczom. Jeśli jednak potraktowalibyśmy ją jak zamek, to jest to zamek, który można otworzyć jednym z milionów możliwych kluczy. A my znaleźliśmy jeden klucz, który pasuje do tego enzymu, mówi profesor Drąg.
      Naukowcy wiedzieli, że warto przyjrzeć się SARS-CoV-2 Mpro, ponieważ podobna proteaza występuje w wirusie SARS-CoV, który wywołał epidemię SARS z lat 2002–2003. Bardzo istotny jest fakt, że zespół profesora Drąga ściśle współpracuje z grupą profesora Rolfa Hilgenfelda z Uniwersytetu w Lubece. Drąg i Hilgenfeld mają na swoim koncie prace nad wirusami Zika, Zachodniego Nilu i dengi. A profesor Hilgenfeld odegrał ważną rolę w walce z poprzednią epidemią SARS, kiedy to opracował trójwymiarową strukturę proteazy i jej inhibitora. Jako że SARS-CoV jest dość dobrze zbadany i bardzo podobny do obecnego koronawirusa SARS-CoV-2, naukowcy wiedzą, którymi elementami SARS-CoV-2 warto się zainteresować.
      Na początku lutego bieżącego roku profesor Hilgenfeld uzyskał proteazę koronawirusa SARS-CoV-2 i dostarczył ją do Wrocławia. Tutaj prace ruszyły pełną parą.
      Oczywiście naukowcy na całym świecie wiedzą o roli, jaką odgrywają SARS-CoV Mpro i SARS-CoV-2 Mpro i badają te enzymy, jednak to polski zespół jako pierwszy mógł pochwalić się sukcesem. Było to możliwe dzięki opracowanemu wcześniej przez profesora Drąga narzędziu o nazwie Hybrydowa Kombinatoryczna Biblioteka Substratów (HyCoSuL). HyCoSuL pozwoliła na opisanie preferencji substratowej enzymu. To jedna z najważniejszych informacji na jego temat. Dzięki temu można bowiem określić, jak powinien wyglądać „klucz” blokujący działanie SARS-CoV-2 Mpro. Pozwala też na mapowanie najważniejszego miejsca enzymu, co pozwoli np. na dopasowanie do niego leków już istniejących na rynku. Za opracowanie HyCoSuL profesor Drąg został w ubiegłym roku wyróżniony Nagrodą Fundacji na rzecz Nauki Polskiej.
      Jakby jeszcze tego było mało, zespół profesora Drąga zauważył że proteaza SARS-CoV-2 Mpro jest na tyle unikalnym enzymem, że w ludzkim organizmie niemal nie występują enzymy do niego podobne. To zaś oznacza, że jeśli powstaną leki atakujące SARS-CoV-2 Mpro to będą one szkodziły wirusowi, ale nie człowiekowi, zatem będą mniej toksyczne.
      Z pełną pracą, jeszcze niezrecenzowaną, opisującą osiągnięcie polskich naukowców można zapoznać się w bioRxiv.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Absolwenci i studenci Politechniki Wrocławskiej i Politechniki Poznańskiej stworzyli aplikację, która pozwoli w szybki sposób zgłaszać i zarządzać awariami. Skorzystać mogą z niej nie tylko zarządcy hoteli i mieszkań, lecz także firmy serwisowe.
      Pomysł na opracowanie aplikacji pojawił się półtora roku temu, gdy do firmy informatycznej założonej przez naszych absolwentów zgłosiła się osoba zarządzająca zielenią miejską w Jeleniej Górze. Dotychczas planowanie wszystkich prac remontowo-porządkowych odbywało się tam na zasadzie zgłoszeń telefonicznych, przesyłania dziesiątek e-maili oraz ustnego rozdzielania zadań, co zabierało jednak bardzo dużo czasu.
      Klientowi zależało przede wszystkim na usprawnieniu procedur. Pojechaliśmy na miejsce, żeby zobaczyć, jak to wszystko działa i uznaliśmy, że dobrym rozwiązaniem może być stworzenie odpowiedniej aplikacji. Efektem naszej pracy jest właśnie system "Usterka", który w Jeleniej Górze jest wykorzystywany m.in. do utrzymania placów zabaw – mówi Mikołaj Ostrowski, absolwent PWr, który w firmie odpowiada za kwestie marketingowe.
      Prosto i efektywnie
      System składa się z aplikacji mobilnej, którą instalujemy na smartfonie, i panelu administracyjnego, do którego logujemy się przez stronę internetową. Z aplikacji korzystają przede wszystkim pracownicy zgłaszający awarię oraz ekipy remontowe, a z panelu – osoby koordynujące ich działania.
      Przygotowując aplikację postawiliśmy na prostotę użytkowania. Zależało nam na tym, aby dodawanie informacji o usterkach czy awariach i późniejsze zarządzanie zgłoszeniami zabierało jak najmniej czasu – dodaje Mikołaj Ostrowski.
      Korzystanie z aplikacji jest rzeczywiście proste. Wystarczy np. zeskanować kod QR , który jest na uszkodzonej rzeczy, dodać krótki opis oraz zdjęcie zepsutego elementu. Po wysłaniu zgłoszenie trafia do systemu i od tego momentu administrator może je przydzielić konkretnej osobie, a następnie na bieżąco monitorować naprawę.
      Dodawanie zdjęcia to znakomita opcja, do której nie mamy dostępu, przekazując zgłoszenie o awarii telefonicznie. Pozwala nam to na doprecyzowanie informacji, co konkretnie się zepsuło i dokładne zaplanowanie naprawy – zaznacza Mikołaj Ostrowski.
      Skanowanie kodu QR to tylko jeden ze sposobów zgłaszania awarii, który sprawdza się np. w przestrzeni miejskiej, gdzie tego typu kody są w codziennym użytku. Z kolei w hotelach konieczne jest wcześniejsze opracowanie odpowiedniej bazy elementów wchodzących np. w skład wyposażenia pokoju. Jest ona przygotowywana przez naszych absolwentów we współpracy z klientami, a dodatkowo zaimplementowano także możliwość wykonania zdjęć wzorcowych.
      Zebranie wszystkich informacji o potrzebach klientów to właśnie najtrudniejszy i najbardziej czasochłonny element przy opracowywaniu odpowiedniej wersji aplikacji. Od strony technicznej nie jest to aż tak trudne, ponieważ działająca od kilku lat firma ma już odpowiednie zaplecze do realizacji projektu.
      Wyróżnia nas właśnie kompleksowe podejście do problemu. Nie tylko oferujemy gotowy system, lecz także opracowujemy strategię działania, badamy otoczenie, budujemy efektywną bazę elementów oraz prowadzimy szkolenia z obsługi systemu dla całej załogi. Szkolenia pozwalają przełamać barierę przed korzystaniem z nowych rozwiązań, bo taka zawsze na początku jest. Po kilku pierwszych próbach okazuje się jednak, że aplikacja jest na tyle przyjazna, że każdy da sobie z nią radę – podkreśla Mikołaj Ostrowski.
      Klienci, którzy są zainteresowani skorzystaniem z aplikacji, mogą ją otrzymać na bezpłatny okres testowy, w trakcie którego budowana jest także baza informacyjna i prowadzone są szkolenia. Jeśli system się sprawdza, to wtedy można z niego korzystać po wykupieniu miesięcznego abonamentu. Wysokość opłat jest zależna od wielkości danego obiektu i dostępnych funkcjonalności.
      Uniwersalna aplikacja
      "Usterka" jest obecnie wykorzystywana do technicznego utrzymania placów zabaw czy hoteli, ale nic nie stoi na przeszkodzie, żeby zaadaptować system na potrzeby firm realizujących przedsięwzięcia serwisowe, wynajmujących przestrzenie biurowe czy zarządców nieruchomości mieszkalnych.
      Firma prowadzi już rozmowy na temat wdrożenia systemu w akademikach Politechniki Wrocławskiej. Pomysł zakłada, że z aplikacji korzystać będą studenci, którzy w ten sposób mogliby zgłaszać wszelkiego typu awarie administracji obiektu.
      Aplikacja jest na tyle uniwersalna, że można ją dostosować do indywidualnych wymagań. Przyjrzyjmy się np. sytuacji, w której klient chce zareklamować uszkodzone meble. Dotychczas musiał to zgłosić do salonu, który przekazywał sprawę dystrybutorowi lub producentowi i dopiero na końcu sprawa trafiała do serwisanta. Dzięki naszej aplikacji cały proces można ograniczyć do linii klient-serwisant, a producent powinien tylko nadzorować zgłoszenie – tłumaczy Mikołaj Ostrowski.
      W planach kolejne wersje
      Twórcy planują już dalszy rozwój swojego programu. W kolejnych wersjach mają się pojawić nowe funkcjonalności m.in. kalendarz, w którym będzie można zaplanować terminy przeglądów i kontroli, a gdy takie wydarzenie będzie się zbliżać, administrator otrzyma odpowiednie powiadomienie.
      Pomysłów mamy bardzo dużo. Chcemy, żeby aplikacja obejmowała jak najwięcej procesów, bo jest na tyle łatwa w rozbudowie, że wszystkie najważniejsze funkcje możemy zebrać w jednym miejscu. Dzięki temu, korzystając z aplikacji, nie musimy się przekopywać przez stosy maili czy notatek, bo wszystko odbywa się automatycznie i wystarczy, że mamy przy sobie telefon – mówi Mikołaj Ostrowski.
      Zespół pracujący nad programem liczy dziesięć osób, z których zdecydowana większość to absolwenci i studenci Wydziału Elektroniki i Wydziału Mechanicznego Politechniki Wrocławskiej. Swój startup rozwijają we współpracy z Akademickim Inkubatorem Przedsiębiorczości PWr.
      Więcej informacji o aplikacji na stronie.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nasi naukowcy pracują nad technologią wytwarzania wielofunkcyjnego materiału kompozytowego do odbudowy tkanki kostnej Chcemy wykorzystać naturalną zdolność kości do regeneracji – mówi dr inż. Konrad Szustakiewicz z Wydziału Chemicznego PWr.
      Dr Szustakiewicz wraz grupą badaczy z Politechniki Wrocławskiej uczestniczy w interdyscyplinarnym projekcie nadzorowanym przez Instytut Ceramiki i Materiałów Budowlanych z Warszawy. W konsorcjum jest także Uniwersytet Gdański, Instytut Biotechnologii i Medycyny Molekularnej oraz jako partner biznesowy – spółka SensDx.
      Ideą projektu, finansowanego przez Narodowe Centrum Badań i Rozwoju w ramach konkursu Techmatstrateg 2, jest stworzenie implantu kostnego, który będzie aktywny biologicznie. Ma on pomóc pacjentom z ubytkami w kościach spowodowanymi np. osteoporozą, chorobami nowotworami czy urazami.
      W tym celu wykorzystany zostanie materiał kompozytowy z odpowiednio dobranego polimeru oraz bioszkła, które jest biozgodne oraz wytrzymałe mechanicznie. Dlatego świetnie nadaje się do ubytków powstałych w tkance kostnej.
      Nasz materiał, ma być biodegradowalny i bioresorbowalny, czyli będzie się rozkładać w organizmie ludzkim lub zwierzęcym w taki sposób, żeby nie powstawały żadne toksyczne związki. Nie będzie on wywoływał stanów zapalnych i zostanie wchłonięty przez organizm. Taki jest plan – wyjaśnia dr Konrad Szustakiewicz z Zakładu Inżynierii i Technologii Polimerów.
      To właśnie tu wykonywane są badania w ramach chemicznej części projektu, czyli tej dotyczącej dopasowania odpowiedniego polimeru.
      Pomysł, realizowany przez konsorcjum, łączy różne dziedziny nauki. To działania na granicy inżynierii materiałowej, chemii polimerów, ceramiki, medycyny i oczywiście biologii – podkreśla dr Szustakiewicz. Każdy z partnerów odpowiada za inny etap badań. Bioszkło powstaje w grupie dr inż. Zbigniewa Jaegermanna w Instytucie Ceramiki i Materiałów Budowlanych w Warszawie, my jesteśmy odpowiedzialni za wytworzenie polimeru o odpowiednim ciężarze cząsteczkowym – wyjaśnia.
      Do polimeru przyłączane są peptydy – czym zajmuje się zespół z Uniwersytetu Gdańskiego, pod kierownictwem prof. Sylwii Rodziewicz-Motowidło. W kolejnych etapach polimer będzie mieszany z bioszkłem, a następnie w Instytucie Biotechnologii i Medycyny Molekularnej zostanie przebadany pod względem biologicznym. Dostaniemy  wtedy odpowiedź, jak nasz materiał zachowuje się w walce z różnymi bakteriami, np. gronkowcem złocistym – tłumaczy naukowiec z PWr.
      Za wszystkie procedury związane z komercjalizacją wyników i znalezienie inwestora gotowego przeprowadzić kolejną fazę badań klinicznych odpowiada firma SensDx. Droga wynalazku z laboratorium do wdrożenia na rynek jest bardzo długa i skomplikowana. Dlatego zależy nam, żeby jak najszybciej ją przejść. Już pierwsze wyniki zamierzamy poddać ochronie patentowej i objąć licencją – zapowiada dr Szustakiewicz.
      Innowacyjność projektu polega na tym, że wytworzony materiał ma nie tylko wypełnić ubytek, lecz także pobudzić komórki do regeneracji i zapobiegać powstawaniu stanów zapalnych. Bioszkło to taka imitacja kości. Dzięki obecności peptydów o odpowiednich sekwencjach komórki kostne namnożą się szybciej. Peptydy będą także uwalniane w czasie resorpcji polimeru i będą też działać antybakteryjnie. Polimer po pewnym czasie zniknie z organizmu, zostanie bioszkło obudowane kością – wyjaśnia dr Szustakiewicz.
      Dodaje, że aktualnie uzupełnienia kostne to gorący temat w świecie badań naukowych. W wielu ośrodkach prowadzone są prace nad różnymi rozwiązaniami. Nasze podejście jest inne, bo po pierwsze proponujemy materiał polimerowo-ceramiczny, po drugie będzie on aktywny biologicznie. Dzięki temu proces gojenia się rany znacznie się skróci – mówi kierownik projektu na PWr.
      Takie podejście spotkało się z pozytywną oceną środowiska ekspertów, bo projekt, chociaż jest jeszcze w fazie początkowej, już otrzymał Polską Nagrodę Inteligentnego Rozwoju w kategorii: innowacyjne technologie przyszłości.
      Działania konsorcjum rozpisane są na trzy lata. Politechniczny zespół liczy siedem osób. Poza kierownikiem są to dr inż. Małgorzata Gazińska, dr inż. Ewelina Ortyl, dr inż. Magdalena Kobielarz, dr inż. Dominika Czycz, mgr inż. Agnieszka Bondyra oraz mgr inż. Michał Grzymajło. Naukowcy na realizację swojej części badań dostali niecały milion złotych. Cały projekt kosztuje prawie 7 milionów zł.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dwa zespoły studentów z Politechniki Wrocławskiej – które przygotowały projekty marsjańskich osiedli – dostały się do światowego finału konkursu Mars Colony Prize. Swoje pomysły na to, jak może wyglądać samowystarczalna kolonia na Marsie, studenci przedstawią w Kalifornii w październiku.
      Spośród 100 projektów marsjańskich kolonii nadesłanych z całego świata organizacja Mars Society wybrała do finału 10 - w tym aż dwa projekty studentów z Politechniki Wrocławskiej: „Ideacity” i „Twardowsky”. Ich autorzy w połowie października szczegółowo zaprezentują swoje rozwiązania w USA. O sukcesie wrocławskich studentów poinformowano na stronie PWr.
      Organizator konkursu – Mars Society – oczekiwał od uczestników konkursu projektu samowystarczalnej marsjańskiej kolonii dla tysiąca osób. Osiedle powinno importować jak najmniej towarów z Ziemi, a jednocześnie mieć się z czego utrzymywać. Musi samo wytwarzać jedzenie dla swoich mieszkańców, podobnie jak materiały budowlane potrzebne do stopniowego rozbudowywania się oraz m.in. energię, ubrania, pojazdy, maszyny i wszystkie produkty codziennego użytku – jak w typowym ziemskim mieście.
      PWr poinformowała, że projektanci musieli wziąć pod uwagę wiele ograniczeń wynikających z warunków panujących na Czerwonej Planecie – jak choćby mniejszą żyzność marsjańskiej gleby w porównaniu do ziemskiej czy wahania temperatur od minus 140 st. C. do nawet plus 30.
      W konkursie oceniano m.in. projekt techniczny i opis, jakie systemy zostaną wykorzystane w kolonii i jak będą działały. Liczyły się też kwestie ekonomiczne i samowystarczalność bazy, a także estetyka kolonii oraz to, jak rozwiązano zagadnienia społeczne, kulturalne, polityczne i organizacyjne.
      Podczas finału każdy zespół dostanie po 20 minut, aby zaprezentować projekt jury oraz pięć minut na odpowiedzi na ich pytania.
      Pierwszy z finałowych projektów – „Ideacity” – stworzyła grupa Innspace. Miasto z ich projektu mieści się na planie sześciokąta o boku 400 m. Bliżej centrum studenci zaprojektowali budynki przeznaczone do codziennego funkcjonowania, natomiast na zewnętrznej części miasta ulokowali zabudowania przemysłowe. Większość zabudowy znajduje się pod ziemią, co pozwala chronić mieszkańców przed promieniowaniem.
      Postawiliśmy duży nacisk na integrację społeczną. Dzięki temu mieszkańcy kolonii będą mogli dobrze się poznać i poczuć wspólnotą, co znacząco wpłynie na jakość ich życia. Największą część obszaru zajmą uprawy, będące źródłem żywności dla całej kolonii. Kolejną rozbudowaną strefą będzie ta przemysłowa, na którą złożą się magazyny, produkcja, fabryki i oczyszczalnie. Ważnym punktem będzie ośrodek badawczy, połączony z placówkami medycznymi. Uwzględniliśmy również m.in. hotel, dom modlitw, placówki edukacyjne, centrum sportowe i ogrody - opowiada o projekcie Justyna Pelc cytowana na stronie PWr.
      Studenci proponują, by większość budynków zbudowały zrobotyzowane drukarki 3D, a do produkcji użyły marsjańskiej gleby, regolitu, czyli surowca, którego na Czerwonej Planecie jest pod dostatkiem.
      Projektanci „Ideacity” zwracają uwagę, że kluczowym aspektem życia na Marsie jest monitoring procesów życiowych oraz aspektów psychologicznych życia osadników.
      Drugi z projektów, który dostał się do finału, to „Twardowsky”. Pracowało nad nim 19 osób - studenci i doktoranci skupieni wokół inicjatywy badawczej Space is More i Projektu Scorpio z pomocą kilku członków z Koła Naukowego MOS i inicjatywy LabDigiFab.
      „Twardowsky” – jak opisują przedstawiciele PWr – dzieliłby się na pięć jednostek połączonych wspólnym „hubem” – placem głównym, gdzie znajdowałyby się miejsca związane ze spędzaniem czasu wolnego i rozrywką. Przestrzeń miałaby układ tarasowy. Mieszkania kolonizatorów sąsiadowałyby tam m.in. z restauracjami, kafejkami, sklepami czy placówkami medycznymi.
      Mieszkańcy byliby tam podzieleni na grupy po dwieście osób. W ten sposób mają szansę się poznać, nie być anonimowymi w tłumie – wyjaśnia członek zespołu Orest Savytskyi.
      W naszej kolonii zaprojektowaliśmy dużo otwartych terenów z zielenią, a do tego wodospady, co razem tworzy miejsca, które uspokajają i koją – mówi członkini zespołu Natalia Ćwilichowska. Tłumaczy, że w każdej jednostce znajdowałyby się rośliny, z których ma powstawać żywność. Wytwarzanie żywności w „Twardowskym” opierałoby się o akwaponikę, czyli połączenie hodowli ryb w wielkich akwariach z uprawą roślin w wodzie.
      Kolonia na dużą skalę zajmowałaby się recyklingiem produktów. Np. z włókien celulozowych wytwarzałaby tam ubrania, a z innych odpadków roślinnych… marsjańską wódkę, którą – jak proponuje zespół z PWr – mieszkańcy Marsa eksportowaliby na Ziemię.
      Lista finalistów dostępna jest na stronie Mars Society.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Wrocławskiej pozyskali cytometr masowy – najnowocześniejsze obecnie urządzenie do analizy i diagnostyki próbek komórkowych oraz zaawansowanej proteomiki. To obecnie jedyne tego typu urządzenie w Polsce i będzie ono stanowić jeden z kluczowych elementów aparaturowych unikalnego Laboratorium Obrazowania tworzonego przez prof. Marcina Drąga na Wydziale Chemicznym PWr.
      Cytometria jest jedną z metod diagnostycznych, która umożliwia m.in. analizę różnorodnych parametrów badanych komórek. Dotychczas najpopularniejszymi aparatami do prowadzenia tego typu badań były opierające się na pomiarach fluorescencyjnych cytometry przepływowe, w których analizowano odpowiednio wyznakowane komórki np. pobrane metodą biopsji czy wyhodowane w laboratorium. Urządzenia te są w stanie przeprowadzić analizę ok. 10-15 różnych parametrów  komórkowych m.in. wielkość, czy intensywności fluorescencji badanych elementów, głównie białek.
      Najbardziej zaawansowanym technicznie dostępnym obecnie na rynku aparatem, wykorzystywanym w tego typu testach jest jednak cytometr masowy, który właśnie trafił na Politechnikę Wrocławską. Cytometria masowa to stosunkowo młoda technika analityczna, niemniej w ostatnim czasie już znacząco zrewolucjonizowała nowoczesną diagnostykę medyczną zarówno w laboratoriach akademickich jak i przemyśle farmaceutycznym. Przy prowadzeniu analiz zakłada ona wykorzystanie spektrometrii masowej, czyli badania próbki przy pomocy analizy widma mas atomów metali, które używane są w tej metodzie jako znaczniki.
      Szybsza i lepsza analiza
      Cytometr masowy jest więc używany do multiparametrycznej analizy próbek, głównie komórek, które w tym procesie znaczone są stabilnymi izotopami metali przejściowych, głównie lantanowców.
      Multiparametryczna analiza oznacza, że w trakcie jednego eksperymentu jesteśmy w stanie poznać i określić wiele parametrów na poziomie poszczególnych komórek. O ile jednak cytometry przepływowe mogą podać kilkanaście wyników, to cytometry masowe przeprowadzają analizę nawet kilkudziesięciu różnych parametrów – tłumaczy prof. Marcin Drąg z Zakładu Chemii Bioorganicznej Wydziału Chemicznego PWr.
      Wyniki badań komórek w cytometrze masowym są również o wiele bardziej rozbudowane, oszczędza się także czas, bo jedną próbkę można oznaczyć wieloma metalami. Co ważne, w urządzeniu można badać komórki każdego typu np. komórki z guzów nowotworowych czy białaczki, komórki krwi czy nawet komórki pochodzące z innych organizmów (pasożytów, czy bakterii).
      Tak naprawdę nie ma żadnych ograniczeń co do badań realizowanych przy pomocy cytometru masowego. Ogranicza nas jedynie technika i jakość naszej pracy przy sporządzaniu próbki. Kluczowym aspektem jest tu właśnie odpowiednie przygotowanie badanego materiału, bo sama jego analiza opiera się głównie na odpowiednich algorytmach komputerowych, choć oczywiście trzeba wiedzieć jakich algorytmów użyć do danego typu eksperymentu – dodaje dr inż. Marcin Poręba z Zakładu Chemii Bioorganicznej Wydziału Chemicznego PWr, który pracował już na cytometrze masowym podczas swojego stażu podoktorskiego w USA, a na Wydziale Chemicznym PWr będzie koordynował badania z użyciem tej aparatury.
      Cytometr, który będzie wykorzystywany na naszej uczelni, to urządzenie trzeciej generacji i obecnie najbardziej technologicznie zaawansowany model. Posiada dużo bardziej czuły spektrometr masowy z większą ilością kanałów do detekcji metali niż poprzednie modele, najnowsze oprogramowanie, jest on też bardziej wydajny i dużo mniej awaryjny.
      Na Wydziale Chemicznym urządzenie będzie wykorzystywane przede wszystkim do badania enzymów proteolitycznych (proteaz). To wyspecjalizowane białka, które rozkładają wiązania peptydowe. Dzięki temu potrafią "pociąć" inne białka na prostsze elementy - peptydy i aminokwasy.
      U ludzi proteazy stanowią grupę około 700 enzymów i biorą udział nie tylko w prostym trawieniu pokarmów, ale są także odpowiedzialne za kontrolę kluczowych procesów komórkowych  jak różnicowanie, dojrzewanie i śmierć komórki, kaskada krzepnięcia krwi czy odpowiedź immunologiczna organizmu na patogeny. Ich nieprawidłowe działanie prowadzi do powstania w organizmie stanów patologicznych. Wśród następstw są na przykład choroby cywilizacyjne takie jak nowotwory, cukrzyca, nadciśnienie czy infekcje wirusowe i bakteryjne.
      Badania aktywności proteaz mają więc bardzo duże znaczenie zarówno w pracy naukowej, jak i we wczesnej diagnostyce i leczeniu pacjentów – dlatego naukowcy starają się znaleźć jak najczulsze i możliwie specyficzne markery. W prace te zaangażowani są także lekarze-naukowcy z Dolnośląskiego Centrum Onkologii we Wrocławiu i Uniwersytetu Medycznego w Łodzi.
      Oprócz badań prowadzonych przez naszych naukowców urządzenie będzie mogło być wykorzystane komercyjnie, choćby przez firmy biotechnologiczne, które pracują nad różnego rodzaju testami diagnostycznymi.
      Chcąc sprawdzić, czy opracowany test diagnostyczny działa dobrze, konieczna jest bardzo dokładna analiza danej próbki. Można ją wykonać właśnie na naszym sprzęcie, a następnie skorelować skuteczność opracowywanego testu z wynikami pozyskanymi innymi metodami – wyjaśnia dr inż. Marcin Poręba.
      Wielką zaletą posiadania cytometru masowego na Politechnice Wrocławskiej jest także fakt, iż dr inż. Poręba oraz prof. Drąg we współpracy z laboratorium prof. Guya Salvesena (SBP Medical Discovery Institute, La Jolla, USA) stworzyli całkowicie nową metodę diagnostyczną, która jest niezwykle konkurencyjna pod względem aplikacyjnym i finansowym w stosunku do obecnie stosowanych przeciwciał w cytometrii masowej.
      W przeciwieństwie do dużych, białkowych przeciwciał, nasza metoda polega na użyciu małych cząsteczek odpowiednio modyfikowanych metalami, które pozwalają na efektywniejsze badania diagnostyczne ze względu na ich lepszą możliwość penetracji wnętrza komórki, a także selektywność w oznaczaniu wyłącznie aktywnych enzymów. To już jest bardzo zaawansowana chemoproteomika – zaznacza prof. Marcin Drąg.
      Koszt cytometru masowego to nieco ponad 3,6 mln zł, a roczny koszt użytkowania wynosi ok. 400 tys. zł. Jest to obecnie jedyne tego typu urządzenie w Polsce i trzecie w tej części Europy – podobne aparaty znajdują się jeszcze w Czechach i na Węgrzech.
      Mikroskop w uzupełnieniu
      W ramach powstającego Laboratorium Obrazowania naukowcy z Wydziału Chemicznego będą także korzystali z nowego mikroskopu konfokalnego. Będzie on wykorzystywany przede wszystkim do oznaczania parametrów komórkowych metodami fluorescencyjnymi w komórkach żywych i utrwalonych.
      Jego olbrzymią zaletą jest fakt, że możemy wizualizować co najmniej cztery parametry w tym samym czasie, a więc wybarwić interesujące nas białka w czterech różnych kolorach. Urządzenie pozwala także mierzyć parametry na poziomie subkomórkowym, dzięki czemu badanie komórek może być prowadzone w rozdzielczości ok. 120 nanometrów. Jesteśmy w stanie pokazać nie tylko to, co dzieje się w komórce czy jądrze komórkowym, ale nawet w jeszcze mniejszych strukturach komórki jak jąderko czy lizosomy – podkreśla dr inż. Marcin Poręba.
      Mikroskop pozwala także na obrazowanie żywych komórek i zachodzących w nich procesów, gdyż został wyposażony m.in. w komorę regulacji temperatury oraz dysze do regulacji poziomu dwutlenku węgla i tlenu. Pozwala to na mimikowanie naturalnego środowiska, dzięki czemu badane komórki się nie stresują. W niesprzyjających warunkach komórki rzeczywiście mogą się stresować, a w efekcie zostaje zaburzony ich cykl komórkowy, morfologia czy nawet zdolność do produkcji wielu białek, co znacząco wpływa na wyniki badań – wyjaśnia dr inż. Marcin Poręba.
      Co ciekawe przy użyciu odpowiedniego medium hodowlanego, w tym mikroskopie, komórki mogą być podtrzymywane przy życiu nawet przez wiele dni, a to pozwala analizę procesów, które zachodzą niekiedy bardzo wolno. Koszt mikroskopu to ok. 2 mln zł.

      « powrót do artykułu
×
×
  • Create New...