Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Pigułka zamiast ćwiczeń? Pojedyncze białko wspomaga starzejący się mózg tak, jak ćwiczenia fizyczne

Recommended Posts

Wyniki badań na myszach wskazują, że istnieje możliwość stworzenia pigułki, która przyniesie mózgowi takie korzyści, jakie przynoszą ćwiczenia fizyczne. Naukowcy z Uniwersytetu Kalifornijskiego w San Francisco donoszą bowiem, że słabo poznany enzym wątrobowy Gpld1 może być czynnikiem odpowiedzialnym za korzystny wpływ ćwiczeń fizycznych na starzejący się mózg. Badania wykazały, że gdy starzejącej się myszy prowadzącej statyczny tryb życia podamy osocze pozyskane od myszy regularnie ćwiczącej, to jej mózg odniesie takie same korzyści jak mózg myszy aktywnej.

Odkrycie może doprowadzić do opracowania terapii chroniących układ nerwowy przed związaną z wiekiem degeneracją. Można by je stosować u osób, które nie są w stanie zwiększyć aktywności fizycznej. Gdyby powstała pigułka, zapewniająca mózgowi te same korzyści co ćwiczenia fizyczne, to wszyscy by ją zażywali. Nasze badania sugerują, że co najmniej część z takich korzyści pojawi się pewnego dnia w formie pigułki, mówi profesor Saul Villeda. Jest on jednym z autorów opublikowanego w Science artykułu Blood factors transfer benefician effects of exercie on neurogenesis and cognition to the aged brain.

Aktywność fizyczna to jeden z najlepszych sposobów ochrony mózgu przed związanymi z wiekiem degeneracją i spadkiem możliwości poznawczych. Aktywność fizyczna jest związana ze zmniejszonym ryzykiem obniżenia się funkji poznawczych w związanych z wiekiem chorobach neurodegeneracyjnych. Poprawia ona funkcjonowanie osób narażonych na rozwój choroby Alzheimera, nawet w przypadkach dziedzicznego występowania tej choroby, stwierdzili naukowcy. Niestety różnego typu ograniczenia fizyczne czy inne schorzenia uniemożliwiają wielu osobom wykonywanie ćwiczeń fizycznych.

Zespół Villedy już wcześniej przeprowadzał eksperymenty pokazujące, że transfuzja krwi od młodej myszy do starej może tej drugiej przynieść korzyści w postaci lepszego funkcjonowania mózgu. Z kolei transfuzja w odwrotną stronę może zaszkodzić mózgowi młodej myszy. Zachęceni tymi wynikami studentka Alana Horowitz i doktor Xuelai Fan z laboratorium Villedy postanowili poszukać we krwi elementów, które zapewnią mózgowi takie korzyści jak ćwiczenia fizyczne.

Horowitz i Fan pobrali krew od starzejących się myszy, które przez siedem tygodni regularnie ćwiczyły i przetoczyli ją starzejącym się myszom prowadzącym nieaktywny tryb życia. Okazało się, że po czterech tygodniach takiej terapii w drugiej z grup zwierząt doszło do znacznego poprawienia pamięci i zdolności do uczenia się. Poprawa była podobna do tej, jaka zaszła u myszy aktywnych fizycznie. Badania mózgów zwierząt wykazały, że doszło w nich do zwiększenia tempa powstawania nowych neuronów w hipokampie.

Chcąc sprawdzić, który konkretnie czynnik odpowiada za tę poprawę, naukowcy porównali ilość różnych protein w krwi myszy aktywnych fizycznie i prowadzących siedzący tryb życia. Zidentyfikowali „podejrzanych” 30 protein, z których – ku ich zdumieniu – aż 19 pochodziło głównie z wątroby i które dotychczas wiązano z kontrolowaniem metabolizmu. Szczególnie ważne w tym kontekście wydały się proteiny Gpld1 i Pon1m. Naukowcy wybrali do badań pierwszą z nich, gdyż dotychczas rzadko się nią zajmowano. Stwierdziliśmy, że gdyby ją ktoś wcześniej porządnie przebadał, to z pewnością zauważyłby ten jej korzystny wpływ, mówi Villeda.

Okazało się, że Gpld1 zwiększa przepływ krwi po ćwiczeniach fizycznych, a poziom tej proteiny jest ściśle skorelowany z rozwojem funkcji poznawczych u myszy. Gdy naukowcy przeanalizowali dane zbierane w ramach badań Hillblom Aging Network okazało się, że również zdrowi aktywni starsi ludzie mają wyższy poziom tej proteiny we krwi niż ich mniej aktywni rówieśnicy. Dane te wskazują, że Gpld1 jest u ludzi i myszy czynnikiem indukowanym przez ćwiczenia fizyczne i ma on u myszy potencjalny wpływ na funkcje poznawcze, czytamy w pracy opisującej badania.

Naukowcy nie poprzestali jednak na obserwacjach. Postanowili sprawdzić, czy samo Gpld1 może przynieść takie korzyści jak ćwiczenia fizyczne. W tym celu zmodyfikowali genetycznie myszy tak, by w ich wątrobach dochodziło do nadmiernego wytwarzania tej proteiny i sprawdzali osiągnięcia zwierząt w różnych testach sprawdzających pamięć i funkcje poznawcze. Byli niezwykle zdumieni, gdy okazało się, że już trzy tygodnie nadmiernej ekspresji Gpld1 dawało taki skutek jak sześć tygodni regularnych ćwiczeń. Doszło też do dramatycznego wzrostu liczby neuronów w hipokampie. Dane te pokazują, że selektywne zwiększanie pochodzącego z wątroby Gpld1 wystarczy, by poprawić neurogenezę i funkcje poznawcze w starzejącym się hipokampie, podkreślają autorzy badań.

Kolejne badania wykazały, że wytwarzana w wątrobie proteina Gpld1 nie przedostaje się przez barierę krew-mózg. Wydaje się, że wywiera ona dobroczynny wpływ poprzez redukcję stanu zapalnego i koagulacji krwi w całym organizmie. Wiadomo, że oba te czynniki intensyfikują się z wiekiem i są powiązane z demencją oraz spadkiem funkcji poznawczych.

Uzyskane dotychczas dane mają znacznie szersze implikacje, niż tylko związane z Gpld1. Wskazują one bowiem, że być może korzystny dla naszego organizmu wpływ ćwiczeń fizycznych może być przenoszony do wszystkich tkanek za pomocą różnych składników krwi.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Starzenie się wyściółki naczyń krwionośnych prowadzi do chorób układu krążenia. Teraz po raz pierwszy wykazano, że bakterie jelitowe i produkty ich metabolizmu mają bezpośredni wpływ na ten proces. W miarę, jak przybywa nam lat, zmienia się skład naszego mikrobiomu, a do organizmu trafia coraz więcej szkodliwych substancji. Naukowcy z Uniwersytetu w Zurychu dowiedli, że mikrobiom jelit i jego metabolity mogą przyspieszać starzenie się naczyń krwionośnych i przyczyniać do chorób układu krążenia.
      W jelitach znajduje się do 90% bakterii zamieszkujących nasze ciało. Przetwarzają one pożywienie w substancje, które mają wpływ na nasze zdrowie. Nie znamy jeszcze połowy z tych substancji, mówi główny autor najnowszych badań, Soheil Saeedi.
      Uczony wraz z zespołem zebralł dane od ponad 7000 zdrowych osób w wieku 18–95 lat oraz dane z eksperymentów na mysich modelach ludzkiego starzenia się. Dowiedzieli się z nich, że wraz z wiekiem dochodzi do akumulacji kwasu fenylooctowego, który jest produktem metabolizmu fenyloalaniny. To jeden z 20 aminokwasów egzogennych, który dostarczamy organizmowi głównie z mięsem, jajami i produktami mlecznymi.
      Podczas serii eksperymentów naukowcy z Zurychu dowiedli, że kwas fenylooctowy prowadzi do starzenia się komórek śródbłonka wyściełających naczynia krwionośne. W wyniku tego procesu naczynia krwionośne stają się bardziej sztywne i gorzej spełniają swe zadanie. Udało się też zidentyfikować bakterię odpowiedzialną za przetwarzanie fenyloalaniny w kwas fenylooctowy. To Clostridium sp.ASF356. Gdy naukowcy skolonizowali jelita młodych myszy tym mikroorganizmem doszło do zwiększenia poziomu kwasu fenylooctowego, a naczynia krwionośne zaczęły wykazywać oznaki przedwczesnego starzenia się. Gdy zaś bakterie wyeliminowano za pomocą antybiotyków, poziom kwasu fenylooctowego powrócił do normy. W ten sposób wykazaliśmy, że to mikrobiom jelit odpowiada za jego podniesiony poziom, mówi Saeedi.
      Mikrobiom wytwarza też substancje dobroczynne dla układu krążenia. Na przykład octany, które powstają w wyniku fermentacji błonnika i polisacharydów w jelitach, przyczyniają się do odmładzania wyściółki naczyń krwionośnych. Jednak, jak wykazały badania, z wiekiem spada ilość bakterii wytwarzających takie substancje odmładzające.
      Podsumowując wyniki badań Saeedi zwraca uwagę, że dla dobra naszego układu krążenia powinniśmy wraz z wiekiem ograniczyć pokarmy zawierające fenyloalaninę – czerwone mięso, produkty mleczne czy słodziki – a spożywać więcej pożywienia zawierającego błonnik i przeciwutleniacze. Naukowcy pracują też nad farmakologicznymi metodami zmniejszania poziomu kwasu fenylooctowego w organizmie.
      Źródło: Gut microbiota-dependent increase in phenylacetic acid induces endothelial cell senescence during aging

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Mikko Myrskylä, dyrektor Instytutu Badań Demograficznych im. Maxa Plancka i jego zespół pokazali, w jaki sposób inwestycja w edukację pozwala na zrekompensowanie makroekonomicznych strat spowodowanych spadkiem płodności i starzeniem się społeczeństwa. Naukowcy wykorzystali dane z Finlandii do przeprowadzenia symulacji pokazującej, w jaki sposób gospodarka kurczy się przy niskim przyroście naturalnym i w jaki sposób inwestycje w edukację kompensują brak siły roboczej.
      Nie od dzisiaj wiemy, że osoby z wyższym wykształceniem pracują dłużej, są bardziej produktywni, cieszą się lepszym zdrowiem i dłużej żyją. Długotrwały niski przyrost naturalny powoduje zmianę struktury społecznej i spadek odsetka osób pracującym w porównaniu z osobami niepracującymi. To poważne wyzwanie dla wielu współczesnych państw.
      Naukowcy opublikowali na łamach pisma Demography wyniki swoich badań nad wpływem niewielkiego zwiększenia inwestycji na edukację w przeliczeniu na dziecko. Utrzymali przy tym ogólny poziom inwestycji pomiędzy scenariuszem wyższej i niższej dzietności na tym samym poziomie. Na przykład, jeśli w scenariuszu wyższej dzietności liczba dzieci wynosi 100 i w edukację każdego z nich zainwestujemy 100 euro, to wydamy 10 000 euro. W scenariuszu niższej dzietności zakładamy, że liczba dzieci wynosi 80, ale inwestujemy w nie te same 10 000 euro, co daje 125 euro na dziecko, wyjaśnia Myrskylä. Na podstawie danych zebranych w Finlandii stwierdzono, że ta większa inwestycja na głowę przekłada się na 1 rok dłuższej edukacji.
      Naukowcy postanowili sprawdzić, co się dzieje na poziomie makroenonomicznym jeśli pracuje mniej osób, ale dzięki lepszemu wykształceniu są one bardziej produktywne i pracują dłużej. Jaki ma to wpływ na system emerytalny? Z ich symulacji wynika, że lepsze wykształcenie kompensuje mniejsza liczbę osób pracujących i wydatki na emerytury w stosunku do sumy wynagrodzeń pozostają na mniej więcej tym samym poziomie.
      To bardzo dobra wiadomość, szczególnie w sytuacji, gdy dotychczasowa polityka państwa nie powoduje zwiększenia przyrostu naturalnego. Badacze brali pod uwagę dane z Finlandii, ale uważają, że wnioski są uniwersalne. Uważamy, że nasze spostrzeżenia można przełożyć na inne kraje Europy, chyba że w którymś z nich ogólny poziom edukacji jest już tak duży, że dodatkowe inwestycje w edukację nie zwiększają produktywności. Nie sądzę jednak, by taki kraj istniał, stwierdza Mikko Myrskylä.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Z wiekiem u kobiet rozwija się mniej problemów poznawczych, niż u mężczyzn. Przyczyną takiego stanu rzeczy może być przebudzenie na późniejszych etapach życia nieaktywnego chromosomu X, który włącza geny pomagające utrzymać zdrowe połączenia w mózgu, donoszą naukowcy z Uniwersytetu Kalifornijskiego w San Francisco (UCSF).
      Kobiety posiadają dwa chromosomy X. Jeden z nich ulega inaktywacji, tworząc tzw. ciałko Barra (chromatynę płciową). Naukowcy z UCSF odkryli właśnie, że u myszy, która osiągnęła wiek odpowiadający 65. rokowi życia człowieka, ten uśpiony chromosom X rozpoczął proces ekspresji genów, co z kolei doprowadziło do polepszenia jakości połączeń między neuronami, poprawiając zdolności poznawcze zwierzęcia. W typowym scenariuszu ludzkiego starzenia się, mózgi kobiet wyglądają młodziej niż mózgi ich rówieśników, panie mają mniej deficytów poznawczych. Wyniki naszych badań pokazują, że uśpiony chromosom X budzi się na późniejszych etapach życia kobiet i prawdopodobnie spowalnia spadek zdolności poznawczych, mówi profesor neurologii Dena Dubal, jedna z głównych autorek badań.
      Naukowcy z dwóch różnych linii myszy laboratoryjnych stworzyli nową linię i wyciszyli w niej jeden z chromosomów X. Jako że dobrze znali DNA zwierząt, bez przeszkód mogli śledzić każdy ulegający ekspresji gen i połączyć go z konkretnym chromosomem. Następnie u 20-miesięcznych myszy – co odpowiada 65-letnim ludziom – badali ekspresję genów w hipokampie, regionie mózgu kluczowym dla uczenia się i zapamiętywania. Okazało się, że w różnych typach komórek hipokampu doszło do ekspresji około 20 genów, za którą to ekspresję odpowiadał nieaktywny chromosom X. Wiele z tych genów odgrywa rolę w rozwoju mózgu i niepełnosprawności intelektualnej.
      Jednym z genów, które szczególnie przykuły uwagę badaczy, jest PLP1. Gen ten pomaga w tworzeniu się osłonki mielinowej, która chroni aksony. W hipokampie starzejących się samic myszy ekspresja PLP1 była silniejsza niż u samców, co sugeruje na rolę aktywowanego drugiego chromosomu X. Naukowcy chcieli sprawdzić, czy rzeczywiście wyższy poziom PLP1 odpowiada za odporność mózgów samic na proces starzenia się. Doprowadzili więc do zwiększenia ekspresji PLP1 zarówno u starszych samic, jak i samców. Okazało się, że korzyści odniosły obie płci.
      Obecnie Dubal i jej zespół badają, czy i u starszych kobiet dochodzi do aktywacji drugiego chromosomu X. Już mają pierwsze wskazówki, że tak właśnie się dzieje. Wstępne badania tkanek mózgowych starszych kobiet i mężczyzn wykazały, że kobiety mają podwyższony poziom PLP1 w tych samych obszarach mózgu co samice myszy.
      Jeśli rzeczywiście okaże się, że za lepszy stan mózgów starszych pań odpowiada aktywacja drugiego chromosomu X i zwiększona ekspresja PLP1, być może powstaną terapie zapobiegające spadkowi zdolności poznawczych z wiekiem.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Upały mogą przyspieszać biologiczne starzenie się u starszych osób, ostrzegają badacze z Uniwersytetu Południowej Kalifornii. Okazuje się bowiem, że osoby mieszkające w regionach, w których ma miejsce więcej bardzo gorących dni mają wyższy średni wiek biologiczny, niż mieszkańcy regionów, gdzie takie dni zdarzają się rzadziej.
      Wiek biologiczny to wskaźnik, który pokazuje, jak nasz organizm funkcjonuje na poziomie molekularnym, komórkowym i systemowym. Jeśli nasz wiek biologiczny jest większy, niż wiek chronologiczny, jesteśmy narażeni na wyższe ryzyko zachorowań i śmierci. Nie od dzisiaj wiadomo, że ekstremalne fale upałów są powiązane z negatywnymi skutkami dla zdrowia i wyższym ryzykiem zgonu – szczególnie u osób starszych – jednak dotychczas nie było jasne, jak przekładają się one na wiek biologiczny.
      Naukowcy z Kalifornii sprawdzili, jak zmienia się wiek biologiczny ponad 3600 Amerykanów. W badaniu wzięły osoby w wieku 56 lat i wyższym. Uczeni przez sześć kolejnych lat pobierali ich krew i badali zachodzące zmiany epigenetyczne. Analizowali je i określali wiek biologiczny każdego w zbadanych w momencie pobierania próbki. Następnie zmiany wieku biologicznego porównywali z danymi dotyczącymi wyjątkowo upalnych dni i ich liczby w miejscu zamieszkania badanych.
      Uczeni odkryli, że istnieje silna korelacja pomiędzy liczbą wyjątkowo upalnych dni w roku, a przyspieszeniem biologicznego starzenia się. Było to widoczne także po wzięciu pod uwagę różnych czynników społecznych, ekonomicznych i demograficznych, jak styl życia, spożycie alkoholu, papierosów i inne czynniki.
      Osoby mieszkające na obszarach, gdzie przez połowę roku temperatury sięgają 32 stopni Celsjusza lub więcej – jak na przykład mieszkańcy Phoenix w Arizonie – doświadczyły 14 dodatkowych miesięcy biologicznego starzenia się, w porównaniu z osobami, mieszkającymi na terenach, gdzie liczba takich upalnych dni jest mniejsza niż 10 w roku. Starzały się szybciej tylko z tego powodu, że mieszkały w bardziej ciepłym miejscu, mówi jedna z autorek badań, doktor Eun Young Choi.
      Związek pomiędzy wyższymi temperaturami a szybszym biologicznym starzeniem się wykazały wszystkie trzy wykorzystane zegary epigenetyczne. Autorki podkreślają, że podczas badań wykorzystały indeks upału, którym posługuje się National Weather Service, gdyż bierze on pod uwagę nie tylko samą temperaturę powietrza, ale też jego wilgotność. Ma to olbrzymie znaczenie ze względu na tzw. temperaturę mokrego termometru. Niedawno okazało się bowiem, że upały są dla ludzi znacznie bardziej niebezpieczne, niż się dotychczas wydawało.
      Naprawdę chodzi tutaj o kombinację temperatury i wilgotności. Szczególnie w odniesieniu do starszych osób, gdyż one nie pocą się w taki sam sposób jak młodsi. Z wiekiem nasza skóra coraz mniej efektywnie odprowadza nadmiar ciepła. Jeśli wówczas znajdujesz się w ciepłym wilgotnym miejscu, słabo się chłodzisz, wyjaśnia doktor Jennifer Ailshire.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W przebiegu chorób Alzheimera czy Parkinsona w neuronach tworzą się splątki neurofibrynalne, patologiczne agregacje białek. Dotychczas sądzono, że komórki mikrogleju sprzątają splątki dopiero wówczas, gdy zostaną uwolnione z komórki po śmierci neuronu. Badania przeprowadzone przez naukowców z Instytutu Biologii Wieku im. Maxa Plancka wykazały, że mikroglej tworzy niewielkie rurki połączone z komórkami nerwowymi i za pomocą tych rurek usuwa splątki, zanim wyrządzą one neuronowi szkodę.
      To jednak nie wszystko. Za pomocą rurek mikroglej wysyła do neuronów w których pojawiły się splątki, zdrowe mitochondria umożliwiające komórkom lepsze funkcjonowanie pomimo choroby. Jesteśmy podekscytowani tym odkryciem i jego potencjalnymi zastosowaniami w celu poprawy funkcjonowania neuronów za pomocą mikrogleju, mówi współautor badań Frederik Eikens.
      Uczeni odkryli też, że mutacje genetyczne w mikrogleju wpływają na tworzenie i działanie tych rurek. Mutacje takie zwiększają ryzyko wystąpienia chorób neurodegeneracyjnych, co sugeruje, że zaburzenia tworzenia „rurek tunelowania” jest jednym z czynników rozwoju chorób neurodegeneracyjnych. Na następnym etapie badań skupimy się na zrozumieniu, jak te rurki powstają i spróbujemy opracować metody zwiększenia procesu ich generowania w czasie choroby, dodaje Lena Wischhof.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...