Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Udało się zmierzyć ruch 40-kilogramowego lustra LIGO wywołany fluktuacjami kwantowymi

Recommended Posts

Po raz pierwszy w historii zaobserwowano wpływ fluktuacji kwantowych na obiekt w skali człowieka. Naukowcy pracujący przy detektorze fal grawitacyjnych LIGO informują na łamach Nature o zarejestrowaniu poruszenia się pod wpływem fluktuacji kwantowych 40-kilogramowych luster wykorzystywanych w obserwatorium.

Zespół naukowy, który pracował pod kierunkiem specjalistów z MIT, a w skład którego wchodzili też uczeni z Caltechu, przeprowadził swoje badania w LIGO Livingston Observatory w Louizjanie.

Okazało się, że szum kwantowy wystarczy, by przemieścić lustra o 10-20 metra. Takie przesunięcie jest zgodne z teoretycznymi przewidywaniami mechaniki kwantowej. Dopiero jednak teraz udało się to zjawisko zmierzyć. Wykonanie tak dokładnych pomiarów było możliwe dzięki zastosowaniu kwantowego „ściskacza światła”. Wczoraj informowaliśmy o ważnym przełomie dokonanym na polu budowy takich urządzeń.

Dzięki „ściskaczowi” naukowcy byli w stanie zredukować szum kwantowy, dzięki czemu określili, jak bardzo wpływał on na ruch luster.

To naprawdę niezwykłe, że ściśnięcie światła może zmniejszyć ruch luster, które ważą tyle, co nieduży człowiek. Przy tych częstotliwościach istnieje wiele źródeł szumu, które powodują ruch luster. To naprawdę duże osiągnięcie, że mogliśmy obserwować wpływ właśnie tego źródła, cieszy się współautorka badań, Sheila Dwyer, która pracuje przy detektorze LIGO w Hanford.

Profesor fizyki Rana Adhikari wyjaśnia, że ściśnięcie światła zmniejsza ilość szumu kwantowego w promieniu lasera poprzez przesunięcie go z fazy do amplitudy światła. To amplituda światła porusza lustra. Wykorzystaliśmy tę cechę natury, która pozwoliła nam przesunąć szum w obszar, który nas nie interesuje.

Ściśnięcie światła i zredukowanie tym samym szumu kwantowego naukowcy mogli dokonać pomiarów poza standardowy limit kwantowy. W przyszłości technika ta pozwoli LIGO na wykrywanie słabszych, odleglejszych źródeł fal grawitacyjnych.
W jeszcze dalszej przyszłości może to zostać wykorzystane do udoskonalenia smartfonów, autonomicznych samochodów i innych technologii, zapowiada Adhikari.


« powrót do artykułu

Share this post


Link to post
Share on other sites
10 godzin temu, KopalniaWiedzy.pl napisał:

ściśnięcie światła może zmniejszyć ruch luster,

Chyba zmierzyć ten ruch.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Astrofizyk Dan Wilkins z Uniwersytetu Stanforda nie był zdziwiony, gdy przyglądając się supermasywnej czarnej dziurze w galaktyce położonej 800 milionów lat świetlnych od Ziemi, zauważył serię jasnych rozbłysków promieniowania rentgenowskiego. Jednak niedługo później czekało go spore zaskoczenie – teleskopy zarejestrowały dodatkowe słabsze rozbłyski o innym „kolorze”. Zgodnie z teorią rozbłyski te pochodzą... spoza czarnej dziury.
      Światło, które wpada do czarnej dziury już się z niej nie wydostaje. Nie powinniśmy więc być w stanie zobaczyć niczego, co jest za czarną dziurą, mówi Wilkins. Mogliśmy je zaobserwować dlatego, że czarna dziura zagina przestrzeń, światło i pola magnetyczne wokół siebie, dodaje uczony.
      Wilkins jest pierwszym, który bezpośrednio zaobserwował promieniowanie pochodzące spoza czarnej dziury. Zjawisko takie jest przewidziane przez ogólną teorię względności, jednak dopiero teraz udało się je potwierdzić.
      Gdy pięćdziesiąt lat temu astrofizycy zaczęli dyskutować o tym, jak może zachowywać się pole magnetyczne w pobliżu czarnej dziury, nie mieli pojęcia,że pewnego dnia można będzie tego użyć do bezpośredniej obserwacji i potwierdzenia teorii Einsteina, mówi profesor Roger Blandford ze SLAC.
      Dan Wilkins nie szukał potwierdzenia teorii względności. Chciał dowiedzieć się więcej o koronie czarnej dziury. To obszar, w którym materiał opadający do czarnej dziury zaczyna świecić i tworzy wokół niej koronę. Korony takie to jedne z najjaśniejszych źródeł stałego światła we wszechświecie. Świecą one w zakresie promieniowania rentgenowskiego, a analiza ich światła pozwala na badanie samej czarnej dziury.
      Wiodące teorie na temat korony mówią, że powstaje ona z gazu wpadającego do czarnej dziury. Gaz rozgrzewa się do milionów stopni, elektrony oddzielają się od atomów i powstaje namagnetyzowana wirująca plazma. W niej zaś powstają rozbłyski promieniowania rentgenowskiego, które badał Wilkins. Gdy chciał poznać ich źródło i przyjrzał im się bliżej, zauważył serię mniejszych rozbłysków. Naukowcy wykazali, że pochodzą one z oryginalnych dużych rozbłysków, których część odbiła się od tyłu dysku otaczającego czarną dziurę. Są więc pierwszym zarejestrowanym światłem pochodzącym z drugiej – patrząc od Ziemi – strony czarnej dziury.
      Wilkins szybko rozpoznał, z czym ma do czynienia, gdyż od kilku lat zajmuje się tworzeniem teorii na temat takich odbić. Ich istnienie wykazała teoria, nad którą pracuję, więc jak tylko je zobaczyłem w teleskopie, zdałem sobie sprawę, że to, co widzę, łączy się z teorią.
      Uczony już cieszy się na przyszłe odkrycia. Pracuje on w laboratorium Steve'a Allena z Uniwersytetu Stanforda, gdzie bierze udział w pracach nad wykrywaczem Wide Field Imager, powstającym na potrzeby przyszłego europejskiego obserwatorium Athena (Advanced Telescope for High-ENergy Astrophysics). Będzie ono miało znacznie większe lustro niż jakiekolwiek obserwatorium promieniowania rentgenowskiego, pozwoli nam więc na uzyskanie lepszej rozdzielczości w krótszym czasie. To, co obecnie zaczynamy obserwować stanie się dla nas jeszcze bardziej wyraźne, mówi uczony.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zestaw czterech 40-kilogramowych luster używanych przez obserwatorium fal grawitacyjnych LIGO zostały schłodzony tak bardzo, że lustra znalazły się bardzo blisko minimalnego stanu energetycznego. Tym samym są największymi obiektami, jakie kiedykolwiek znajdowały się tak blisko stanu podstawowego. Dotychczas stan podstawowy udało się uzyskać jedynie w przypadku przedmiotów ważących ułamki grama.
      W świecie kwantowym temperatura i ruch są jednym i tym samym. Im więcej cząstek się porusza, tym obiekt ma wyższą temperaturę. Aby wprowadzić obiekt w stan podstawowy konieczne jest usunięcie kwantów energii tych wibracji, fononów.
      Chirs Whittle i jego zespół z Massachusetts Institute of Technology schłodził cały system z temperatury pokojowej do 77 nanokelwinów. Dokonano tego za pomocą jednego z systemów LIGO, który wykorzystuje światło do pomiaru wibracji luster. Następnie wykorzystano pole elektromagnetyczne do spowolnienia tych wibracji. To działa podobnie, jak w przypadku dziecka na huśtawce. Jeśli chcesz zatrzymać huśtawkę, musisz przyłożyć siłę odwrotnie do kierunku ruchu, mówi Whittle.
      Jako, że wibracje, które naukowcy chcieli usunąć, były niezwykle małe, konieczne było dokonanie superprecyzyjnych pomiarów, by się dowiedzieć, jaką siłę należy przyłożyć, by je zniwelować. Dzięki precyzyjnym pomiarom i użyciu niezwykle dokładnych systemów LIGO udało się zmniejszyć liczbę fononów obecnych w dowolnym momencie z 10 bilionów (10 000 000 000 000) do zaledwie 11.
      Celem pracy Whittle'a jest wyjaśnienie, dlaczego obiekty makroskopowe nie występują w stanie podstawowym. Niektórzy fizycy sądzą, że przyczyną jest obecność grawitacji. Jeśli chcesz to sprawdzić, potrzebujesz dwóch rzeczy. Po pierwsze, obiektu na tyle dużego, że można zmierzyć wpływ grawitacji na ten obiekt, po drugie – możliwości wprowadzenia tego obiektu w stan podstawowy, mówi jeden z badaczy, Vivishek Sudhir.
      Jeśli nauczylibyśmy się standardowo wprowadzać obiekty makroskopowe w stan podstawowy, zwiększyłoby to czułość takich urządzeń jak LIGO. To jednak bardzo odległa przyszłość.
      Przed rokiem udało się zmierzyć ruch 40-kilogramowego lustra LIGO wywołany fluktuacjami kwantowymi.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Nowa, wykorzystująca światło, technologia lewitacji, pozwoli na zbadanie niedostępnych obecnie obszarów atmosfery. Mohsen Azadi i jego koledzy z University of Pennsylvania pracują nad niewielkimi urządzeniami, które – wykorzystując zjawisko fotoforezy – będą lewitowały w mezosferze, obszarze położonym 50–80 kilometrów nad powierzchnią Ziemi.
      Gęstość powietrza w mezosferze jest zbyt mała, by mogły latać tam samoloty. Nie latają tam również balony. Dlatego obszar ten jest bardzo słabo poznany. Jednym z rozwiązań problemu umieszczenia tam obiektu latającego byłoby wykorzystanie fotoforezy, ruchu miniaturowych obiektów w aerozolach, do którego dochodzi w wyniku nierównomiernego absorbowania przez nie promieniowania cieplnego.
      Azadi i jego zespół chcą doprowadzić do lewitacji dość sporych obiektów. Rozpoczęli eksperymenty z folią poliestrową o średnicy 6 mm i grubości 500 nm. Na spodniej stronie umieścili 300-nanometrowej grubości warstwę węglowych nanorurek, tworząc w ten sposób miniaturowe pułapki, w których uwięzione zostaje powietrze. Swoje dyski umieścili w komorze próżniowej, w której panowało ciśnienie 10 Pa, i oświetlili je światłem o intensywności porównywalnej ze światłem słonecznym.
      Dyski rozgrzewają się i oddają ciepło do otaczającego je powietrza. Powietrze uwięzione w nanorurkach ogrzewane jest dłużej, niż to nad dyskiem. Dzięki temu, gdy już się wyrwie z nanorurkowej pułapki, ma większą prędkość. Powstaje siła pchająca dysk do góry i umożliwiająca mu lewitowanie.
      Naukowcy, odpowiednio manipulując intensywnością światła, byli w stanie kontrolować, w jaki sposób porusza się dysk. Stworzyli na tej podstawie model teoretyczny jego wznoszenia się i ruchu.
      Potrzebne są jeszcze dodatkowe badania i prace nad tą koncepcją, jednak już wkrótce może być ona na tyle rozwinięta, że możliwe będzie skonstruowanie lekkich urządzeń latających samodzielnie na wysokości od 50 do 100 kilometrów i zabierających dodatkowe obciążenie o wadze 10 mg. Co więcej, możliwości takich urządzeń będzie można zwiększyć, jeśli setki tego typu lewitujących dysków zostaną połączone za pomocą lekki włókien węglowych. Tego typu „rój” połączonych dysków mógłby zostać wyposażony w urządzenia do badania zapylenia mezosfery czy śledzenia cyrkulacji powietrza. Możliwe stałoby się zatem badanie najsłabiej poznanego obszaru atmosfery.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kolaboracje LIGO i Virgo zaprezentowały dziś nowy katalog GWTC-2 obserwacji fal grawitacyjnych zaobserwowanych od kwietnia do października 2019 r. podczas pierwszej części kampanii obserwacyjnej O3 (O3a). Zbiór zawiera w sumie 39 zdarzeń. Jednocześnie opublikowano nowe prace badawcze, a także obszerne popularne podsumowania ich wyników.
      Wśród ujętych w nowym katalogu zdarzeń znalazły się zjawiska spójne z trzema typami kolizji: dwóch czarnych dziur (ang. binary black holes, BBH), dwóch gwiazd neutronowych (ang. binary neutron stars, BNS) i układów mieszanych złożonych z gwiazdy neutronowej i czarnej dziury (ang. neutron star-black hole, NSBH). Katalog zawiera m.in. wyjątkowo interesujące zdarzenia (opisywane wcześniej w odrębnych publikacjach) takie jak druga w historii obserwacja koalescencji dwóch gwiazd neutronowych, koalescencja dwóch czarnych dziur o największej w historii dysproporcji mas oraz obserwacja bardzo masywnego układu czarnych dziur o łącznej masie około 150 razy większej od masy Słońca. Dane udostępnione dziś wszystkim zainteresowanym badaczom umożliwią prace nad nimi szerokiemu kręgowi naukowców, a także pasjonatom.
      Katalog GWTC-2 to rezultat współpracy ponad tysiąca naukowców z całego świata zrzeszonych w konsorcjum LIGO-Virgo, w tym szesnastu z Polski. Dwóch z nich pracuje w Narodowym Centrum Badań Jądrowych (prof. Andrzej Królak i dr Adam Zadrożny). Naukowcy z Narodowego Centrum Badań Jądrowych od 2008 roku biorą udział w pracach konsorcjum LIGO-Virgo, w tym w pracach nad sygnałami pochodzącymi z rotujących gwiazd neutronowych, astronomią wielu nośników (multi-messenger astronomy) oraz nowych metod analizy danych. Narodowe Centrum Badań Jądrowych wnosi wkład w budowę europejskiego detektora fal grawitacyjnych Virgo.
      Analiza kolejnych danych z drugiej części kampanii obserwacyjnej O3 (O3b) jest obecnie w toku. Jej wyniki jeszcze bardziej rozbudują katalog zaobserwowanych przejściowych sygnałów fal grawitacyjnych. Obecnie detektory LIGO i Virgo są poddawane dodatkowym inżynieryjnym ulepszeniom w celu poprawienia ich czułości w czasie kolejnej, czwartej już kampanii obserwacyjnej (O4).
      Wykrywanie fal grawitacyjnych stało się obecnie rutynowe, i to zaledwie pięć lat po pierwszej detekcji. Dzięki w sumie 50 zarejestrowanym sygnałom fal grawitacyjnych (11 w opublikowanym wcześniej katalogu GWTC-1 i 39 zebranych obecnie w GWTC-2) następuje znaczący postęp w badaniach: jesteśmy w stanie lepiej poznać populację czarnych dziur i gwiazd neutronowych we Wszechświecie, zwiększa się nasze zrozumienie teorii grawitacji, tj. ogólnej teorii względności, a wkrótce, mając do dyspozycji czulsze detektory, zapewne będzie możliwe wykrycie fal grawitacyjnych pochodzących ze zdarzeń obserwowanych także jako tzw. rozbłyski gamma (pierwszy taki przypadek miał już miejsce w 2017 r.). Tym zagadnieniom poświęcone są artykuły publikowane równolegle z nowym katalogiem.
      Dane z trzydziestu dziewięciu obserwacji zarejestrowanych podczas pierwszej fazy kampanii obserwacyjnej O3 są umieszczone na serwerze Centrum Otwartych Danych Fal Grawitacyjnych GWOSC (ang. Gravitational Wave Open Science Center) dostępnym poprzez portal https://www.gw-openscience.org/eventapi/html/GWTC-2.
      Strona GWOSC zawiera kompletną dokumentację i przykłady kodów do analizy danych oraz tutoriale mogące pomóc każdemu zainteresowanemu w odkrywaniu publicznie dostępnych zbiorów danych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...