Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Fizycy mają najlepszy dowód na istnienie anyonów. Mogą one posłużyć do budowy komputera kwantowego

Recommended Posts

Fizycy donoszą o zdobyciu pierwszego bezsprzecznego dowodu na istnienie anyonów, cząstek, których istnienie zostało zaproponowane przed ponad 40 laty. Anyony to kwazicząstki, które nie są ani fermionami, ani bozonami zatem podlegają statystyce innej niż statystyka Fermiego-Diraca i Bosego-Einsteina. Anyony mogą istnieć w przestrzeni dwuwymiarowej.

Odkrycie, którego dokonano za pomocą elektronicznego urządzenia 2D, może być pierwszym krokiem na drodze wykorzystania anyonów w przyszłych komputerach kwantowych.

Wszystkie cząstki elementarne są albo fermionami albo bozonami. Anyony nie należą do żadnej z tych kategorii. Fermiony są definiowane przez statystykę Fermiego-Diraca. Gdy dwa identyczne fermiony zamieniają się miejscem w przestrzeni ich funkcja falowa zmienia pozycję o 180 stopni. W przypadku zaś bozonów, definiowanych przez statystykę Bosego-Einsteina, nie dochodzi w takim przypadku do zmiany funkcji falowej. Innymi słowy, cząstki o spinach połówkowych (fermiony) dążą do pozostawania osobno od siebie, natomiast cząstki o spinach całkowitych (bozony) dążą do gromadzenia się. Anyony znajdują się gdzieś po środku. Zmiana pozycji anyonów powinna doprowadzić do zmiany funkcji falowej o kąt pośredni. Podlegają one statystyce cząstkowej.

Jeśli jedna kwazicząstka wykona pełen obrót wokół drugiej, co jest odpowiednikiem dwukrotnej zamiany pozycji pomiędzy nimi, informacja o tym ruchu zostanie zachowana w stanie kwantowym cząstki. I to właśnie ten zapamiętany stan jest jedną z cech charakterystycznych statystyki cząstkowej, której poszukiwali obecnie naukowcy, by potwierdzić istnienie anyonów.

Fizyk eksperymentalny Michael Manfra i jego zespół z Purdue University, stworzyli strukturę złożoną z cienkich warstw arsenku galu i arsenku aluminiowo-galowego. Struktura taka wymusza ruch elektronów w dwóch wymiarach. Urządzenie zostało schłodzone do 1/10 000 stopnia powyżej zera absolutnego i poddano je działaniu silnego pola magnetycznego. W ten sposób pojawił się tzw. izolator cząstkowego kwantowego efektu Halla. W izolatorze takim prąd elektryczny nie może przemieszczać się w wewnątrz urządzenia, a wyłącznie po jego krawędziach. Urządzenie może przechowywać kwazicząstki, których ładunek elektryczny nie jest wielokrotnością ładunku elektronów. Naukowcy podejrzewali, że kwazicząstki te to właśnie anyony.

By udowodnić, że istotnie mają do czynienia z anyonami, uczeni połączyli swoje urządzenie do elektrod w ten sposób, że ładunki mogły przepływać tylko po krawędziach. Właściwości urządzenia były dobierane za pomocą pola magnetycznego i elektrycznego. Spodziewano się, że manipulacja tymi polami albo zniszczy ani utworzy anyony wewnątrz urządzenia i spowoduje, że anyony będą przemieszczały się pomiędzy elektrodami. Jako, że poruszające się anyony mogą poruszać się dwiema możliwymi ścieżkami, a każda z nich powoduje pojawienie się innego skrętu ich fal, gdy anyony docierają do celu dochodzi do interferencji i pojawienia się wzorca określanego jako paski na piżamie.

Wzorzec ten pokazywał relatywną wartość skrętu fal anyonów pomiędzy obiema ścieżkami i był zależny od zmian napięcia i siły pola magnetycznego. Ostatecznym dowodem zaś były wyraźnie widoczne przeskoki, świadczące o znikaniu i pojawianiu się anyonów w urządzeniu.

Zespół Manfry nie jest jedynym, który przedstawił dowody na istnienie statystyki cząstkowej, zatem na istnienie anyonów. Jednak w wielu poprzednich przypadkach uzyskane wyniki dawało się wytłumaczyć również w inny sposób, mówi Bernard Rosenow, fizyk-teoretyk z Uniwersytetu w Lipsku specjalizujący się w badaniu materii skontensowanej. Tymczasem, jak sam przyznaje, nie znam innego wyjaśnienia dla wyników uzyskanych przez Manfrę, jak interpretacji mówiącej o statystyce cząstkowej. Jeśli więc inny zespół potwierdzi obserwacje Manfry i jego kolegów, będziemy mogli mówić o odkryciu anyonów.

Anyony zaś mogą posłużyć do budowy komputerów kwantowych. Już zresztą istnieją teorie opisujące takie maszyny. W parach kwazicząstek można zapisać informacje o tym, jak krążyły one wokół siebie. Jako, że statystyka cząstkowa jest topologiczna, zależy od liczby okrążeń, jakie jeden anyon wykonał wokół drugiego, a nie od niewielkich zmian trajektorii, jest odporna na niewielkie zakłócenia.

Ta odporność zaś może spowodować, że topologiczne komputery kwantowe będą łatwiejsze do skalowania niż obecnie wykorzystywane technologie komputerów kwantowych, które są bardzo podatne na błędy. Microsoft, dla którego zresztą Manfra pracuje jako zewnętrzny konsultant, jest jedyną firmą pracującą obecnie nad topologicznymi komputerami kwantowymi. Inni giganci, jak IBM, Intel Google i Honeywell, udoskonalają inne technologie.

Jednak do wykorzystania anyonów w komputerach kwantowych jest jeszcze daleka droga. Obecne odkrycie jest ważniejsze z punktu widzenia fizyki niż informatyki kwantowej. Dla mnie, jako teoretyka zajmującego się materią skondensowaną, kwazicząstki są równie fascynujące i egzotyczne jak bozon Higgsa, mówi Rosenow.

Ze szczegółami pracy Manfry i jego zespołu można zapoznać się na łamach arXiv.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy ze szwedzkiego Uniwersytetu Technologicznego Chalmersa poinformowali, że są jednym z pierwszych, którym udało się stworzyć materiał zdolny do przechowywania fermionów Majorany. Fermiony Majorany mogą być stabilnymi elementami komputera kwantowego. Problem z nimi jest taki, że pojawiają się w bardzo specyficznych okolicznościach.
      Na całym świecie trwają prace nad komputerami kwantowymi. Jednym z najpoważniejszych wciąż nierozwiązanych problemów jest niezwykła delikatność stanów kwantowych, które łatwo ulegają dekoherencji, tracąc superpozycję, czyli zdolność do jednoczesnego przyjmowania wielu wartości.
      Jednym z pomysłów na komputer kwantowy jest wykorzystanie do jego budowy fermionów Majorany. Para takich fermionów, umieszczonych w odległych częściach materiału, powinna być odporna na dekoherencję.
      Problem jednak w tym, że w ciałach stałych fermiony Majorany pojawiają się wyłącznie w nadprzewodnikach topologicznych. To nowy typ materiału, który bardzo rzadko jest spotykany w praktyce. Wyniki naszych eksperymentów zgadzają się z teoretycznymi przewidywaniami dotyczącymi topologicznego nadprzewodnictwa, cieszy się profesor Floriana Lombardi z Laboratorium Fizyki Urządzeń Kwantowych na Chalmers.
      Naukowcy rozpoczęli pracę od topologicznego izolatora z tellurku bizmutu (Bi2Te3). Izolatory topologiczne przewodzą prąd wyłącznie na powierzchni. Wewnątrz są izolatorami. Uczeni z Chalmers pokryli swój izolator warstwą aluminium, które w bardzo niskiej temperaturze jest nadprzewodnikiem. W takich warunkach do izolatora topologicznego przeniknęła nadprzewodząca para elektronów, przez co topologiczny izolator wykazywał właściwości nadprzewodzące, wyjaśnia profesor Thilo Bauch.
      Jednak wstępne pomiary wykazywały, że uczeni mają do czynienia ze standardowym nadprzewodnictwem w Bi2Te3. Gdy jednak naukowcy ponownie schłodzili swój materiał, by dokonać kolejnych pomiarów, sytuacja uległa nagłej zmianie. Charakterystyki nadprzewodzących par elektronów różniły się od siebie w zależności o kierunku. Takie zachowanie nie jest zgodne ze standardowym nadprzewodnictwem. Zaczęły zachodzić niespodziewane, ekscytujące zjawiska, mówi Lombardi.
      Istotnym elementem tego, co się wydarzyło był fakt, że zespół Lombardi – w przeciwieństwie do wielu innych grup, które prowadziły podobne eksperymenty – użył platyny do połączenia izolatora topologicznego z aluminium. Wielokrotne chłodzenie doprowadziło do wzrostu napięć w platynie, przez co doszło do zmian właściwości nadprzewodnictwa. Analizy wykazały, że w ten sposób najprawdopodobniej uzyskano topologiczny nadprzewodnik.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Rząd Niemiec zapowiedział, że przeznaczy 3 miliardy euro na zbudowanie do roku 2026 uniwersalnego komputera kwantowego. To część nowej strategii, w ramach której Niemcy chcą na polu informatyki kwantowej dorównać światowej czołówce – USA i Chinom – oraz stać się na tym polu liderem wśród krajów Unii Europejskiej. To kluczowe dla niemieckiej suwerenności technologicznej, stwierdziła Bettina Sark-Watzinger, minister ds. edukacji i badań.
      Ze wspomnianej kwoty 2,2 miliarda trafi do różnych ministerstw, które będą zajmowały się promocją i znalezieniem zastosowań dla komputerów kwantowych. Największa pulę, bo 1,37 miliarda otrzyma ministerstwo ds. edukacji i badań. Pozostałe 800 milionów euro otrzymają duże państwowe instytuty badawcze.
      Rząd w Berlinie zakłada, że kwota ta pozwoli na zbudowanie do roku 2026 komputera kwantowego o pojemności co najmniej 100 kubitów, którego możliwości w niedługim czasie zostaną p powiększone do 500 kubitów. Tutaj warto przypomnieć, że w ubiegłym roku IBM zaprezentował 433-kubitowy komputer kwantowy.
      W Unii Europejskiej nie powstały tak gigantyczne firmy IT jak Google czy IBM, które same są w stanie wydatkować miliardy dolarów na prace nad komputerami kwantowymi. Dlatego też przeznaczone nań będą pieniądze rządowe. Frank Wilhelm-Mauch, koordynator europejskiego projektu komputera kwantowego OpenSuperQPlus mówi, że i w USA finansowanie prac nad maszynami kwantowymi nie jest transparentne, bo wiele się dzieje w instytucjach wojskowych, a z Chin w ogóle brak jakichkolwiek wiarygodnych danych.
      Komputery kwantowe wciąż jeszcze nie są gotowe do większości praktycznych zastosowań, jednak związane z nimi nadzieje są olbrzymie. Mogą one zrewolucjonizować wiele dziedzin życia. Mają przeprowadzać w ciągu sekund obliczenia, które komputerom klasycznym zajmują lata. A to oznacza, że możliwe będzie przeprowadzanie obliczeń, których teraz się w ogóle nie wykonuje, gdyż nie można ich skończyć w rozsądnym czasie. Maszyny kwantowe mogą przynieść rewolucję na tak różnych polach jak opracowywanie nowych leków czy logistyka.
      Wiele niemieckich przedsiębiorstw działa już aktywnie na polu informatyki kwantowe. Na przykład firm Bosch, dostawca podzespołów dla przemysłu motoryzacyjnego, we współpracy z IBM-em wykorzystuje symulacje na komputerach kwantowych do zbadania czym można zastąpić metale ziem rzadkich w silnikach elektrycznych. Z kolei producent laserów Trumpf pracuje nad kwantowymi chipami i czujnikami, a działający na rynku półprzewodników Infineon rozwija układy scalone korzystające z szyfrowania kwantowego. Niemiecka Agencja Kosmiczna wystrzeliła zaś pierwsze satelity testujące systemy dystrybucji kwantowych kluczy szyfrujących.
      Bettina Stark-Watzinger chce, by do roku 2026 w Niemczech z komputerów kwantowych korzystało co najmniej 60 podmiotów.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Komputery kwantowe mogą bazować na różnych rodzajach kubitów (bitów kwantowych). Jednym z nich są kubity z fotonów, które o palmę pierwszeństwa konkurują z innymi rozwiązaniami. Mają one sporo zalet, na przykład nie muszą być schładzane do temperatur kriogenicznych i są mniej podatne na zakłócenia zewnętrzne niż np. kubity bazujące na nadprzewodnictwie i uwięzionych jonach. Pary splątanych fotonów mogą stanowić podstawę informatyki kwantowej. Jednak uzyskanie splatanych fotonów wymaga zastosowania nieporęcznych laserów i długotrwałych procedur ich dostrajania. Niemiecko-holenderska grupa ekspertów poinformowała właśnie o stworzeniu pierwszego w historii źródła splątanych fotonów na chipie.
      Dokonany przez nas przełom pozwolił na zmniejszenie źródła ponad 1000-krotnie, dzięki czemu uzyskaliśmy powtarzalność, długoterminową stabilność, skalowalność oraz potencjalną możliwość masowej produkcji. To warunki, które muszą być spełnione, by zastosować tego typu rozwiązanie w realnym świecie kwantowych procesorów, mówi profesor Michael Kues, dyrektor Instytutu Fotoniki na Leibniz Universität Hannover. Dotychczas źródła światła dla komputerów kwantowych wymagały zastosowania zewnętrznych, nieporęcznych systemów laserowych, których użyteczność była ograniczona. Poradziliśmy sobie z tymi problemami tworząc nową architekturę i różne systemy integracji podzespołów na układzie scalonym, dodaje doktorant Hatam Mahmudlu z grupy Kuesa.
      Naukowcy mówią, że ich układ scalony jest równie łatwy w użyciu, jak każdy innych chip. Żeby rozpocząć generowanie splątanych fotonów wystarczy układ zamontować i włączyć. Jak każdy inny układ scalony. Jego obsługa nie wymaga żadnego specjalnego doświadczenia. Zdaniem twórców układu, w przyszłości takie źródło może znaleźć się w każdym kwantowym procesorze optycznym.
      Dotychczas eksperci mieli olbrzymie problemy w zintegrowaniu na jednym chipie laserów, filtra i wnęki, gdyż nie istnieje żaden pojedynczy materiał, z którego można by stworzyć wszystkie te urządzenia. Rozwiązaniem okazało się podejście hybrydowe. Naukowcy na jednym chipie umieścili laser z fosforku indu, wnękę oraz filtr z azotku krzemu. W polu lasera, w wyniku spontanicznego nieliniowego procesu, dochodzi do powstania dwóch splątanych fotonów. Uzyskaliśmy wydajność i jakość wymaganą do zastosowania naszego chipa w kwantowych komputerach czy kwantowym internecie, zapewnia Kues. Nasze źródło światła wkrótce stanie się podstawowym elementem programowalnych fotonicznych procesorów kwantowych, uważa uczony. Szczegóły badań zostały opublikowane w Nature Photonics.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Politechniki Wrocławskiej i Uniwersytetu w Würzburgu pochwalili się na łamach Nature Communications dokonaniem przełomu na polu badań kwantowych. Po raz pierwszy w historii udało się uzyskać ekscytony w izolatorze topologicznym. W skład zespołu naukowego weszli Marcin Syperek, Paweł Holewa, Paweł Wyborski i Łukasz Dusanowski z PWr., a obok naukowców z Würzburga wspomagali ich uczeni z Uniwersytetu w Bolonii i Oldenburgu.
      Izolatory topologiczne to jednorodne materiały, które są izolatorami, ale mogą przewodzić ładunki elektryczne na swojej powierzchni, a wystąpienie przewodnictwa nie jest związane ze zmianą fazy materiału, np. z jego utlenianiem się. Pojawienie się przewodnictwa związane jest ze zjawiskami kwantowymi występującymi na powierzchni takich izolatorów. Istnienie izolatorów topologicznych zostało teoretycznie przewidziane w 1985 roku, a eksperymentalnie dowiedzione w 2007 roku właśnie na Uniwersytecie w Würzburgu.
      Dotychczasowe prace nad wykorzystaniem izolatorów topologicznych koncentrowały się wokół prób kontroli przepływu ładunków elektrycznych za pomocą napięcia. Jeśli jednak izolator był wykonany z cząstek obojętnych elektrycznie, takie podejście nie działało. Naukowcy musieli więc wymyślić coś innego. W tym wypadku tym czymś okazało się światło.
      Po raz pierwszy udało się wygenerować kwazicząstki – tak zwane ekscytony – w izolatorze topologicznym i eksperymentalnie udowodnić ich istnienie. W ten sposób uzyskaliśmy nowe narzędzie, za pomocą którego możemy – metodami optycznymi – kontrolować elektrony. Otworzyliśmy nowy kierunek badań nad izolatorami topologicznymi, mówi profesor Ralph Claessen.
      Ekscyton to kwazicząstka, która stanowi parę elektron-dziura połączoną siłami elektrostatycznymi. Uzyskaliśmy ekscytony oddziałując krótkimi impulsami światła na jednoatomową warstwę materiału, mówi profesor Claessen. Przełomowy tutaj jest fakt, że materiałem tym był izolator topologiczny. Dotychczas nie udawało się w nim uzyskać ekscytonów. W tym przypadku izolator zbudowany był z bizmutu, którego atomy ułożono w strukturę plastra miodu.
      Całość badań optycznych przeprowadzono w Laboratorium Optycznej Spektroskopii Nanostruktur Politechniki Wrocławskiej.
      Osiągnięcie to jest o tyle istotne, że od około 10 lat specjaliści badają ekscytony w dwuwymiarowych półprzewodnikach, chcąc wykorzystać je w roli nośników informacji kontrolowanych światłem. Teraz za pomocą światła uzyskaliśmy ekscytony w izolatorze topologicznym. Reakcje zachodzące pomiędzy światłem a ekscytonami mogą prowadzić do pojawienia się nowych zjawisk w takich materiałach. To zaś można będzie wykorzystać, na przykład, do uzyskiwania kubitów, wyjaśnia Claessen. Kubity, czyli kwantowe bity, to podstawowe jednostki informacji w komputerach kwantowych. Badania polsko-niemieckiego zespołu mogą więc doprowadzić do powstania nowych kontrolowanych światłem podzespołów dla komputerów kwantowych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Na Uniwersytecie Tokijskim powstał kondensat Bosego-Einsteina zbudowany z kwazicząstek. Kwazicząstki nie są cząstkami elementarnymi, ale posiadają niektóre z ich cech, jak ładunek czy spin. Przez dziesięciolecia nie było wiadomo, czy kwazicząstki mogą utworzyć kondensat Bosego-Einsteina tak, jak czynią to cząstki. Japońscy naukowcy dowiedli, że mogą, a ich odkrycie może mieć duży wpływ na rozwój technologii kwantowych.
      Kondensaty Bosego-Eisteina są czasem opisywane jako piąty – obok ciał stałych, cieczy, gazów i plazm – stan materii. Ich istnienie zostało przewidziane na początku XX wieku. Pierwszy kondensat uzyskano w 1995 roku. Kondensat Bosego-Einsteina pojawia się, gdy grupa atomów zostanie schłodzona do temperatury o miliardowe części stopnia wyższe od zera absolutnego. Naukowcy zwykle wykorzystują lasery i pułapki magnetyczne do stopniowego chłodzenia gazu, zwykle atomów rubidu. W niezwykle niskich temperaturach atomy niemal się nie poruszają i wykazują zadziwiające zachowania. Znajdują się w tym samym stanie kwantowym i zaczynają „sklejać się” ze sobą, zajmując tę samą przestrzeń, tworząc „superatom” zachowujący się jak pojedyncza cząstka. Dotychczas kondensaty Bosego-Einsteina uzyskiwano ze zwykłych atomów.
      Japończycy stworzyli kondensat z atomów egzotycznych, czyli takich, w których jedną cząstkę subatomową – np. elektron czy proton – zastąpiono inną cząstką subatomową o takim samym ładunku. Na przykład pozytonium to atom egzotyczny zbudowany z elektronu i pozytonu.
      Innym takim przykładem może być ekscyton. Gdy światło trafia w półprzewodnik, prowadzi to do pobudzenia elektronów, pojawia się ich swobodny przepływ, w ten sposób zamieniamy energię światła w energię elektryczną. Miejsce opuszczone przez wzbudzony elektron to dziura, którą można traktować jak cząstkę o ładunku dodatnim. Przyciąga ona elektron o ładunku ujemnym, tworząc parę dziura-elektron. W ten sposób powstaje kwazicząstka zwana ekscytonem. Możemy traktować ją jak atom egzotyczny, a konkretnie atom wodoru, w którym proton został zastąpiony przez dziurę.
      Japończycy uwięzili ekscytony – a konkretne paraekscytony, czyli ekscytony o spinach antyrównoległych – w tlenku miedzi (Cu2O), który schłodzili do 400 mK. Następnie wizualizowali powstały w ten sposób kondensat Bosego-Einsteina i określili różnice i podobieństwa między kondensatem uzyskanym z ekscytonów, a standardowym kondensatem atomowym.
      Uczeni już zapowiadają, że zajmą się badaniami dynamiki formowania kondensatu Bosego-Einsteina w półprzewodnikach i badaniami kolektywnego wzbudzenia ekscytonów w kondensacie. Ich celem jest stworzenie platformy do badań kondensatu z ekscytonów.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...