Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Być może jeszcze za naszego życia uda się zbudować przenośny wykrywacz fal grawitacyjnych

Recommended Posts

Przed czterema laty informowaliśmy o jednym z największych odkryć naukowych obecnego wieku – zarejestrowaniu fal grawitacyjnych. Zostały one zauważone przez LIGO, jeden z największych instrumentów naukowych na świecie. W każdym z dwóch laboratoriów LIGO pracuje interferometr w kształcie litery L, którego długość każdego z ramion wynosi 4000 metrów. W ciągu ostatnich lat LIGO kilkunastokrotnie rejestrował fale grawitacyjne. Teraz naukowcy proponują wybudowanie 1000-krotnie mniejszego przenośnego interferometru, który mógłby wykrywać fale grawitacyjne w każdym laboratorium na świecie.

Interferometry LIGO (Laser Interferometer Gravitational-Wave Observatory) to 4-kilometrowe tunele, na końcach których umieszczono lustra. W stronę luster wystrzeliwany jest promień lasera, który odbija się i powraca do detektorów. Fale grawitacyjne ściskają i rozciągają przestrzeń o 1 część na 1021, co oznacza, że cała Ziemia jest ściskana lub rozciągana o mniej więcej grubość jądra atomu. Jeśli teraz promienie lasera w LIGO przebyły różną drogę – zatem jeśli interferometr został ściśnięty lub rozciągnięty przez fale grawitacyjne – to dojdzie między nimi do interferencji. A badając tę interferencję można zmierzyć relatywną długość ramion z dokładnością do 1/10 000 szerokości protonu.

Jak widzimy LIGO to olbrzymi instrument. Dlatego też grupa fizyków proponuje zbudowanie wykrywacza fal grawitacyjnych o długości zaledwie 1 metra. Autorzy udostępnionego w arXiv artykułu, który wkrótce zostanie opublikowany na łamach New Journal of Physics, proponują budowę wykrywacza zjawiska z zakresu mechaniki kwantowej, które towarzyszy przejściu fal grawitacyjnych.

Już teraz wiemy, że budowa takiego wykrywacza będzie niezwykle trudna, mówi jeden z autorów propozycji, Gavin Morley, fizyk z University of Warwick. Jeśli jednak się uda, wykrywaniem fal grawitacyjnych mogłoby zajmować się dziesiątki laboratoriów na całym świecie.

Naukowcy nazwali swój instrument MIMAC (Mesoscopic Interference for Metric and Curvature). Jego głównym elementem ma być kawałek diamentu o wielkości nie przekraczającej mikrometra. Miałby on zostać umieszczony w stanie kwantowej superpozycji i oczekiwać na interakcję z falą grawitacyjną.

W skład zespołu naukowego – obok Morleya – wchodzą Sougato Bose, Peter Barker i Ryan Marshman z University College London oraz Anupam Mazumdar i Steven Hoekstra z Uniwersytetu w Groningen. Proponują oni, by do stworzenia superpozycji wykorzystać strumień mikrofal skierowany na pojedynczy elektron powiązany z celowo wprowadzonym błędem w sieci krystalicznej atomów węgla we wspomnianym kawałku diamentu. Błąd ten to pojedynczy atom azotu dodany do sieci.

Elektron w atomie azotu miałby jednocześnie absorbować i nie absorbować fotonu z mikrofal, tworząc kwantową superpozycję mikrodiamentu. Elektron w tej wersji diamentu, która zaabsorbowała foton przełączyłby się w stan nazwany „spin one”, co oznacza, że zachowywałby się jak miniaturowy magnes. Elektron w drugiej wersji diamentu pozostałby w stanie „spin zero”, magnetycznie neutralnym. Naukowcy uważają, że za pomocą zewnętrznego pola magnetycznego można by następnie odsunąć od siebie obie cząstki na odległość nawet metra. W końcu naukowcy odwróciliby zewnętrze pole magnetyczne, łącząc obie pozycje diamentu i po raz ostatni wysyłając w jego kierunku impuls mikrofalowy.

Ten ostatni impuls spowodowałby powstanie niezwykłego efektu kwantowego. W świecie kwantowym cząstki nie są cząstkami, a falami, których wielkość i kształt odpowiadają prawdopodobieństwu znalezienia cząstki w danej pozycji. Ten ostatni impuls mikrofal miałby za zadanie zmienić kształt superpozycji tak, że wierzchołki fali „spin one” nałożyłyby się na doliny i nawzajem zniosły, natomiast wierzchołki „spin zero” nałożyłyby się na siebie i wzmocniły. W ten sposób, przy braku jakichkolwiek oddziaływań z zewnątrz, pomiar elektronu zawsze dawałby wynik „spin zero”.

I w tym momencie dochodzimy do sposobu wykrywania fal grawitacyjnych. Otóż fala taka przechodząca przez MIMAC, rozciągałaby lub ściskała superpozycję i prowadziła do zmiany stanu. Pomiary dawałyby więc różne wyniki, w których częstotliwość pojawiania się stanu „spin one” wskazywałaby na częstotliwość fali grawitacyjnej.

Ron Folman, fizyk eksperymentalny z Uniwersytetu Ben Guriona w Izraelu, chwali podstawy teoretyczne i mówi, że zbudowanie działającego prototypu takiego wykrywacza może zająć dziesięciolecia. Wyizolowanie całego systemu od wpływów zewnętrznych będzie niezwykle trudne. Ale, jak dodaje, być może uda się to za naszego życia. Pod warunkiem, że poświęci się na to odpowiednio dużo wysiłku.

Jednym z najpoważniejszych wyzwań będzie stworzenie superpozycji diamentu, która utrzyma się na odległość 1 metra. Przed czterema laty naukowcy z Uniwersytetu Stanforda byli w stanie utrzymać superpozycję 10 000 atomów odsuniętych na odległość około pół metra. To dotychczasowy rekord. Jednak tutaj mówimy o diamencie składającym się z miliarda czy 10 miliardów atomów. To znacznie trudniejsze, wyjaśnia Mazumdar.

Ponadto stworzenie MIMAC wymagałoby połączenia w jednym urządzeniu wysokiej próżni, bardzo niskich temperatur czy precyzyjnie kontrolowanych pól magnetycznych. Każdy z tych elementów został już osiągnięty przez różne grupy naukowe, jednak ich połączenie to zupełnie inna historia. Fakt, że potrafisz żonglować i potrafisz jeździć na rowerze nie oznacza jeszcze, że potrafisz robić obie te rzeczy jednocześnie, zauważa Morley.

Twórcy nowej koncepcji są jednak pełni zapału. Zauważają, że przenośny wykrywacz fal grawitacyjnych można by ustawiać w dowolnej orientacji względem nieboskłonu. I można by prowadzić badania fal w wielu różnych miejscach na świecie. Problemem jest stworzenie jednego działającego urządzenia. Jeśli to się uda, to łatwo będzie zbudować kolejne, podkreśla Bose.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Trzymam kciuki, żeby się udało zbudować MIMAC. Czy jednak takie urządzenie, tylko większe, nie dałoby również większej czułości?

Share this post


Link to post
Share on other sites

Wygląda na ekstremalnie trudne do wykonania. Ale z drugiej strony jak budowali LIGO to ludzie też pukali się w głowę że to nie może się udać. Aż sprawdziłem kiedy się urodził Ron Folman i wychodzi że jestem  młodszy, więc jak on planuje doczekać to ja może dociągnę do takiego sensora w smartfonie :)

 

 

Share this post


Link to post
Share on other sites

To jest po prostu głupie. Ligo jest znacznie prostszym i dokładniejszym przyrządem, a do tego ma fizyczne podstawy aby działać.
Nie ma opcji aby udało się nakładać superpozycję diamentów na siebie z taką dokładnością bez przeprowadzania pomiarów co zniszczy superpozycję, po prostu jest to technicznie niemożliwe. Byłoby gigantycznym sukcesem po prostu utrzymanie takiej superpozycji, precyzyjne manipulacje zewnętrznym polem magnetycznym - fantasmagoria.
Fala grawitacyjna musiałaby przejść w momencie kiedy używamy pól magnetycznych do składania superpozycji, bo tylko wtedy może zmienić stan układu. To oznacza powtarzalność rzędu sekund w wariancie optymistycznym i co tyle moglibyśmy dostarczyć jednego fotonu.To oczywiście wymusza duplikację eksperymentu setki tysięcy razy aby mieć jakąkolwiek statystykę.
Realistycznie: 10 mld atomów węgla manipulowane siłą oddziaływania magnetycznego pochodzącego od jednego spinu na odległość metra z dokładnością przekraczającą 10^-21: czy ci ludzie czytają to co piszą?
Bez zabronionych pomiarów położenia tworzenie układu pomiarowego to losowanko i cały czas dostawalibyśmy szum z którego nie dałoby się wyodrębnić żadnego sygnału.

 

Share this post


Link to post
Share on other sites

To doprawdy zabawne i smutne zarazem, widząc jak goje podniecają się tak kompletnymi bredniami. Wszak bredniami przeznaczonymi właśnie dla nich, by mieli wypaczony obraz świata, w którym żyją. 

Grawitacja to iście masoński wynalazek, by za jej pomocą uwiarygodnić  budowę wszechświata, który jest czystą fikcją, zresztą bardzo atrakcyjną, bo któż się nie fascynuje kosmosem ? Mało kto zna prawdziwy życiorys Isaaka Newtona, masona wysokiego stopnia. Ten popapraniec miał istnego jobla na punkcie alchemii i tym się głównie w życiu zajmował. Teoria grawitacji została wyssana z palca i nigdy nie została potwierdzona doświadczalnie. Te wszystkie eksperymenty to kłamstwo. I zanim ktoś mnie wyzwie od nieuków czy wyznawców teorii spiskowych, pragnę zaznaczyć, że odróżniam swobodny spadek od przyciągania. Grawitacja polegająca na wzajemnym przyciąganiu się ciał NIE ISTNIEJE. 

Natomiast Kopernik był pionierem heliocentryzmu, który do teraz funkcjonuje tylko jako teoria. To doprawdy osobliwe. Czyżby budowa układu słonecznego w XXI wieku nie mogła być potwierdzona doświadczalnie i musiała być wciąż teorią ? O Einsteinie już nawet nie wspominam. To nieuk i plagiator. Sam przyznał, że teoria eteru Tesli jest bardziej spójna i logiczna niż jego fantasmagoryczna czasoprzestrzeń.

Czy nie widzicie goje, że ktoś z was ma niezłą bekę ? Przenicowali wam mózgi za pomocą systemu edukacji, który ma tyle wspólnego z prawdą co węgiel kamienny z kamieniem węgielnym. I proszę mi się nie pluć, że gdyby nie naukowcy, to nie miałbym smartfona. Do naukowców nic nie mam, są użyteczni. Ale cała astronomia i kosmologia, to jedno z najpotężniejszych narzędzi zniewolenia homo sapiens. Nie spodziewam się przychylności od kogokolwiek na tym forum, ale pomyślcie tylko przez chwilę. Czy sądzicie, że ogólnie pojęta prawda jest towarem przeznaczonym dla wszystkich, czy może jest to towar ekskluzywny tylko dla wybranych ? No i jakie mamy możliwości zweryfikowania tej prawdy ? Praktycznie żadnych. Możemy tylko święcie wierzyć, że taka nasa przekazuje nam prawdę, pokazując zapierające dech w piersiach "fotografie" odległych galaktyk. W tym aspekcie kosmologia niczym się nie różni od religii... Ciao

  • Confused 1
  • Downvote (-1) 4

Share this post


Link to post
Share on other sites
7 godzin temu, Otokar Balcy napisał:

No i jakie mamy możliwości zweryfikowania tej prawdy ? Praktycznie żadnych. Możemy tylko święcie wierzyć, że taka nasa przekazuje nam prawdę, pokazując zapierające dech w piersiach "fotografie" odległych galaktyk.

Nie powiem, że gratuluję wyboru przedmiotu wiary, bo dla niektórych jest to jak najbardziej osiągalne. Co do zapierających dech "fotografii" to każdy nawet amator astronomii wie, iż zdjęcia astronomiczne robi się nieco inaczej, a "barwne obrazki" to złożenie zdjęć w kilku/ kilkunastu filtrach; jak najbardziej pod publikę, bo kto nie lubi pięknych zdjęć?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.
      Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.
      Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.
      W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.
      Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.
      Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.
      Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.
      Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.
      Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.
      Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.
      Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Europejski projekt budowy wielkiego wykrywacza fal grawitacyjnych znalazł się o krok bliżej realizacji. European Strategy Forum on Research Infrastructures (ESFRI), które doradza rządom Unii Europejskiej odnośnie priorytetów badawczych, wpisało Einstein Telescope, bo tak się ma nazywać laboratorium, na mapę drogową projektów naukowych, które są na tyle zaawansowane, że warto, by nadal się rozwijały.
      Einstein Telescope ma kosztować 1,9 miliarda euro. Twórcy projektu muszą jeszcze przekonać rządy do swojego pomysłu. Wpisanie na listę ESFRI nie jest obietnicą finansowania, ale pokazuje, że istnieje wola kontynuowania projektu, mówi współprzewodniczący komitetu kierującego Einstein Telescope, Harald Lück w Uniwersytetu im. Leibniza w Hanowerze.
      Działania ESFRI zostały z zadowoleniem przywitane przez naukowców USA, którzy mają nadzieję, że pomoże to w realizacji ich własnych planów budowy pary wykrywaczy większych niż Einstein Telescope. Amerykański projekt nosi nazwę Cosmic Explorer. Myślę, że to dobry czas, by rozpocząć tego typu budowę, mówi David Reitze, dyrektor LIGO (Laser Interferometer Gravitational-Wave Observatory), obserwatorium, w którym wykryto pierwsze fale grawitacyjne.
      Wykrywacze fal grawitacyjnych rejestrują niewielkie zaburzenia przestrzeni wywoływane przez masywne obiekty, jak np. czarne dziury, które krążą wokół siebie i w końcu się łączą. Wykrywacze takie to olbrzymie urządzenia. Amerykański LIGO składa się z pary interferometrów znajdujących się w stanach Louisiana i Washington. Każdy z nich ma kształt litery L, a każde z ramion ma 4 kilometry długości. Porównując długość ramion z olbrzymią dokładnością, można stwierdzić, czy doszło do jej zmiany w wyniku przejścia fali grawitacyjnej. Z kolei europejski wykrywacz Virgo, który znajduje się we Włoszech, ma ramiona o długości 3 km.
      Naukowcy chcieliby jednak zbudować większe instrumenty. LIGO i Virgo, do których niedawno dołączył japoński KAGRA, są w stanie wykrywać połączenia czarnych dziur z odległości ponad 10 miliardów lat świetlnych. Gdyby jednak zbudować 10-krotnie bardziej czułe detektory, moglibyśmy rejestrować takie wydarzenia w całym obserwowalnym wszechświecie, na przestrzeni 45 miliardów lat świetlnych. Stąd też niezwykle ambitne plany.
      Amerykański Cosmic Explorer ma składać się z jednego lub więcej interferometrów w kształcie litery L, której ramiona mają mieć po 40 km długości. Z kolei projekt Einsten Telescope zakłada budowę 6 interferometrów w kształcie litery V, o ramionach długości 10 kilometrów każde. Mają być one ułożone na planie trójkąta równobocznego, z 2 interferometrami w każdym z rogów.
      Fizycy z USA i Europy chcą, by ich detektory powstały do połowy lat 30. XXI wieku. Umieszczenie Einstein Telescope na liście ESFRI to krok naprzód w realizacji europejskich planów. W ciągu najbliższych 3–4 lat pomysłodawcy Einstein Telescope powinni przedstawić bardziej szczegółowy plan i raport techniczny. Muszą też w tym czasie zdobywać poparcie dla swojego pomysłu zarówno ze strony polityków, jak i środowisk naukowych, angażując do współpracy kolejnych specjalistów. Obecnie projekt Einstein Telescope może liczyć na poparcie z Belgii, Włoch, Holandii, Polski i Hiszpanii.
      Einstein Telescope, jeśli zostanie zrealizowany, może przybrać kształt podobny do CERN-u.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Konsorcja naukowe Virgo, LIGO i KAGRA ogłosiły pierwsze w historii odkrycie układów podwójnych składających się z czarnej dziury i gwiazdy neutronowej. Było to możliwe dzięki wykryciu w styczniu 2020 r.  sygnałów fal grawitacyjnych wyemitowanych przez dwa układy (nazwane od daty ich rejestracji GW200105 i GW200115) w których wirujące wokół siebie czarna dziura i gwiazda neutronowa połączyły się w jeden zwarty obiekt. Astronomowie już kilkadziesiąt lat temu przewidzieli istnienie takich układów, ale do tej pory nigdy nie zaobserwowano ich z całkowitą pewnością, ani za pomocą sygnałów elektromagnetycznych, ani obserwując fale grawitacyjne. Wyniki nowych obserwacji i ich astrofizyczne implikacje zostały opublikowane w The Astrophysical Journal Letters.
      Od momentu pierwszej spektakularnej detekcji fal grawitacyjnych z koalescencji dwóch czarnych dziur, GW150914, za którą została przyznana nagroda Nobla w 2017, zarejestrowaliśmy sygnały z 50 układów podwójnych obiektów zwartych, ale były to wyłącznie pary łączących się czarnych dziur lub gwiazd neutronowych. Długo wyczekiwane odkrycie układów podwójnych gwiazdy neutronowej z czarną dziurą rzuca światło na narodziny, życie i śmierć gwiazd, jak również na otoczenie, w którym powstały – wyjaśnia prof. Dorota Rosińska
      Te obserwacje pokazują, ze istnieją mieszane układy podwójne zawierające gwiazdy neutronowe i czarne dziury. Istnienie takich układów było przewidziane w wielu scenariuszach, w tym rozwijanych przez mnie wraz z prof. Belczynskim od ponad dwudziestu lat. Ta detekcja jest potwierdzeniem takich przewidywań – mówi prof. Tomasz Bulik
      Sygnały fal grawitacyjnych zarejestrowane w styczniu 2020 r. zawierają cenne informacje o cechach fizycznych zaobserwowanych układów, takich jak ich odległości i masy składników, a także o mechanizmach fizycznych, które takie pary wygenerowały i doprowadziły do ich połączenia. Analiza danych wykazała, że czarna dziura i gwiazda neutronowa, które stworzyły GW200105, są odpowiednio około 8,9 i 1,9 razy masywniejsze od naszego Słońca, a ich połączenie miało miejsce około 900 milionów lat temu. W przypadku zdarzenia GW200115 naukowcy z konsorcjów Virgo i LIGO szacują, że dwa zwarte obiekty miały masy około 5,7 (czarna dziura) i 1,5 (gwiazda neutronowa) mas Słońca i połączyły się niemal miliard lat temu.
      Prof. Rosińska: Spodziewaliśmy się, że podczas koalescencji gwiazdy neutronowej z czarną dziurą, gwiazda zostanie rozerwana przez siły pływowe, gdy znajdzie się dostatecznie blisko czarnej dziury, jednak duża różnica mas obiektów spowodowała, że prawdopodobnie gwiazda neutronowa została połknięta w całości przez czarną dziurę.
      Ogłoszony wynik, wraz z dziesiątkami innych detekcji dokonanych do tej pory przez detektory Virgo i LIGO, pozwala po raz pierwszy na dokładną obserwację jednych z najbardziej gwałtownych i rzadkich zjawisk we Wszechświecie. Badamy proces ich tworzenia oraz miejsce ich narodzin.  Obserwacje koalescencji czarnej dziury i gwiazdy neutronowej, dają możliwość testowania fundamentalnych praw fizyki w ekstremalnych warunkach, których nigdy nie będziemy w stanie odtworzyć na Ziemi. Prof. Rosińska: Mamy nadzieję, że przyszłym obserwacjom łączenia się gwiazdy neutronowej z czarną dziurą może towarzyszyć wykrycie wytworzonego w tym procesie promieniowania elektromagnetycznego, co da nam wgląd w proces rozrywania pływowego gwiazdy neutronowej przez czarną dziurę. Może to dostarczyć informacji o ekstremalnie gęstej materii, z której składają się gwiazdy neutronowe.
      Obserwacja dwóch układów gwiazda neutronowa-czarna dziura pokazuje, że koalescencji tego typu obiektów może być od 5 do 15 rocznie w objętości o promieniu miliarda lat świetlnych. To szacowane tempo łączenia się NSBH można wytłumaczyć zarówno izolowaną ewolucją układów podwójnych jak i dynamicznymi oddziaływaniami w gęstych gromadach gwiazd, ale dostępne do tej pory dane nie pozwalają nam na wskazanie bardziej prawdopodobnego scenariusza.
      W pracach uczestniczyli naukowcy z Obserwatorium Astronomicznego UW: prof. Tomasz Bulik, prof. Dorota Rosińska, mgr Małgorzata Curyło, mgr Neha Singh, dr Przemysław Figura, dr Bartosz Idźkowski, mgr Paweł Szewczyk.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy z Polski, USA i Niemiec uważają, że można wykorzystać globalną sieć czujników kwantowych oraz zegary atomowe systemu GPS do rejestrowania hipotetycznych egzotycznych pól o niskiej masie (ELF), sygnałów pochodzących z łączenia się czarnych dziur i innych gwałtownych wydarzeń astronomicznych. Wykrycie takich sygnałów dawałoby istotny wgląd w fizykę wykraczającą poza Model Standardowy.
      Andrei Derevianko z University of Nevada i jego zespół, w pracach którego udział bierze Szymon Pustelny z Uniwersytet Jagiellońskiego, opublikowali pracę, w której wyliczają właściwości ELF i mówią gdzie oraz jak ich szukać.
      Astronomia wielokanałowa (multimessenger astronomy), to skoordynowane obserwacje różnych sygnałów pochodzących z tego samego źródła. Obserwacje takie zapewniają duże bogactwo danych na temat procesów astrofizycznych. Dotychczas astronomia wielokanałowa odbierała skorelowane sygnały ze znanych oddziaływań podstawowych i standardowych cząstek, jak promieniowanie elektromagnetyczne, neutrina czy fale grawitacyjne. Jednak wielu autorów sugeruje, że istnieją egzotyczne pola o niskiej masie ( <-2), czytamy w pracy opublikowanej na łamach Nature.
      W naszej pracy wykażemy, że sieć precyzyjnych czujników kwantowych, które są izolowane od wpływu konwencjonalnych sygnałów fizycznych, może być potężnym narzędziem astronomii wielokanałowej. Rozważamy tutaj sytuację, w której wysokoenergetyczne wydarzenia astrofizyczne wywołują intensywne rozbłyski egzotycznych pól o niskiej masie (ELF) i proponujemy nowy model wykrywania ELF bazujący na generalnych założeniach. Wyliczamy tutaj amplitudy sygnałów EFL, opóźnienia, częstotliwości i odległości od źródeł fal grawitacyjnych, które to sygnały mogą zostać zarejestrowane przez globalną sieć magnetometrów i zegarów atomowych. Stwierdziliśmy, że sieci takich urządzeń mogą działać jak teleskopy ELF, wykrywając sygnały ze źródeł, które generują ELF.
      Czarne dziury i gwiazdy neutronowe mają silne pola grawitacyjne, zatem można przypuszczać, że przyciągają ciemną materię. Wiele rozszerzeń Modelu Standardowego sugeruje, że wokół wielkich masywnych obiektów astrofizycznych, jak czarne dziury, mogą gromadzić się ELF. Gdy czarne dziury się łączą i dochodzi do uwolnienia olbrzymich ilości energii, część z tych ELF może zostać rozerwana i wyrzucona w kierunku Ziemi. Możemy więc spróbować je wykryć i badać.
      Jednak sposób badania ELF będzie zależał od ich natury. Derevianko uważa, że jedną z metod może być wykorzystanie zegarów atomowych. ELF mogą wpłynąć na odległości pomiędzy powłokami elektronowymi, co wpłynie na częstotliwość pracy zegara atomowego. Globalna sieć zegarów atomowych już istnieje. Urządzenia takie mają na pokładzie satelity systemu GPS. Można by ją więc wykorzystać do wykrywania ELF, których źródło znajduje się w dowolnym miejscu obserwowalnego wszechświata.
      Jest jeszcze inna możliwość obserwacji ELF. Naukowcy przypuszczają, że pola te mogą wchodzić w interakcje ze spinami atomów, zatem mogą być wykrywane przez magnetometry. Global Network of Optical Magnetometers for Exotic physics (GNOME) to sieć 13 stacji rozsianych na 4 kontynentach. Co prawda, jak zauważa Derevianko, obecnie magnetometry te nie są wystarczająco czułe, by wykryć ELF, ale w przyszłości mogą osiągnąć wymaganą czułość, gdyż są ciągle udoskonalane.
      Uczeni nie znają dokładnej natury sygnałów pochodzących z ELF, w końcu samo istnienie pól jest jedynie hipotezą, jednak przewidują niektóre z ich właściwości. Ich zdaniem cząstki będące nośnikami sygnału mają dużą energię i bardzo niską masę. W związku z tym przemieszczają się niemal z prędkością światła. Co więcej, uważają, że jako pierwsze dotrą do nas elementy o wysokiej częstotliwości. To zaś będzie zapowiedzią impulsu, który trafi na Ziemię wkrótce po dotarciu fal grawitacyjnych.
      Zdaniem zespołu Derevianko, naukowcy mogą szukać ELF w wydarzeniach, którym nie towarzyszy fala grawitacyjna, np. w wybuchach supernowych. A jeśli np. uda się znaleźć w zegarach atomowych systemu GPS ślady ELF pochodzących z połączenia czarnych dziur, to można przeanalizować dane historyczne, sprzed okresu, gdy byliśmy w stanie wykrywać fale grawitacyjne.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Kolaboracje LIGO i Virgo zaprezentowały dziś nowy katalog GWTC-2 obserwacji fal grawitacyjnych zaobserwowanych od kwietnia do października 2019 r. podczas pierwszej części kampanii obserwacyjnej O3 (O3a). Zbiór zawiera w sumie 39 zdarzeń. Jednocześnie opublikowano nowe prace badawcze, a także obszerne popularne podsumowania ich wyników.
      Wśród ujętych w nowym katalogu zdarzeń znalazły się zjawiska spójne z trzema typami kolizji: dwóch czarnych dziur (ang. binary black holes, BBH), dwóch gwiazd neutronowych (ang. binary neutron stars, BNS) i układów mieszanych złożonych z gwiazdy neutronowej i czarnej dziury (ang. neutron star-black hole, NSBH). Katalog zawiera m.in. wyjątkowo interesujące zdarzenia (opisywane wcześniej w odrębnych publikacjach) takie jak druga w historii obserwacja koalescencji dwóch gwiazd neutronowych, koalescencja dwóch czarnych dziur o największej w historii dysproporcji mas oraz obserwacja bardzo masywnego układu czarnych dziur o łącznej masie około 150 razy większej od masy Słońca. Dane udostępnione dziś wszystkim zainteresowanym badaczom umożliwią prace nad nimi szerokiemu kręgowi naukowców, a także pasjonatom.
      Katalog GWTC-2 to rezultat współpracy ponad tysiąca naukowców z całego świata zrzeszonych w konsorcjum LIGO-Virgo, w tym szesnastu z Polski. Dwóch z nich pracuje w Narodowym Centrum Badań Jądrowych (prof. Andrzej Królak i dr Adam Zadrożny). Naukowcy z Narodowego Centrum Badań Jądrowych od 2008 roku biorą udział w pracach konsorcjum LIGO-Virgo, w tym w pracach nad sygnałami pochodzącymi z rotujących gwiazd neutronowych, astronomią wielu nośników (multi-messenger astronomy) oraz nowych metod analizy danych. Narodowe Centrum Badań Jądrowych wnosi wkład w budowę europejskiego detektora fal grawitacyjnych Virgo.
      Analiza kolejnych danych z drugiej części kampanii obserwacyjnej O3 (O3b) jest obecnie w toku. Jej wyniki jeszcze bardziej rozbudują katalog zaobserwowanych przejściowych sygnałów fal grawitacyjnych. Obecnie detektory LIGO i Virgo są poddawane dodatkowym inżynieryjnym ulepszeniom w celu poprawienia ich czułości w czasie kolejnej, czwartej już kampanii obserwacyjnej (O4).
      Wykrywanie fal grawitacyjnych stało się obecnie rutynowe, i to zaledwie pięć lat po pierwszej detekcji. Dzięki w sumie 50 zarejestrowanym sygnałom fal grawitacyjnych (11 w opublikowanym wcześniej katalogu GWTC-1 i 39 zebranych obecnie w GWTC-2) następuje znaczący postęp w badaniach: jesteśmy w stanie lepiej poznać populację czarnych dziur i gwiazd neutronowych we Wszechświecie, zwiększa się nasze zrozumienie teorii grawitacji, tj. ogólnej teorii względności, a wkrótce, mając do dyspozycji czulsze detektory, zapewne będzie możliwe wykrycie fal grawitacyjnych pochodzących ze zdarzeń obserwowanych także jako tzw. rozbłyski gamma (pierwszy taki przypadek miał już miejsce w 2017 r.). Tym zagadnieniom poświęcone są artykuły publikowane równolegle z nowym katalogiem.
      Dane z trzydziestu dziewięciu obserwacji zarejestrowanych podczas pierwszej fazy kampanii obserwacyjnej O3 są umieszczone na serwerze Centrum Otwartych Danych Fal Grawitacyjnych GWOSC (ang. Gravitational Wave Open Science Center) dostępnym poprzez portal https://www.gw-openscience.org/eventapi/html/GWTC-2.
      Strona GWOSC zawiera kompletną dokumentację i przykłady kodów do analizy danych oraz tutoriale mogące pomóc każdemu zainteresowanemu w odkrywaniu publicznie dostępnych zbiorów danych.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...