Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Być może jeszcze za naszego życia uda się zbudować przenośny wykrywacz fal grawitacyjnych

Rekomendowane odpowiedzi

Przed czterema laty informowaliśmy o jednym z największych odkryć naukowych obecnego wieku – zarejestrowaniu fal grawitacyjnych. Zostały one zauważone przez LIGO, jeden z największych instrumentów naukowych na świecie. W każdym z dwóch laboratoriów LIGO pracuje interferometr w kształcie litery L, którego długość każdego z ramion wynosi 4000 metrów. W ciągu ostatnich lat LIGO kilkunastokrotnie rejestrował fale grawitacyjne. Teraz naukowcy proponują wybudowanie 1000-krotnie mniejszego przenośnego interferometru, który mógłby wykrywać fale grawitacyjne w każdym laboratorium na świecie.

Interferometry LIGO (Laser Interferometer Gravitational-Wave Observatory) to 4-kilometrowe tunele, na końcach których umieszczono lustra. W stronę luster wystrzeliwany jest promień lasera, który odbija się i powraca do detektorów. Fale grawitacyjne ściskają i rozciągają przestrzeń o 1 część na 1021, co oznacza, że cała Ziemia jest ściskana lub rozciągana o mniej więcej grubość jądra atomu. Jeśli teraz promienie lasera w LIGO przebyły różną drogę – zatem jeśli interferometr został ściśnięty lub rozciągnięty przez fale grawitacyjne – to dojdzie między nimi do interferencji. A badając tę interferencję można zmierzyć relatywną długość ramion z dokładnością do 1/10 000 szerokości protonu.

Jak widzimy LIGO to olbrzymi instrument. Dlatego też grupa fizyków proponuje zbudowanie wykrywacza fal grawitacyjnych o długości zaledwie 1 metra. Autorzy udostępnionego w arXiv artykułu, który wkrótce zostanie opublikowany na łamach New Journal of Physics, proponują budowę wykrywacza zjawiska z zakresu mechaniki kwantowej, które towarzyszy przejściu fal grawitacyjnych.

Już teraz wiemy, że budowa takiego wykrywacza będzie niezwykle trudna, mówi jeden z autorów propozycji, Gavin Morley, fizyk z University of Warwick. Jeśli jednak się uda, wykrywaniem fal grawitacyjnych mogłoby zajmować się dziesiątki laboratoriów na całym świecie.

Naukowcy nazwali swój instrument MIMAC (Mesoscopic Interference for Metric and Curvature). Jego głównym elementem ma być kawałek diamentu o wielkości nie przekraczającej mikrometra. Miałby on zostać umieszczony w stanie kwantowej superpozycji i oczekiwać na interakcję z falą grawitacyjną.

W skład zespołu naukowego – obok Morleya – wchodzą Sougato Bose, Peter Barker i Ryan Marshman z University College London oraz Anupam Mazumdar i Steven Hoekstra z Uniwersytetu w Groningen. Proponują oni, by do stworzenia superpozycji wykorzystać strumień mikrofal skierowany na pojedynczy elektron powiązany z celowo wprowadzonym błędem w sieci krystalicznej atomów węgla we wspomnianym kawałku diamentu. Błąd ten to pojedynczy atom azotu dodany do sieci.

Elektron w atomie azotu miałby jednocześnie absorbować i nie absorbować fotonu z mikrofal, tworząc kwantową superpozycję mikrodiamentu. Elektron w tej wersji diamentu, która zaabsorbowała foton przełączyłby się w stan nazwany „spin one”, co oznacza, że zachowywałby się jak miniaturowy magnes. Elektron w drugiej wersji diamentu pozostałby w stanie „spin zero”, magnetycznie neutralnym. Naukowcy uważają, że za pomocą zewnętrznego pola magnetycznego można by następnie odsunąć od siebie obie cząstki na odległość nawet metra. W końcu naukowcy odwróciliby zewnętrze pole magnetyczne, łącząc obie pozycje diamentu i po raz ostatni wysyłając w jego kierunku impuls mikrofalowy.

Ten ostatni impuls spowodowałby powstanie niezwykłego efektu kwantowego. W świecie kwantowym cząstki nie są cząstkami, a falami, których wielkość i kształt odpowiadają prawdopodobieństwu znalezienia cząstki w danej pozycji. Ten ostatni impuls mikrofal miałby za zadanie zmienić kształt superpozycji tak, że wierzchołki fali „spin one” nałożyłyby się na doliny i nawzajem zniosły, natomiast wierzchołki „spin zero” nałożyłyby się na siebie i wzmocniły. W ten sposób, przy braku jakichkolwiek oddziaływań z zewnątrz, pomiar elektronu zawsze dawałby wynik „spin zero”.

I w tym momencie dochodzimy do sposobu wykrywania fal grawitacyjnych. Otóż fala taka przechodząca przez MIMAC, rozciągałaby lub ściskała superpozycję i prowadziła do zmiany stanu. Pomiary dawałyby więc różne wyniki, w których częstotliwość pojawiania się stanu „spin one” wskazywałaby na częstotliwość fali grawitacyjnej.

Ron Folman, fizyk eksperymentalny z Uniwersytetu Ben Guriona w Izraelu, chwali podstawy teoretyczne i mówi, że zbudowanie działającego prototypu takiego wykrywacza może zająć dziesięciolecia. Wyizolowanie całego systemu od wpływów zewnętrznych będzie niezwykle trudne. Ale, jak dodaje, być może uda się to za naszego życia. Pod warunkiem, że poświęci się na to odpowiednio dużo wysiłku.

Jednym z najpoważniejszych wyzwań będzie stworzenie superpozycji diamentu, która utrzyma się na odległość 1 metra. Przed czterema laty naukowcy z Uniwersytetu Stanforda byli w stanie utrzymać superpozycję 10 000 atomów odsuniętych na odległość około pół metra. To dotychczasowy rekord. Jednak tutaj mówimy o diamencie składającym się z miliarda czy 10 miliardów atomów. To znacznie trudniejsze, wyjaśnia Mazumdar.

Ponadto stworzenie MIMAC wymagałoby połączenia w jednym urządzeniu wysokiej próżni, bardzo niskich temperatur czy precyzyjnie kontrolowanych pól magnetycznych. Każdy z tych elementów został już osiągnięty przez różne grupy naukowe, jednak ich połączenie to zupełnie inna historia. Fakt, że potrafisz żonglować i potrafisz jeździć na rowerze nie oznacza jeszcze, że potrafisz robić obie te rzeczy jednocześnie, zauważa Morley.

Twórcy nowej koncepcji są jednak pełni zapału. Zauważają, że przenośny wykrywacz fal grawitacyjnych można by ustawiać w dowolnej orientacji względem nieboskłonu. I można by prowadzić badania fal w wielu różnych miejscach na świecie. Problemem jest stworzenie jednego działającego urządzenia. Jeśli to się uda, to łatwo będzie zbudować kolejne, podkreśla Bose.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Trzymam kciuki, żeby się udało zbudować MIMAC. Czy jednak takie urządzenie, tylko większe, nie dałoby również większej czułości?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wygląda na ekstremalnie trudne do wykonania. Ale z drugiej strony jak budowali LIGO to ludzie też pukali się w głowę że to nie może się udać. Aż sprawdziłem kiedy się urodził Ron Folman i wychodzi że jestem  młodszy, więc jak on planuje doczekać to ja może dociągnę do takiego sensora w smartfonie :)

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To jest po prostu głupie. Ligo jest znacznie prostszym i dokładniejszym przyrządem, a do tego ma fizyczne podstawy aby działać.
Nie ma opcji aby udało się nakładać superpozycję diamentów na siebie z taką dokładnością bez przeprowadzania pomiarów co zniszczy superpozycję, po prostu jest to technicznie niemożliwe. Byłoby gigantycznym sukcesem po prostu utrzymanie takiej superpozycji, precyzyjne manipulacje zewnętrznym polem magnetycznym - fantasmagoria.
Fala grawitacyjna musiałaby przejść w momencie kiedy używamy pól magnetycznych do składania superpozycji, bo tylko wtedy może zmienić stan układu. To oznacza powtarzalność rzędu sekund w wariancie optymistycznym i co tyle moglibyśmy dostarczyć jednego fotonu.To oczywiście wymusza duplikację eksperymentu setki tysięcy razy aby mieć jakąkolwiek statystykę.
Realistycznie: 10 mld atomów węgla manipulowane siłą oddziaływania magnetycznego pochodzącego od jednego spinu na odległość metra z dokładnością przekraczającą 10^-21: czy ci ludzie czytają to co piszą?
Bez zabronionych pomiarów położenia tworzenie układu pomiarowego to losowanko i cały czas dostawalibyśmy szum z którego nie dałoby się wyodrębnić żadnego sygnału.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

To doprawdy zabawne i smutne zarazem, widząc jak goje podniecają się tak kompletnymi bredniami. Wszak bredniami przeznaczonymi właśnie dla nich, by mieli wypaczony obraz świata, w którym żyją. 

Grawitacja to iście masoński wynalazek, by za jej pomocą uwiarygodnić  budowę wszechświata, który jest czystą fikcją, zresztą bardzo atrakcyjną, bo któż się nie fascynuje kosmosem ? Mało kto zna prawdziwy życiorys Isaaka Newtona, masona wysokiego stopnia. Ten popapraniec miał istnego jobla na punkcie alchemii i tym się głównie w życiu zajmował. Teoria grawitacji została wyssana z palca i nigdy nie została potwierdzona doświadczalnie. Te wszystkie eksperymenty to kłamstwo. I zanim ktoś mnie wyzwie od nieuków czy wyznawców teorii spiskowych, pragnę zaznaczyć, że odróżniam swobodny spadek od przyciągania. Grawitacja polegająca na wzajemnym przyciąganiu się ciał NIE ISTNIEJE. 

Natomiast Kopernik był pionierem heliocentryzmu, który do teraz funkcjonuje tylko jako teoria. To doprawdy osobliwe. Czyżby budowa układu słonecznego w XXI wieku nie mogła być potwierdzona doświadczalnie i musiała być wciąż teorią ? O Einsteinie już nawet nie wspominam. To nieuk i plagiator. Sam przyznał, że teoria eteru Tesli jest bardziej spójna i logiczna niż jego fantasmagoryczna czasoprzestrzeń.

Czy nie widzicie goje, że ktoś z was ma niezłą bekę ? Przenicowali wam mózgi za pomocą systemu edukacji, który ma tyle wspólnego z prawdą co węgiel kamienny z kamieniem węgielnym. I proszę mi się nie pluć, że gdyby nie naukowcy, to nie miałbym smartfona. Do naukowców nic nie mam, są użyteczni. Ale cała astronomia i kosmologia, to jedno z najpotężniejszych narzędzi zniewolenia homo sapiens. Nie spodziewam się przychylności od kogokolwiek na tym forum, ale pomyślcie tylko przez chwilę. Czy sądzicie, że ogólnie pojęta prawda jest towarem przeznaczonym dla wszystkich, czy może jest to towar ekskluzywny tylko dla wybranych ? No i jakie mamy możliwości zweryfikowania tej prawdy ? Praktycznie żadnych. Możemy tylko święcie wierzyć, że taka nasa przekazuje nam prawdę, pokazując zapierające dech w piersiach "fotografie" odległych galaktyk. W tym aspekcie kosmologia niczym się nie różni od religii... Ciao

  • Zmieszany 1
  • Negatyw (-1) 3

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Teleskop Hubble'a dokonał unikatowych pomiarów, z których wynika, że dżet wydobywający się z obiektu GW170817 porusza się z prędkością przekraczającą 99,97% prędkości światła. Wykryta w sierpniu 2017 roku fala grawitacyjna GW170817 była niezwykłym i jedynym dotychczas zarejestrowanym wydarzeniem swego rodzaju. Pochodziła ze zlania się dwóch gwiazd neutronowych i zabłyśnięcia kilonowej SSS17a, trwała wyjątkowo długo i była powiązana z emisją promieniowania gamma.
      Wydarzenie było tak niezwykłe, że zaczęło obserwować je kilkadziesiąt teleskopów z całego świata. Okazało się, że to pierwszy obiekt, w przypadku którego powiązano fale grawitacyjne z obecnością światła, a powstały w czasie rozbłysku dżet zawiera ilość energii porównywalną z ilością produkowaną przez wszystkie gwiazdy Drogi Mlecznej w ciągu roku. GW170817 zostało wykorzystane m.in. do potwierdzenia Ogólnej Teorii Względności. Wykrycie GW170817 było niezwykle ważnym momentem w rozwoju astronomii w dziedzinie czasu, która bada zmiany ciał niebieskich w czasie.
      Teleskop Hubble'a zaczął obserwować to wydarzenie już 2 dni po jego odkryciu. Gwiazdy neutronowe zapadły się w czarną dziurę, która zaczęła wciągać okoliczną materię. Utworzył się szybko obracający się dysk materii, z którego biegunów wydobywa się potężny dżet. Naukowcy od wielu lat analizują dane dostarczone przez Hubble'a i inne teleskopy obserwujące GW170817.
      Zespół pracujący pod kierunkiem Kunala P. Mooleya z California Institute of Technology połączył dane z Hubble'a z danym dostarczonymi przez grupę radioteleskopów. Dane radiowe zebrano 75 i 230 dni po eksplozji. Obliczenie prędkości dżetu wymagało wielomiesięcznych szczegółowych analiz, mówi Jay Anderson ze Space Telescope Science Institute.
      Początkowe pomiary Hubble'a wykazały, że dżet porusza się z pozorną prędkością wynoszącą 7-krotność prędkości światła. Późniejsze pomiary za pomocą radioteleskopów pokazały, że dżet zwolnił do pozornej 4-krotnej prędkości światła.
      Jako, że nic nie może poruszać się szybciej niż światło, tak duża prędkość dżetu jest złudzeniem. Ponieważ dżet porusza się w kierunku Ziemi niemal z prędkością światła, światło wyemitowane później ma do przebycia krótszą drogę niż to, wyemitowane wcześniej. Dżet goni własne światło. Przez to obserwatorowi wydaje się, że od emisji światła z dżetu minęło mniej czasu niż w rzeczywistości. To zaś powoduje przeszacowanie prędkości obiektu. Z naszych analiz wynika, że dżet w momencie pojawienia się poruszał się z prędkością co najmniej 99,97% prędkości światła, mówi Wenbin Lu z Uniwersytetu Kalifornijskiego w Los Angeles.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Na podstawie najnowszych wyników badań z obserwatoriów fal grawitacyjnych LIGO/Virgo, naukowcy przeprowadzili testy Ogólnej Teorii Względności (OTW). Zgodność teorii Einsteina z danymi obserwacyjnymi testowano dziewięcioma różnymi metodami. Żadnych niezgodności nie stwierdzono. W badaniach brali udział polscy naukowcy z grupy Polgraw, w tym uczeni z NCBJ.
      Ogólna Teoria Względności zaproponowana ponad 100 lat temu przez Alberta Einsteina jest obecnie powszechnie przyjętą teorią grawitacji. Jest ona niezwykle elegancka i koncepcyjnie w zasadzie prosta, choć obliczenia wykonywane na jej podstawie do prostych nie należą. Teoria prawidłowo opisuje poznane zjawiska astronomiczne napędzane przez grawitację, a także jest podstawą do budowy scenariuszy kosmologicznych. W miarę postępu badań i obserwacji, w miarę gromadzenia coraz większych, coraz dokładniejszych i coraz lepiej uporządkowanych zbiorów danych, obszar dostępnych nam zjawisk stale się poszerza. W nauce żadnej teorii nie traktujemy jako dogmatu – tłumaczy prof. Marek Biesiada z Zakładu Astrofizyki NCBJ. Dlatego teorie poddajemy testom, stale sprawdzając ich przewidywania. Jak dotąd OTW została potwierdzona bardzo precyzyjnymi obserwacjami w Układzie Słonecznym i w układach podwójnych pulsarów. Fale grawitacyjne emitowane przez zlewające się czarne dziury dostarczają kolejnej możliwości testowania teorii względności. Jest to reżim silnie zakrzywionych czasoprzestrzeni, wcześniej słabo dostępny testowaniu.
      Są przynajmniej dwie przesłanki nakazujące nam sprawdzać, czy OTW wymaga modyfikacji lub zastąpienia nową teorią. Pierwszą z nich są problemy kosmologiczne znane jako ciemna materia i ciemna energia. Problem ciemnej materii polega na tym, że galaktyki i ich gromady przyciągają silniej niż powinny, gdyby uwzględnić całą znaną nam materię. Problem ciemnej energii to fakt, że Wszechświat przyspiesza swą ekspansję, zamiast zwalniać, jak wydaje się przewidywać OTW. Chociaż robocze nazwy ciemna materia i ciemna energia sugerują odpowiedź w postaci nieznanych składników materialnych, pozostaje możliwość, że OTW wymaga modyfikacji. Drugą przesłanką jest wynikająca z OTW konieczność występowania osobliwości, czyli obszarów, gdzie kończą się historie wszystkich cząstek i fotonów. Wydaje się, że problem ten jest związany z kwantową teorią grawitacji, której nie udało się stworzyć w zadowalającej wszystkich postaci. Tu również fale grawitacyjne emitowane przez zlewające się czarne dziury mogą dostarczyć nam wskazówek.
      Współprace badawcze LIGO i Virgo opublikowały w tym tygodniu podsumowanie analiz zebranych przez nie danych pod kątem ich zgodności z przewidywaniami OTW. Analizy zebrano w 9 głównych grup stanowiących testy teorii.
      Pierwszy test dotyczył zgodności rejestrowanego sygnału bazowego (szumu) ze znanym z testów laboratoryjnych szumem detektora. Z OTW wiemy jak sygnał od dwóch zwartych obiektów powinien wyglądać w detektorach fal grawitacyjnych. Jednak to, czym posługujemy się do opisu sygnału jest teorią – jak cała nauka jest pewnym przybliżeniem, najlepszym jakie mamy, opisującym świat, dopóki nie znajdziemy lepszego. Jeśli OTW nie opisywałaby dostatecznie dobrze takich sygnałów to mielibyśmy przewidywanie teoretyczne plus dodatkowy komponent, który wynika z nieuwzględnionych efektów. Aby zobaczyć, czy taki dodatkowy komponent jest obecny, trzeba było sprawdzić, czy po odjęciu przewidywanego sygnału reszta będzie miała charakterystykę normalnego szumu w detektorze. Przeprowadzony test potwierdził słuszność OTW.
      Przeprowadzono też test zgodności przebiegu (kształtu) fal przed i po zlaniu się dwóch obiektów. Źródłami fal grawitacyjnych, które obserwujemy są układy: dwóch gwiazd neutronowych; dwóch czarnych dziur; układ czarna dziura – gwiazda neutronowa. Zdarzenie zlania się tych obiektów następuje w 3 głównych fazach: moment tuż przed zderzeniem, moment zlania się oraz faza stabilizacji. OTW przewiduje, że fazy sprzed zderzenia oraz po powinny generować podobne fale. Przewidywania OTW są zgodne z obserwacjami dla analizowanej próbki. Kolejne dwa testy dotyczyły zachowania się obiektów w pierwszej fazie zlewania, gdy ciała niebieskie okrążają się wzajemnie.
      Wzajemne okrążanie zwartych obiektów, takich jak czarne dziury czy gwiazdy neutronowe, zbliżających się do siebie dzięki utracie energii emitowanej w postaci fal grawitacyjnych, można przybliżyć przez powolny ruch w przybliżeniu słabego pola – nazywa się to post-Newtonowskim przybliżeniem OTW. Podejście to opisane jest kilkoma parametrami, których określenie na tej podstawie można porównać z parametrami otrzymanymi przez OTW. Najnowsze obserwacje wraz z już istniejącymi, pozwalają bardzo dobrze określić ograniczenia wartości tych parametrów. Wyniki te są statystycznie spójne z przewidywaniami OTW.
      Pierwsza faza, przed zlaniem się obiektów, pozwala również na sprawdzenie, czy obserwowany sygnał jest zgodny z przewidywaniami zlania się dwóch rotujących czarnych dziur (czarnych dziur Kerra). Jeśli któryś ze składników (lub oba) będzie rotował – powstały obiekt będzie spłaszczony na biegunach i poszerzony na równiku. Naukowcy są w stanie wyłuskać tę informację z danych obserwacyjnych, dzięki czemu można ustalić, że źródłem fal grawitacyjnych nie są żadne egzotyczne, nieprzewidziane przez OTW, obiekty.
      Podobne podejście zastosowano do określenia parametrów zdarzenia w trakcie i po zlaniu się obiektów. Czas trwania zlewania się i stabilizacji nowego obiektu jest dużo krótszy od fazy zbliżania się, więc obserwowany sygnał jest dużo silniejszy od widocznego szumu. Oszacowane na tej podstawie parametry dają wartości statystycznie zgodne z przewidywaniami OTW.
      Kolejnym jest test propagacji fal grawitacyjnych. Według przewidywań OTW fale grawitacyjne nie podlegają dyspersji, czyli prędkość ich rozchodzenia się nie zależy od ich częstotliwości. OTW można zmodyfikować w taki sposób, by własność ta nie była zachowana. W takiej sytuacji fale pochodzące bezpośrednio ze zlania się obiektów, o wyższej częstotliwości, dotarłyby do obserwatora szybciej, niż fale o mniejszej częstotliwości – pochodzące z fazy początkowej. Nie znaleziono dowodów dyspersji fal grawitacyjnych, co jest zgodne z przewidywaniami OTW.
      Brak zaobserwowanej dyspersji umożliwia nam ograniczenie modeli fizyki cząstek, które zakładają, że grawitony cząstki odpowiadające za oddziaływania grawitacyjne - mają masę (tak zwany model ciężkich grawitonów). W ramach OTW grawitony powinny być bezmasowe i podróżować z prędkością światła. Modele ciężkich grawitonów przewidują jednak istnienie dyspersji w pewnym stopniu, więc obserwacje mogą dać ograniczenie na masę grawitonów. W tych badaniach określono masę grawitonów (o ile ją posiadają) na poniżej 1.3*10-23 eV/c2.
      Ósmy test dotyczy polaryzacji fal grawitacyjnych. W ramach OTW fale grawitacyjne mogą mieć jedynie dwa typy polaryzacji: typu plusa lub typu X. Bardziej ogólna teoria może prowadzić do nawet sześciu unikatowych typów polaryzacji fal. Przeanalizowano dane obu detektorów LIGO oraz detektora Virgo pod kątem polaryzacji, których OTW nie uwzględnia. Testy nie wykazały możliwości istnienia innych polaryzacji niż przewidywanych przez OTW.
      Istnieją alternatywne teorie względem istnienia czarnych dziur. Obiekty takie, nazywane są mimikami czarnych dziur ze względu na to, że mają podobne parametry jak czarne dziury, jednak nie są nimi w sensie OTW. Jedną z najbardziej charakterystycznych cech czarnych dziur jest horyzont zdarzeń, czyli obszar, z którego nic nie jest w stanie uciec - nawet światło. W przypadku mimików, powierzchnia taka miałaby albo częściową, albo pełną refleksyjność, co wywołałoby pewnego rodzaju echo w sygnale z trzeciej fazy zlewania się obiektów. Analizy nie wykazały istnienia tego typu ech, co jest zgodne z przewidywaniami OTW.
      Stawiając się w pozycji przeciwników OTW, naukowcy przeprowadzili 9 testów, które mogłyby wykazać błędność Ogólnej Teorii Względności. Dowodów niezgodności nie znaleziono. Testy z całą pewnością będą kontynuowane, bo taka jest istota badań naukowych. Wszelkie niezgodności jakie ewentualnie wystąpią między obserwacjami, a przewidywaniami OTW, mogą w przyszłości zaowocować poznaniem nowych zjawisk.
      Nie są to wszystkie testy jakim można poddać teorię grawitacji dzięki badaniu fal grawitacyjnych – wyjaśnia dr Adam Zadrożny z Zakładu Astrofizyki NCBJ, członek polskiej grupy badawczej Polgraw. Bardzo ciekawym przykładem był pomiar stałej Hubble’a dla obserwacji fal grawitacyjnych GW170817 i rozbłysku optycznego AT 2017gfo, które były wynikiem tego samego zdarzenia. Zostało to opisane w czasopiśmie Nature w 2017 roku (vol. 551, p. 85–88). Pomiar stałej Hubble’a wykonany przy użyciu danych z detektorów fal grawitacyjnych był zgodny z wynikami uzyskanymi innymi metodami. Warto też dodać, że prof. Andrzej Królak (IM PAN i NCBJ) razem z prof. Bernardem F. Schutzem (Cardiff University) w pracach w latach 80-tych dali postawy wielu metodom analizy danych z detektorów interferometrycznych takich jak LIGO i Virgo.
      Polska od 2008 roku jest częścią projektu Virgo. Polscy uczestnicy projektu tworzą grupę Polgraw, której przewodzi prof. Andrzej Królak (IM PAN, NCBJ). Grupa bierze udział zarówno w badaniach naukowych konsorcjum LIGO-Virgo-KAGRA (LVK) jak i w konstrukcji detektora Virgo. Wśród badań naukowych prowadzonych przez grupę Polgraw, w ramach LVK, są między innymi analiza danych, rozwijanie metod statystycznych, modelowanie źródeł fal grawitacyjnych oraz analizy emisji fal elektromagnetycznych towarzyszących emisji fal grawitacyjnych. W skład grupy Polgraw wchodzi 12 instytucji w tym Instytut Matematyczny PAN, CAMK (Warszawa), Obserwatorium Astronomiczne UW, Uniwersytet Zielonogórski, Uniwersytet w Białymstoku, NCBJ, Uniwersytet Wrocławski, CAMK (Toruń), Obserwatorium Astronomczne UJ, AGH, ACK Cyfronet AGH, Centrum Fizyki Teoretycznej PAN. W skład konsorcjum LVK wchodzą ze strony NCBJ prof. Andrzej Królak, dr Orest Dorosh, dr Adam Zadrożny i mgr Margherita Grespan. Prace prowadzone w NCBJ dotyczą metod detekcji sygnałów pochodzących od rotujących gwiazd neutronowych, infrastruktury umożliwiającej szybką detekcję sygnałów grawitacyjnych oraz nowych metod analizy i lokalizacji sygnału opartych o sieci neuronowe.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teorie mówią, że nie istnieją gwiazdowe czarne dziury o takiej masie. Ale, jak wiemy, natura zawsze znajdzie jakiś sposób, mówi Stan Woosley, astrofizyk z University of California, Santa Cruz. Uczony skomentował w ten sposób to, co zarejestrowały wykrywacze fal grawitacyjnych LIGO i Virgo. A przechwyciły one sygnał świadczący o niezwykle mało prawdopodobnej kolizji czarnych dziur o rzadko spotykanej masie.
      Eksperci,  którymi kontaktowali się dziennikarze poinformowali, że wśród 22 fal grawitacyjnych zarejestrowanych od kwietnia przez LIGO/Virgo znajduje się taki, który pochodzi od czarnej dziury o masie nawet 100 mas Słońca. Dzisiaj naukowcy potwierdzili, że zauważyli kolizję dwóch czarnych dziur o masach 65 i 85 mas Słońca, w wyniku której powstała czarna dziura o masie 150 mas Słońca.
      Krzysztof Bełczyński, astrofizyk z Uniwersytetu Warszawskiego, był tak pewien, iż zderzenie takich czarnych dziur jest mało prawdopodobne, że w 2017 roku w podczas spotkania w Aspen Center For Physics wraz z Danielem Holzem z University of Chicago zawarli zakład stwierdzając, iż żadna czarna dziura o takiej masie nie zostanie wykryta w pierwszych 100 sygnałach LIGO/Virgo. Do zakładu dołączył później też Woosley. Zakład przyjęło troje innych naukowców. Myślę, że przegramy ten zakład. Ku chwale nauki, mówi Bełczyński.
      W 1967 roku fizycy z Uniwersytetu Hebrajskiego w Jerozolimie odkryli, że jeśli umierająca gwiazda ma bardzo masywne jądro, to nie zapadnie się ono w czarną dziurę. Gwiazda taka zmieni się w supernową niestabilności kreacji par (pair-instability supernova).
      Do jej powstania dochodzi, gdy jądro gwiazdy staje się tak gorące, iż światło spontanicznie zamienia się w nim w pary elektron-pozyton. Dotychczas ciśnienie światła zapewniało stabilność jądra. Gdy zaczyna się ono zamieniać w materię ciśnienie to spada, jądro gwałtownie się kurczy, staje się coraz gorętsze, to z kolei przyspiesza produkcję par elektron-pozyton. Powstaje samonapędzający się mechanizm. W końcu temperatura rośnie do tego stopnia, że dochodzi do fuzji tlenu. W jego wyniku implozja zostanie zatrzymana, a rozpoczyna się proces odwrotny. Następuje eksplozja jądra. Jeśli jądro miało masę 65–130 mas Słońca, cała materia zostaje rozrzucona. Po gwieździe pozostaje mgławica. Jądro nie zapada się, nie powstaje czarna dziura.
      Jeśli natomiast jądro, w którym doszło do niestabilności kreacji par miało masę od 50 do 65 mas Słońca, dochodzi do serii eksplozji, które stopniowo wyrzucają materię dopóty, dopóki masa jądra nie spadnie poniżej limitu, w którym niestabilność kreacji par już nie zachodzi. Z tego wynika, że nie powinny istnieć gwiazdowe czarne dziury o masie pomiędzy 50 a 130 mas Słońca. To bardzo proste obliczenia, mówi Woosley, którego praca z 2002 roku na ten temat jest uważana za ostateczne wyjaśnienie problemu.
      Mogą za to istnieć, i istnieją, czarne dziury o masie większej niż 130 mas Słońca, gdyż implozja tak masywnego jądra nie może zostać zatrzymana, nawet w wyniku fuzji tlenu. Jądro zapada się do czarnej dziury. Jednak, jako że gwiazdy tracą masę przez całe swoje życie, gwiazda, która utworzyłaby jądro o masie ponad 130 mas Słońca musiałaby mieć co najmniej masę 300 mas Słońca. Tak masywne gwiazdy są niezwykle rzadkie. Dlatego też większość ekspertów uznaje, że LIGo/Virgo może wykryć kolizje czarnych dziur o masach nie przekraczających 50 mas Słońca.
      Znamy też supermasywne czarne dziury o masach miliony i miliardy raza większych od masy Słońca, jednak powstają one w inny sposób, a LIGO i Virgo nie są w stanie wykryć ich zderzeń.
      Dlatego tylko niewielu specjalistów uważało, że LIGO i Virgo zauważą kolizje czarnych dziur o masach ponad 50 mas Słońca. Stąd wyzwanie, jakie w formie zakładu rzucili im Bełczyński, Holz i Wooley. Zakład ten przyjęli Carl Rodriguez z MIT, Sourav Chatterjee z Tata Institute for Fundamental Research z Mombasy, do których dołączył później Fred Rasio z Northwestern University. Przegrani mają kupić każdemu z wygranych butelkę wina o wartości 100 USD.
      Rodriguez, Chatterjee i Rasio stwierdzili, że co prawda większość kolizji wykrywanych przez LIGO i Virgo prawdopodobnie ma swój początek w izolowanych układach podwójnych, ale niewielka część z nich może zachodzić w gęstych środowiskach takich jak gromady kuliste. Tam zaś, ich zdaniem, może zdarzyć się tak, że np. czarna dziura o masie 50 mas Słońca najpierw wchłonie czarną dziurę o masie 30 mas Słońca, a później znowu połączy się z jakąś czarną dziurą. LIGO/Virgo może zarejestrować to drugie zdarzenie, zatem zauważy zderzenie czarnych dziur, z których co najmniej jedna będzie miała masę pomiędzy 50 a 130 mas Słońca. Istnieje też jeszcze inna możliwość. Otóż kolizja taka może rozpocząć się również w izolowanym układzie podwójnym. Jeśli jedna z gwiazd układu utworzy czarną dziurę, a układ nadal będzie istniał, to czarna dziura może wchłaniać masę z towarzyszącej jej gwiazdy, rosnąc powyżej „zakazanego” limitu. Później, gdy druga z gwiazd utworzy czarną dziurę, może dojść do kolizji obu czarnych dziur i zarejestrowania tego wydarzenia na Ziemi.
      Krzysztof Bełczyński i jego koledzy przegrali więc zakład. Woosley wciąż uważa, że granica „zakazanej masy” istnieje. Jego zdaniem, wśród olbrzymiej liczby czarnych dziur musi istnieć – mimo nielicznych wyjątków – wyraźny spadek liczby czarnych dziur w zakresie masy od 50 do 130 mas Słońca. A te nieliczne istniejące wyjątki to wynik tego, że natura nie znosi próżni.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizycy z Thomas Jefferson National Accelerator Facility (TJNAF – Jefferson Lab) zmierzyli z niezwykłą dokładnością grubość neutronowej „skórki” tworzącej otoczkę jądra ołowiu. Na łamach Physical Review Letters poinformowali, że grubość ta wynosi 0,28 milionowych części nanometra. A ich pomiary mają duże znaczenie dla określenia struktury i rozmiarów... gwiazd neutronowych.
      Jądro każdego pierwiastka składa się z protonów i neutronów. To m.in. one określają właściwości pierwiastków i pozwalają nam je od siebie odróżnić. Fizycy od dawna badają jądra atomowe, by dowiedzieć się, w jaki sposób protony i neutrony oddziałują ze sobą. W Jefferson Lab prowadzony jest Lead Radius Experiment (PREx), którego celem jest dokładne zbadanie rozkładu protonów i neutronów w jądrze ołowiu.
      Pytanie brzmi, gdzie w jądrze znajdują się neutrony. Ołów to ciężki pierwiastek. Posiada dodatkowe neutrony. Jeśli jednak bierzemy pod uwagę wyłącznie oddziaływanie sił jądrowych, które wiążą protony i neutrony w jądrze, to lepiej sprawdza się model, w którym jądro ołowiu posiada równą liczbę protonów i neutronów, mówi profesor Kent Paschke z University of Virginia, rzecznik prasowy PREx.
      W lekkich jądrach, zawierających niewiele protonów, zwykle rzeczywiście liczba protonów i neutronów jest równa. Jednak im cięższe jądro, tym potrzebuje więcej neutronów niż protonów, by pozostać stabilnym. Wszystkie stabilne jądra pierwiastków, które zawierają ponad 20 protonów, mają więcej neutronów niż protonów. Ołów zaś to najcięższy pierwiastek o stabilnych izotopach. Jego jądro zawiera 82 protony i 126 neutronów. A do zrozumienia, jak to wszystko trzyma się razem, musimy wiedzieć, w jaki sposób w jądrze rozłożone są dodatkowe neutrony.
      Protony w jądrze ołowiu ułożone są w kształt sfery. Neutrony tworzą większą sferę otaczającą mniejszą. Tę większą sferę nazwaliśmy skórką neutronową, wyjaśnia Paschke. Tę skórkę po raz pierwszy zauważono właśnie w Jefferson Lab w 2012 roku. Od tamtej pory naukowcy starają się mierzyć jej grubość z coraz większą precyzją.
      Neutrony trudno jest badać, gdyż wiele narzędzi, które mają do dyspozycji fizycy, rejestruje oddziaływania elektromagnetyczne, które są jednymi z czterech podstawowych sił natury. Eksperyment PREx do pomiarów wykorzystuje inną z podstawowych sił – oddziaływania słabe. Protony posiadają ładunek elektryczny, który możemy badań za pomocą oddziaływań elektromagnetycznych. Neutrony nie posiadają ładunku elektrycznego, ale – w porównaniu z protonami – generują potężne oddziaływania słabe. Jeśli więc jesteś w stanie to wykorzystać, możesz określić, gdzie znajdują się neutrony, dodaje Paschke.
      Autorzy nowych badań wykorzystali precyzyjnie kontrolowany strumień elektronów, który został wystrzelony w stronę cienkiej warstwy ołowiu schłodzonej do temperatur kriogenicznych. Elektrony obracały się w kierunku ruchu wiązki i wchodziły w interakcje z protonami i neutronami w atomach ołowiu. Oddziaływania elektromagnetyczne zachowują symetrię odbicia, a oddziaływania słabe nie. to oznacza, że elektron, który wchodzi w interakcję za pomocą sił elektromagnetycznych, robi to niezależnie od kierunku swojego spinu. Natomiast jeśli chodzi o interakcje za pomocą oddziaływań słabych, to widoczna jest tutaj wyraźna preferencja jednego kierunku spinu. Możemy więc wykorzystać tę asymetrię do badania siły oddziaływań, a to pozwala nam określić obszar zajmowany przez neutrony. Zdradza nam zatem, gdzie w odniesieniu do protonów, znajdują się neutrony, mówi profesor Krishna Kumar z University of Massachusetts Amherst.
      Przeprowadzenie eksperymentów wymagało dużej precyzji. Dość wspomnieć, że kierunek spinu elektronów w strumieniu był zmieniany 240 razy na sekundę, a elektrony, zanim dotarły do badanej próbki ołowiu, odbywały ponad kilometrową podróż przez akcelerator. Badacze znali relatywną pozycję względem siebie strumieni elektronów o różnych spinach z dokładnością do szerokości 10 atomów.
      Dzięki tak wielkiej precyzji naukowcy stwierdzili, że średnica sfery tworzonej przez protony wynosi około 5,5 femtometrów. A sfera neutronów jest nieco większa, ma około 5,8 femtometrów. Skórka neutronowa ma więc 0,28 femtometra grubości. To około 0,28 milionowych części nanometra, informuje Paschke.
      Jak jednak te pomiary przekładają się na naszą wiedzę o gwiazdach neutronowych? Wyniki uzyskane w Jefferson Lab wskazują, że skórka neutronowa jest grubsza, niż sugerowały niektóre teorie. To zaś oznacza, że do ściśnięcia jądra potrzebne jest większe ciśnienie niż sądzono, zatem samo jądro jest nieco mniej gęste. A jako, że nie możemy bezpośrednio badać wnętrza gwiazd neutronowych, musimy opierać się na obliczeniach, do których używamy znanych właściwości składowych tych gwiazd.
      Nowe odkrycie ma też znaczenie dla danych z wykrywaczy fal grawitacyjnych. Krążące wokół siebie gwiazdy neutronowe emitują fale grawitacyjne, wykrywane przez LIGO. Gdy już są bardzo blisko, w ostatnim ułamku sekundy oddziaływanie jednej gwiazdy powoduje, że druga staje się owalna. Jeśli skórka neutronowa jest większa, gwiazda przybierze inny kształt niż wówczas, gdy skórka ta jest mniejsza. A LIGO potrafi zmierzyć ten kształt. LIGO i PREx badają całkowicie różne rzeczy, ale łączy je podstawowe równanie – równanie stanu materii jądrowej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Europejski projekt budowy wielkiego wykrywacza fal grawitacyjnych znalazł się o krok bliżej realizacji. European Strategy Forum on Research Infrastructures (ESFRI), które doradza rządom Unii Europejskiej odnośnie priorytetów badawczych, wpisało Einstein Telescope, bo tak się ma nazywać laboratorium, na mapę drogową projektów naukowych, które są na tyle zaawansowane, że warto, by nadal się rozwijały.
      Einstein Telescope ma kosztować 1,9 miliarda euro. Twórcy projektu muszą jeszcze przekonać rządy do swojego pomysłu. Wpisanie na listę ESFRI nie jest obietnicą finansowania, ale pokazuje, że istnieje wola kontynuowania projektu, mówi współprzewodniczący komitetu kierującego Einstein Telescope, Harald Lück w Uniwersytetu im. Leibniza w Hanowerze.
      Działania ESFRI zostały z zadowoleniem przywitane przez naukowców USA, którzy mają nadzieję, że pomoże to w realizacji ich własnych planów budowy pary wykrywaczy większych niż Einstein Telescope. Amerykański projekt nosi nazwę Cosmic Explorer. Myślę, że to dobry czas, by rozpocząć tego typu budowę, mówi David Reitze, dyrektor LIGO (Laser Interferometer Gravitational-Wave Observatory), obserwatorium, w którym wykryto pierwsze fale grawitacyjne.
      Wykrywacze fal grawitacyjnych rejestrują niewielkie zaburzenia przestrzeni wywoływane przez masywne obiekty, jak np. czarne dziury, które krążą wokół siebie i w końcu się łączą. Wykrywacze takie to olbrzymie urządzenia. Amerykański LIGO składa się z pary interferometrów znajdujących się w stanach Louisiana i Washington. Każdy z nich ma kształt litery L, a każde z ramion ma 4 kilometry długości. Porównując długość ramion z olbrzymią dokładnością, można stwierdzić, czy doszło do jej zmiany w wyniku przejścia fali grawitacyjnej. Z kolei europejski wykrywacz Virgo, który znajduje się we Włoszech, ma ramiona o długości 3 km.
      Naukowcy chcieliby jednak zbudować większe instrumenty. LIGO i Virgo, do których niedawno dołączył japoński KAGRA, są w stanie wykrywać połączenia czarnych dziur z odległości ponad 10 miliardów lat świetlnych. Gdyby jednak zbudować 10-krotnie bardziej czułe detektory, moglibyśmy rejestrować takie wydarzenia w całym obserwowalnym wszechświecie, na przestrzeni 45 miliardów lat świetlnych. Stąd też niezwykle ambitne plany.
      Amerykański Cosmic Explorer ma składać się z jednego lub więcej interferometrów w kształcie litery L, której ramiona mają mieć po 40 km długości. Z kolei projekt Einsten Telescope zakłada budowę 6 interferometrów w kształcie litery V, o ramionach długości 10 kilometrów każde. Mają być one ułożone na planie trójkąta równobocznego, z 2 interferometrami w każdym z rogów.
      Fizycy z USA i Europy chcą, by ich detektory powstały do połowy lat 30. XXI wieku. Umieszczenie Einstein Telescope na liście ESFRI to krok naprzód w realizacji europejskich planów. W ciągu najbliższych 3–4 lat pomysłodawcy Einstein Telescope powinni przedstawić bardziej szczegółowy plan i raport techniczny. Muszą też w tym czasie zdobywać poparcie dla swojego pomysłu zarówno ze strony polityków, jak i środowisk naukowych, angażując do współpracy kolejnych specjalistów. Obecnie projekt Einstein Telescope może liczyć na poparcie z Belgii, Włoch, Holandii, Polski i Hiszpanii.
      Einstein Telescope, jeśli zostanie zrealizowany, może przybrać kształt podobny do CERN-u.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...