Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

O kształcie DNA i RNA zdecydowało... promieniowanie kosmiczne?

Recommended Posts

Gdy przypatrzymy się strukturze nici DNA czy RNA zauważymy, że zawsze są one skręcone w prawo. Nigdy w lewo. Z biologicznego czy chemicznego punktu widzenia nie ma żadnego powodu, dla którego we wszystkich formach życia widać taką regułę. Wszystkie znane reakcje chemiczne powodują powstanie molekuł skręconych zarówno w prawo, jak i w lewo. Ta symetria jest czymś powszechnym. Nie ma też żadnego powodu, dla którego skręcone w lewo DNA miałoby być w czymkolwiek gorsze, od tego skręconego w prawo. A jednak nie istnieje lewoskrętne DNA. To tajemnica, która wymaga wyjaśnienia.

Wielu naukowców sądzi, że taka struktura DNA i RNA pojawiła się przez przypadek, że skręcony w prawo genom był może nieco częstszy i w toku ewolucji wyparł ten skręcony w lewo. Naukowcy od ponad 100 lat zastanawiają się nad tym problemem.

Niedawno na łamach Astrophysical Journal Letters ukazała się interesująca teoria, której autorzy twierdzą, że o takim, a nie innym kształcie genomu zadecydował... kosmos. Ich praca wskazuje na wpływ czynnika, który zdecydował o kierunku skręcenia genomu, a którego nie braliśmy dotychczas pod uwagę. Wydaje się to bardzo dobrym wytłumaczeniem, mówi Dimitar Sasselov, astronom z Harvard University i dyrektor Origins of Life Initiative.

Twórcami nowej niezwykle interesującej hipotezy są Noemie Globus, astrofizyk wysokich energii z New York University i Center For Computational Astrophysics na Flatiron Institure oraz Roger Blandford, były dyrektor Kavli Institute for Particle Astrophysics and Cosmology na Uniwersytecie Stanforda. Oboje spotkali się w 2018 roku i w miarę, jak dyskutowali różne kwestie, zwrócili uwagę, że promieniowanie kosmiczne ma podobną prawostronną preferencję jak DNA. Takie wydarzenia jak rozpad cząstek zwykle nie wykazują preferencji, przebiegają równie często w prawo, jak i w lewo. Jednak rzadkim wyjątkiem od reguły są tutaj piony. Rozpad naładowanych pionów odbywa się według oddziaływań słabych. To jedyne oddziaływanie podstawowe o znanej asymetrii. Gdy piony uderzają w atmosferę, rozpadają się, tworząc cały deszcz cząstek, w tym mionów. Wszystkie miony mają tę samą polaryzację, która powoduje, że z nieco większym prawdopodobieństwem jonizują jądra atomów w genomie skręconym w prawo.

Pierwsze ziemskie organizmy, które prawdopodobnie były czymś niewiele więcej niż nagim materiałem genetycznym, zapewne występowały w dwóch odmianach. Z genomem skręconym w lewo lub w prawo. Globus i Blandford wyliczyli, że w sytuacji promieniowania kosmicznego skręcającego w prawo, cząstki uderzające w ziemię z nieco większym prawdopodobieństwem wybijały elektron z genomu skręconego w prawo niż w lewo. Miliony czy miliardy cząstek promieniowania kosmicznego były potrzebne, by wybić jeden elektron z jednego genomu. Ale ta minimalna przewaga mogła wystarczyć. Wybicie elektronu prowadziło do mutacji. Zatem promieniowanie kosmiczne było dodatkowym czynnikiem wymuszającym ewolucję. Dzięki niemu genom skręcony w prawo rozwijał się nieco szybciej. Z czasem zyskał przewagę konkurencyjną nad genomem skręconym w lewo.

Uczeni nie chcą jednak poprzestać na hipotezie. Pani Globus skontaktowała się z Davidem Deamerem, biologiem i inżynierem z University of California w Santa Cruz. Ten podpowiedział jej, że najprostszym testem, jaki przychodzi mu do głowy, będzie wykorzystanie standardowego testu Amesa. To metoda diagnostyczna sprawdzająca siłę oddziaływania mutagenu na bakterie. Deamer zaproponował, by zamiast poddawać bakterie działaniu związku chemicznego, zacząć je bombardować mionami i sprawdzić, czy wywoła to u nich przyspieszone mutacje.

Jeśli eksperyment się powiedzie i pod wpływem mionów DNA bakterii będzie ulegało szybszym mutacjom, będzie do bardzo silne poparcie dla hipotezy Globus i Blandforda. Nie wyjaśni to jednak, dlaczego w ogóle pojawił się materiał genetyczny skręcony w lewo lub w prawo.

To będzie bardzo trudny element do udowodnienia. Jeśli jednak ta hipoteza zyska potwierdzenie, będziemy mieli jeszcze jeden, niezwykle interesujący, mechanizm ewolucyjny, mówi Jason Dworkin, astrobiolog z Goddard Space Flight Center.


« powrót do artykułu

Share this post


Link to post
Share on other sites
8 godzin temu, KopalniaWiedzy.pl napisał:

Z genomem skręconym w lewo lub w prawo. Globus i Blandford wyliczyli, że w sytuacji promieniowania kosmicznego skręcającego w prawo, cząstki uderzające w ziemię z nieco większym prawdopodobieństwem wybijały elektron z genomu skręconego w prawo niż w lewo.

Czy ja to dobrze rozumiem? Czyli w fali materii (tutaj fermionów, konretnie tych pionów, a dalej mionów) promieniowania kosmicznego występuje polaryzacja kołowa prawoskretna i ta polaryzacja jest przyczyną dla której oddziaływanie takiego promieniowania częściej wybija elektrony z prawoskrętnej nici DNA? Troszkę to dla mnie dziwne. Dlaczgeo od makroskopowej (z punktu widzenia promieniowania) struktury DNA miałoby zależeć oddziaływanie mionów z atomami DNA? Ciekawe. 

  • Upvote (+1) 1

Share this post


Link to post
Share on other sites

Strukturę DNA poznano w l. 1950. (Nobel: Watson i Creek)

Naprawdę od ponad 100 lat zastanawiano się dlaczego DNA jest prawoskrętny a nie lewoskrętny?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Układ Słoneczny przemieszcza się przez wszechświat z prędkością 370 km/s. Wraz z nim przemieszcza się Ziemia, która na swojej drodze napotyka ciemną materię. Wykrywacze ciemnej materii, jak XENON1T, rejestrują zderzenia z cząstkami ciemnej materii. Jednak nie określają, z jakiego kierunku nadeszła cząstka. A to poważnie ogranicza możliwości badawcze.
      XENON1T to wyjątkowe urządzenie. To jeden z najczulszych wykrywaczy ciemnej materii, w którym zaobserwowano najrzadsze zjawisko we wszechświecie, wykryto tajemnicze sygnały, a naukowcy zaproponowali kilka interesujących pomysłów na ich interpretację.
      Teraz Ciaran O'Hare i jego koledzy z University of Sydney przetestowali projekt nowego detektora ciemnej materii, który nie tylko wykryje obecność jej cząstek, ale również określi kierunek, z którego nadeszły. Uczeni przeprowadzili pierwszą symulację działania ich wykrywacza i poinformowali o bardzo obiecujących wynikach.
      Nowy wykrywacz ciemnej materii ma bazować na DNA. Podwójne helisy kwasów nukleinowych miałyby tworzyć gęsty las zwisając z warstw złotych płacht. Pozycja każdej z nici DNA byłaby znana z nanometrową dokładnością.
      Gdy cząstka ciemnej materii trafi do takiego wykrywacza i uderzy w którąkolwiek z nici DNA, rozbije ją, a odłamane fragmenty wpadną do położonego poniżej specjalnego układu mikroprzepływowego. Za pomocą techniki PCR potrafimy precyzyjnie badać sekwencję par bazowych kwasów nukleinowych, zatem będziemy mogli z nanometrową precyzją określić oryginalną pozycję każdego z odłamanych fragmentów, stwierdzają naukowcy. W ten sposób możliwe będzie śledzenie trasy cząstek ciemnej materii w detektorze.
      Pomysł detektora ciemnej materii opartego na DNA pojawił się już w 2012 roku. Teraz po raz pierwszy udało się przeprowadzić symulację pracy takiego detektora, by sprawdzić, czy ma on szansę działać. Badacze wzięli pod uwagę różne potencjalne typy cząstek, różne energie i kierunki. Doszliśmy do wniosku, że oparty na DNA detektor byłby ekonomicznym, przenośnym i potężnym wykrywaczem nowych cząstek, stwierdzają uczeni.
      Nowy detektor byłby znacznie mniejszy i tańszy niż obecnie istniejące i budowane wykrywacze ciemnej materii. Nie jest jednak doskonały. Detektor DNA nie jest w stanie dostarczyć wystarczająco dużo informacji, by móc określić rodzaj cząstki czy jej dokładną energię. Dlatego też takie wykrywacze będą prawdopodobnie używane jako uzupełnienie tych tradycyjnych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Międzynarodowy zespół badaczy, w tym polscy specjaliści, odkrył, że gdy podmieni się jeden z głównych elementów DNA na substancję nieco zmienioną, naprawia ona uszkodzenia powodowane promieniowaniem UV. Może to wyjaśniać, jak powstawało życie na Ziemi, a w przyszłości także wspomóc syntetyczną biologię i nanotechnologię.
      DNA jest proste i skomplikowane zarazem. Składa się z czterech „liter” A,T,C,G pod którymi kryją się cztery substancje (adenina, tymina, cytozyna i guanina). Mogą się one jednak ustawiać w różnej kolejności i w bardzo długich cząsteczkach.
      Mechanizm kodowania jest więc prosty, ale informacje w DNA zawarte wyjątkowo obszerne.
      DNA może ulegać uszkodzeniom, co prowadzi czasami do utraty informacji i np. wadliwego działania pewnych genów. To z kolei może powodować nieprawidłową pracę komórki, a nawet jej śmierć.
      DNA nie lubi m.in. promieni UV, czego skrajne skutki można obserwować np. w postaci nowotworów skóry. Na szczęście komórki dysponują enzymami, które zwykle naprawiają większość uszkodzeń.
      Międzynarodowy zespół naukowców, na łamach prestiżowego periodyku „Nature” opisał właśnie, jak pewna cząsteczka może zastępować jedną z liter genetycznego alfabetu – adeninę.
      2,6-diaminopuryna, zwana też 2-aminoadeniną, zachowuje wiele funkcji potrzebnych DNA, jednak ma jeszcze jedną, unikalną zdolność. Otóż, podobnie jak komórkowe enzymy, naprawia uszkodzenia wywołane promieniowaniem ultrafioletowym.
      Ta cząsteczka mogła przyczynić się do rozwoju życia na Ziemi. W poprzednich pracach pokazywaliśmy, jak podstawowe cegiełki budujące DNA i RNA mogły powstawać na młodej Ziemi za pomocą promieniowania UV. To promieniowanie UV jest jednak szkodliwe dla łańcuchów tych polimerów niosących informację genetyczną. Np. UV jest jednym z czynników powodujących raka poprzez uszkodzenia nici DNA. Na młodej Ziemi nie było jeszcze skomplikowanej maszynerii, która jest w stanie naprawić wiele z tych uszkodzeń w organizmach żywych, więc naturalnym pytaniem było, jak polimery DNA lub RNA na młodej Ziemi mogły przetrwać te trudne warunki – wyjaśnia dr Rafal Szabla, chemik pracujący na University of Edinburgh.
      Nam udało się znaleźć alternatywną cegiełkę DNA, która jest w stanie sama te uszkodzenia naprawić, a jednocześnie jest w stanie pełnić wiele podstawowych funkcji biochemicznych – tłumaczy ekspert.
      Jednocześnie zupełnie niedawno w magazynie Science ukazały się trzy artykuły opisujące rolę 2,6-diaminopuryny w bakteriofagach, wirusach atakujących bakterie. Jak się okazuje, wiele z nich posiada całe genomy z adeniną kompletnie wymienioną na 2,6-diaminopurynę. Jej rola w tym przypadku jest jednak inna - chroni ona bakteriofagi przed zniszczeniem przez atakowane bakterie.
      Autorzy tego odkrycia też jednak wskazują na potencjalną rolę tej substancji w pochodzeniu życia na Ziemi.
      Być może związek ten znajdzie nawet praktyczne zastosowania.
      W biologii syntetycznej może on otworzyć kilka ciekawych ścieżek. DNA z tym genomem ma bardziej stabilne i odporne na ciepło podwójne helisy. My pokazaliśmy że jest też zdecydowanie bardziej odporne na UV – zwraca uwagę dr Szabla.
      Ponadto alternatywne zasady mogą np. pozwolić na budowę nieco innych białek (z niebiologicznymi komponentami). Może to mieć też zastosowanie w fagoterapii, w walce ze specyficznymi bakteriami. DNA jest też wykorzystywane w nanotechnologii i tego typu inżynieryjne usprawnienia mogą odgrywać istotną rolę, kiedy chcemy uzyskać materiały z DNA o usprawnionych właściwościach – kontynuuje badacz.
      W projekcie uczestniczyli też inni polscy specjaliści - dr Magdalena Zdrowowicz i jej koledzy z Uniwersytetu Gdańskiego.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Naukowcy odkryli, że w wielu przypadkach raka przełyku dochodzi do aktywowania wirusowego genomu, który jest obecny w genomie od milionów lat. To było zaskoczenie. Nie poszukiwaliśmy elementów wirusowych, ale ich odkrycie otwiera drogę dla potencjalnych leków przeciwnowotworowych, mówi główny autor badań profesor Adam Bass z Columbia University Vagelos College of Physicians and Surgeons. Wyniki badań opublikowano w Nature Genetics.
      Retrowirusy endogenne (ERV) to retrowirusy, które miliony lat temu zainfekowały pierwotne komórki rozrodcze kręgowców. Włączyły się one do materiału genetycznego zainfekowanego organizmu. Z czasem, w wyniku mutacji i kolejnych infekcji, genom wirusów stał się znaczną częścią genomu kręgowców. U człowieka aż 8% DNA pochodzi od retrowirusów.
      Pomysł, że ERV mogą przyczyniać się do rozwoju nowotworów, nie jest nowy. Co prawda ERV z czasem uległy degradacji i nie tworzą wirusów, ale mogą trafić do różnych genów, zaburzając ich aktywność lub też aktywując geny powodujące nowotwory. Ostatnio jednak zaczęły pojawiać się badania sugerujące, że ERV można wykorzystać do walki z nowotworami, jeśli uda się przeprowadzić ich transkrypcję do RNA. Gdy komórki aktywują wiele ERV, pojawia się wiele podwójnych nici RNA, które trafia do cytoplazmy komórek. To tworzy stan podobny do infekcji wirusowej i wywołuje reakcję zapalną. W ten sposób ERV mogą powodować, że nowotwory staną się bardziej podatne na immunoterapię. Wiele zespołów próbuje skłonić komórki nowotworowe do aktywowania ERV, wyjaśnia Bass.
      Bass wraz z zespołem wykorzystali tkanki myszy, z których stworzyli organoidy przełyku, by zbadać, w jaki sposób zdrowe komórki zamieniają się w komórki nowotworowe. Okazało się, że gen SOX2, który ułatwia rozwój nowotworu przełyku, prowadzi też do ekspresji licznych ERV. Jako, że duża ekspresja ERV i ich akumulacja są szkodliwe dla komórek, pojawia się enzym ADAR1, który prowadzi do szybkiej degradacji podwójnych nici RNA.
      Już z innych badań wiadomo, że ADAR1 jest związany z rakiem przełyku oraz, że im wyższy jego poziom, tym gorsze rokowania dla pacjenta. Jednak rola ADAR1 w raku przełyku nie była dotychczas znana. Nowotwory te są zależne od ADAR1. Jego działanie zapobiega pojawieniu się reakcji immunologicznej, która może być bardzo szkodliwa dla komórek, wyjaśnia Bass.
      Drugą ważną wskazówką był fakt, że niektóre osoby cierpiące na raka przełyku są poddawani immunoterapii, co wydłuża ich życie o kilka miesięcy. Blokowanie ADAR1 może mieć bezpośredni wpływ na rozwój raka przełyku, a do tego może znacząco zwiększać skuteczność immunoterapii u osób z tym nowotworem, ekscytuje się Bass.
      Jednak to nie wszystko. Obserwacja rozwoju nowotworu w utworzonych organoidach ujawniła wiele innych procesów, które można wykorzystać podczas leczenia. Sposób, w jaki użyliśmy organoidów, by ze zwykłych komórek utworzyć komórki nowotworowe to świetny system do odkrywania procesów wywołujących raka i testowania leków. Dzięki temu, że mogliśmy dokonywać pojedynczych zmian w genomie, byliśmy w stanie stwierdzić, które kombinacje zmian genetycznych prowadzą do rozwoju nowotworu, stwierdza Bass. Uczeni mogli sprawdzić, jakie są różnice w organoidach prawidłowych i nowotworowych, co z kolei pozwala odróżnić aktywność SOX2 w komórkach prawidłowych i nieprawidłowych.
      Ważne jest, byśmy poznali tę różnicę, gdyż potencjalne terapie muszą brać na cel komórki nowotworowe, ale oszczędzać zdrowe. Komórki nowotworowe łatwo jest zabić. Problem jednak w tym, w jaki sposób je zabić, oszczędzając zdrowe komórki, komentuje Bass.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Troje astronomów, poszukując źródeł atomów antyhelu, które zostały zarejestrowane przez Alpha Magnetic Spectrometer (AMS-02) znajdujący się na pokładzie Międzynarodowej Stacji Kosmicznej, wpadło na ślad 14 gwiazd zbudowanych z antymaterii – antygwiazd.
      Simon Dupourque, Luigi Tibaldo oraz Peter von Ballmoos z Uniwersytetu w Tuluzie znaleźli antygwiazdy w archiwalnych danych Fermi Gamma-ray Telescope. Koncepcja istnienia antygwiazd jest pomysłem kontrowersyjnym, jeśli jednak one istnieją to powinny być widoczne dzięki słabemu sygnałowi promieniowania gamma, który największą moc osiąga przy energii 70 MeV. Sygnał ten pochodzić ma z cząstek materii opadających na gwiazdę i przez nią anihilowanych.
      Antyhel-4 uzyskano po raz pierwszy w 2011 roku podczas zderzeń cząstek w Relativistic Heavy Ion Collider w Brookhaven National Laboratory. Wówczas naukowcy doszli do wniosku, że jeśli pierwiastek ten zostanie wykryty w przestrzeni kosmicznej, będzie to oznaczało, że pochodzi on z fuzji we wnętrzu antygwiazd.
      W 2018 roku AMS-02 wykrył w promieniowaniu kosmicznym 8 atomów antyhelu: sześć atomów antyhelu-3 oraz dwa antyhelu-4. Wówczas jednak uznano, że atomy te powstały w wyniku oddziaływania promieniowania kosmicznego na materię międzygwiezdną, w wyniku czego powstała antymateria.
      Jednak kolejne analizy zasiały wątpliwość co do pochodzenia antyhelu. Stwierdzono bowiem, że im więcej nukleonów w jądrze pierwiastka antymaterii, tym trudniej takiemu pierwiastkowi uformować się w wyniku oddziaływania promieniowania kosmicznego. Naukowcy obliczyli wówczas, że prawdopodobieństwo, by antyhel-3 powstał w wyniku oddziaływania promieni kosmicznych jest 50-krotnie mniejsze niż powstanie jąder zarejestrowanych przez AMS, a powstanie antyhelu-4 w wyniku oddziaływania promieniowania kosmicznego jest aż 105 mniejsze niż jąder, które zarejestrowano na Międzynarodowej Stacji Kosmicznej.
      Po tych badaniach naukowcy skupili się więc na poszukiwaniu źródła antyhelu, w tym w stronę mało wiarygodnie brzmiącego wyjaśnienia, mówiącego, że pierwiastek ten powstał w antygwiazdach.
      Zgodnie z obowiązującymi teoriami, podczas Wielkiego Wybuchu powinno powstać tyle samo materii i antymaterii. Następnie powinno dojść do ich anihilacji i powstania wszechświata, który będzie pełen promieniowania, a pozbawiony będzie materii. Żyjemy jednak we wszechświecie zdominowanym przez materię, a to oznacza, że podczas Wielkiego Wybuchu musiało powstać więcej materii niż antymaterii. Problem ten wciąż stanowi nierozwiązaną zagadkę.
      Większość naukowców od dekad twierdzi, że obecnie we wszechświecie antymateria niemal nie występuje, z wyjątkiem niewielkich ilości powstających w wyniku zderzeń materii, mówi Tibaldo. Jednak odkrycie antyhelu w przestrzeni kosmicznej może podważać to przekonanie. Może bowiem oznaczać, że istnieją antygwiazdy.
      Wspomnianych 14 potencjalnych antygwiazd zostało zidentyfikowanych w katalogu obejmującym 5878 źródeł promieniowania gamma zarejestrowanych w ciągu 10 lat przez Fermi Gamma-ray Telescope. Na podstawie tych danych Dupourque, Tibaldo i von Ballmoos wyliczyli pewne cechy, które powinny mieć antygwiazdy obecne w Drodze Mlecznej.
      Naukowcy stwierdzają, że jeśli antygwiazdy utworzył się w dysku galaktyki obok zwyczajnych gwiazd, to powinna istnieć 1 antygwiazda na 400 000 zwykłych gwiazd. Jeśli jednak antygwiazdy są gwiazdami pierwotnymi i powstały we wczesnym wszechświecie w czasie, gdy Droga Mleczna dopiero się tworzyła, co oznacza, że znajdują się w najstarszych regionach naszej galaktyki – w galaktycznym halo – to mogą stanowić nawet 20% wszystkich gwiazd.
      Jeśli przyjmiemy, że antymateria została uwięziona w antygwiazdach, to mamy tutaj prawdopodobne wyjaśnienie, dlaczego nie doszło do anihilacji. Szczególnie, jeśli antygwiazdy istnieją w regionach, gdzie zwykła materia występuje rzadko, w takich jak galaktyczne halo, mówi von Ballmoos.
      Oczywiście trzeba też przyjąć, że zarejestrowanych 14 kandydatów na antygwiazdy to coś zupełnie innego. Dlatego też Dupourque, Tibaldo i von Ballmoos sugerują, że następnym krokiem badań może być sprawdzenie, czy tych 14 źródeł emituje też sygnały w innych zakresach, które mogłyby świadczyć o tym, że są to np. aktywne jądra galaktyk czy pulsary.
      Autorzy badań opublikowali ich wyniki na łamach Physical Review D.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Po prawie 4 latach prac badawczych, 63 naukowców z 13 krajów, w tym czterech z Polski rozkodowało genom żyta. W międzynarodowej grupie znaleźli się badacze z Katedry Genetyki, Hodowli i Biotechnologii Roślin (Wydział Kształtowania Środowiska i Rolnictwa) – dr hab. Beata Myśków oraz dr hab. Stefan Stojałowski.
      Szczegółowy opis kompletnego genomu żyta opublikowano pod koniec marca br. na łamach magazynu Nature Genetics. Autorami badania są członkowie międzynarodowego zespołu The International Rye Genome Sequencing Consortium. Dzięki temu odkryciu będziemy mogli poznać biologię żyta, która może pomóc w doskonaleniu innych roślin uprawnych, powszechniej uprawianych, a z żytem blisko spokrewnionych np: pszenicy, pszenżyta oraz jęczmienia.
      To wydarzenie jest technicznym kamieniem milowym – powiedział Dr Gordillo, główny hodowca żyta w międzynarodowej firmie hodowlanej KWS. Według badacza rozkodowanie genomu żyta było dużym wyzwaniem naukowym.
      Genom żyta liczy prawie 8 mld nukleotydów, czyli ponad 2 razy więcej niż DNA człowieka. Z drugiej strony zainteresowanie żytem jako gatunkiem ważnym gospodarczo jest ograniczone do nielicznych krajów, głównie z obszaru Europy Środkowo-Wschodniej. Z tego powodu nakłady finansowe na badania żyta w skali globalnej są niewielkie. Poznaniem sekwencji DNA człowieka był zainteresowany cały świat, sekwencją DNA żyta kilkanaście państw, gdzie jest ono uprawiane  – tłumaczy dr hab. Beata Myśków.
      Dodatkową ciekawostką jest fakt, iż w trakcie, gdy prace wyżej wspomnianej międzynarodowej grupy badawczej były już mocno zaawansowane, pojawiła się informacja, że grupa naukowców z Chin również pracuje nad zsekwencjonowaniem genomu żyta – dodaje dr hab. Myśków.
      Konsorcjum międzynarodowe pod nazwą The International Rye Genome Sequencing Consortium pracowało nad sekwencją DNA europejskiej linii żyta, zespół chiński nad azjatycką formą tego gatunku.
      Wyścig obu zespołów trwający kilkadziesiąt miesięcy zakończył się idealnym remisem. Publikacje zostały złożone do druku w odstępie trzech dni, a finalnie ukazały się w tym samym terminie. Jest to chyba pierwszy taki przypadek, gdy dwa zespoły pracujące nad równie złożonym i długotrwałym przedsięwzięciem, opublikowały swoje wyniki w tym samym dniu – mówi dr hab. Stefan Stojałowski.
      Rozkodowany genom żyta to baza danych, dzięki której będziemy mogli lepiej zrozumieć biologiczne mechanizmy regulujące procesy życiowe tej rośliny.
      Zrozumienie, jak funkcjonuje skomplikowany mechanizm jakim są komórki żywego organizmu (rośliny, zwierzęcia, człowieka) umożliwia wyjaśnienie m.in. tego, dlaczego coś działa nie tak, jak byśmy tego chcieli. Teraz będziemy mogli dowiedzieć się dlaczego nasze żyto czasami choruj, daje plony niższe od naszych oczekiwań, dlaczego zbierane z pola ziarna nie zawsze nadaje się do produkcji smacznego pieczywa itd. – tłumaczy dr hab. Stojałowski.
      Prace nad poznaniem genomu żyta rozpoczęły się już 28 lat temu.
      Za pierwszy etap tych badań można uznać opublikowanie w 1993 roku pierwszej mapy genetycznej żyta, która była mało precyzyjna, ale obejmowała wszystkie 7 chromosomów żyta. Mapa ta powstała w Wielkiej Brytanii na bazie populacji wytworzonej na szczecińskiej Akademii Rolniczej. W badaniach uczestniczył prof. Piotr Masojć, obecny kierownik Katedry Genetyki, Hodowli i Biotechnologii Roślin – wspomina prof. Stefan Stojałowski.
      Wśród badaczy z Polski w międzynarodowym konsorcjum pracowały również dr hab. Hanna Bolibok-Brągoszewska oraz prof. dr hab. Monika Rakoczy-Trojanowska z Katedry Genetyki, Hodowli i Biotechnologii Roślin, Instytutu Biologii SGGW w Warszawie.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...